Long-range Correlations and Extreme Events: Dynamics and Predictions

> **Surja Sharma** University of Maryland

> > ISSI, Bern 16 Oct 2012

Nonlinear Dynamics and Complexity

Dynamics (Lorenz, 1963) Deterministic dynamics Chaos Quantitative results Weak connection with data Geometry / Structure (Mandelbrot, 1977) Real objects in nature (Trees, clouds, coastline, etc.) Fractals, Multifractals **Dynamics** + Structure

Reconstruction of Dynamics

"Geometry from a time series" (Packard et al., PRL, 1980) Embedding theorem (Takens, 1981) Time series data: x(t)Time-delay embedding: $x_k(t_i) = x(t_i + (k-1)\tau)$ Recons

Reconstructed space:

 $X_i = \{ x_1(t_i), x_2(t_i), x_3(t_i), ... \}$

S'' 1980) 1981) $embedding \Rightarrow$ diffeomorphism $\Phi: M \to \Phi_{F,V}^{(M)}$ Φ^{T} Φ^{T} Φ^{T} Time series data Reconstructed

(Broomhead and King, Phys. A, 1986)

Correlation Dimension

$$C(r) = \sum \Theta(r - |X_i - X_j|) \sim r^{\nu}$$

(Grassberger & Procaccia, PRL, 1983)

Earth's Magnetosphere

Episodic nature of the magnetosphere: Storms and substorms driven by the solar wind

Multiscale Magnetosphere

Hall-MHD scale Electron-MHD scale

Reconnection at Electron and Ion Scales

Auroral Electrojet Indices

Reconstruction of Phase Space: Low Dimensional Dynamics

Correlation dimension Convergence to a low value Vassiliadis et al., GRL, 1990

Note:

Uses Magnetospherric data alone: Autonomous system Complex Driven System: Input-output model

Ortho-normal coordinates - Singular spectrum analysis Sharma et al., GRL, 1993

Strongly Driven Magnetosphere: Substorms during 81 intense storms in 2001

Solar wind data (ACE satellite)

Magnetospheric response (AL index)

1 min res., 0.5 x 10^6 data pts.

Chen, Ph. D. Dissertation, 2007

Conditional Probability Distribution Functions

Reconstruction of Dynamics

- Time-delay embedding
- Singular spectrum analysis
- Input-output analysis

Input : solar wind induced E field Output: auroral electrojet index AL

Leading components of the reconstructed space

Manifold of Magnetospheric Dynamics: - Phase Transition-like Behavior

Mean-Field Model and Prediction

Nearest neighbors of current state x_t

- Center of mass x_t^{cm} - mean state for
- given input I_t

Mean state for t+1represented by x_{t+1}^{cm}

Predicted output:

$$O_{t+1} = \mathbf{\mathcal{F}}(\mathbf{x}_t^{cm}) = \langle O_{k+1} \rangle, \qquad \mathbf{x}_t \to \mathbf{x}_t^{cm}$$

Prediction procedure: search of mean response

Ukhorskiy et al., GRL, 2002

Prediction with Mean-field Model

Solar wind conditions

Distribution of past events - Conditional probabilities

Predicted and actual AL

Ukhorskiy et al., GRL, 2004

Mean-Field & Weighted Mean-Field Models

Weighted mean-field model

Average over all nearest neighbors

Ukhorskiy et al., GRL, 2002, 2004

Closer nearest neighbors should contribute more

$$O_{n+1} = \frac{1}{NN} \sum_{k=1}^{NN} X_{k} \bullet g_{k}$$
$$g_{k} = \frac{1}{d_{k}^{2}} / \sum_{i=1}^{NN} \frac{1}{d_{i}^{2}}$$

 d_k – distance from center of mass

Chen and Sharma, JGR, 2006, 2007

Predictions for strongly driven magnetosphere

Intense storms of 2003 (Oct 26 – Nov 3) and 2002 April Chen et al., JGR, 2006

Forecasting Space Weather

Near Real-time data of the solar wind from ACE satellite

Forecasts of AL and Dst using the weighted mean-field model

Pdf's provide measures of predictability, and can used to estimate associated risk Forecast using the weighted mean-field model

http://www.spp.astro.umd.edu/spaceweather

Spatio-Temporal Properties: Information Theoretic Approach

Shannon, 1948, Wiener, 1949 Jaynes, 1983

• Average mutual information (AMI):

$$I(x,\tau) = \sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij}(x(t), x(t-\tau)) \log_2 \left[\frac{p_{ij}(x(t), x(t-\tau))}{p_i(x(t)) p_j(x(t-\tau))} \right]$$

- AMI represents the expectation of the average degree of independence incorporating all higher orders
- AMIs of 12 spatially distributed magnetometer time series
- Spread of Localized Integrated Mutual Information (SLIMI):

$$\Delta_I(\tau) = Max_i \{I(\tau, x_i 0) \} - Min_i \{I(\tau, x_i)\}$$

Edwards et al., AGU Spring Mtg., 2000 Chen et al., JGR, 2008

Average Mutual Information: Data from 12 Auroral stations

• AMI represents the average degree of independence or correlation time

• Spread among the AMIs of 12 spatially distributed magnetometers:

$$\Delta_I(\tau) = M_{ii}ax\{I(\tau, x_i, 0)\} - M_{ii}ax\{I(\tau, x_i, 0)\}$$

Long-range Correlations: Detrended Fluctuation Analysis (DFA)

- Detection of long-range correlations in time series data
- Based on auto-correlation function C(s)
- Removes effects due to non-stationarities (?)
- Yields a scaling exponent:
 - $F(s) \sim s^{\alpha}$
 - $\alpha = 0.5$ uncorrelated (diffusion)
 - > 0.5 long-range correlation

Why detrend data?

Detrended Fluctuation Analysis

Kantelhardt et al. Physica A, 2001 Bryce and Sprangue, Sci. Rep. 2:315, 2012

Auto-correlation Function of AL index

Mutual Information Function – AL index

DFA analysis of AL and Solar Wind

- Uncorrelated beyond \sim 4-5 hrs

Veeramani et al., 2008

Correlation Time of 4 - 5 hrs

Randomness from the definition of indices Artificial stochasticity - Anthropogenic

DFA Analysis – Return Intervals

Fractional Brownian motion with Hurst exponent of 0.8

Fractional Gaussian noise with Hurst exponent of 0.8

FGn data riding on FBm trend (FBm $+ \sigma$.FGn)

Detrended data (o.FGn)

Fluctuation analysis: Actual and Detrended data

Extreme Events

Extreme Events: Data-enabled Modeling Framework

Hydrological

Extreme Events: Data-enabled Modeling Framework

"Simple Lessons from Complexity" Goldenfeld and Kadanoff, Science 1999

As science turns to complexity, one must realize that complexity demands attitudes quite different from those heretofore common in physics. Up to now, physicists looked for fundamental laws true for all times and all places. But each complex system is different; apparently there are no general laws of complexity. Instead, one must reach for "lessons" that might, with insight and understanding, be learned in one system and applied to another.

Criticality and Long-range correlation

Unique relationship in Second order phase transition

Not all transitions in systems with long-range correlations are critical

"Self-organized complexity" Don Turcotte

Dynamics of systems with long-range correlations