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Nonlinear Dynamics and Complexity  

Geometry / Structure
(Mandelbrot, 1977)

Real objects in nature 
(Trees, clouds, coastline, etc.)

Fractals, Multifractals
Dynamics + Structure

Dynamics (Lorenz,  1963) 
Deterministic dynamics
Chaos
Quantitative results
Weak connection with data



Reconstruction of Dynamics
“Geometry from a time series”

(Packard et al., PRL, 1980)

Embedding theorem (Takens, 1981)
Time series data: x(t)
Time-delay embedding: 

xk(ti) = x(ti + (k-1)τ)
Reconstructed space:

Xi = {x1(ti), x2(ti), x3(ti), ..} (Broomhead and King, Phys. A,  1986)

Actual

Reconstructed 
Time series data

Correlation Dimension

(Grassberger & Procaccia, PRL, 1983)

C(r)  (r | Xi  X j |) ~ r



Earth’s Magnetosphere  

Episodic nature of the magnetosphere:
Storms and substorms driven by the solar wind



Multiscale Magnetosphere

Global scale
MHD scale
Hall-MHD scale  
Electron-MHD scale





Auroral Electrojet Indices

Envelopes:
upper AU
lower AL



Reconstruction of Phase Space: 
Low Dimensional Dynamics

Correlation dimension
Convergence to a low value

Vassiliadis et al., GRL, 1990

Ortho-normal coordinates
- Singular spectrum analysis
Sharma et al., GRL, 1993

Note: 
Uses Magnetospherric data alone:      

Autonomous system
Complex Driven System:

Input-output model



Strongly Driven Magnetosphere:
Substorms during 81 intense  storms in 2001

Solar wind data          
(ACE satellite)

Magnetospheric response          
(AL index)

Chen, Ph. D.  Dissertation, 2007

1 min res.,
0.5 x 106 data pts.



Conditional Probability Distribution Functions

Multiscale phenomenon
Ukhorskiy et al., 2004
Veeramani et al., 2007
Sharma et al., 2008

Magnetospheric 
response

pdf

Solar Wind E



Reconstruction of Dynamics
- Time-delay embedding
- Singular spectrum analysis
- Input-output analysis

Input :  solar wind induced E field
Output:  auroral electrojet index AL

Leading components of the reconstructed space



From vBs-AL Index Data
Sitnov et al., JGR, 2000;

Phys. Rev. E, 2001.

From vBs-Pseudo AL Index:
Global MHD simulations
Shao et al., JGR, 2003

Manifold of Magnetospheric Dynamics:       
- Phase Transition-like Behavior



Mean-Field Model and Prediction

Mean state  for t+1
represented by 

Predicted output:    

Prediction procedure: 
search of mean response 
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Ukhorskiy et al., GRL, 2004

Prediction with Mean-field Model

Distribution 
of past events
- Conditional 
probabilities 

Predicted and 
actual  AL

Solar wind 
conditions 



Mean-Field & Weighted Mean-Field Models

Average over all nearest neighbors  

Ukhorskiy et al., GRL, 2002, 2004

Closer nearest neighbors should 
contribute more 
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Mean-field model

Weighted mean-field model

Chen and Sharma, JGR, 2006,2007

dk – distance from center of 
mass



Predictions for strongly driven magnetosphere

Chen et al.,  JGR, 2006
Intense storms of 2003 (Oct 26 – Nov 3) and 2002 April 



Forecasting Space Weather

Near Real-time data of the solar 
wind from ACE satellite

Forecasts of AL and Dst using 
the weighted mean-field model   

http://www.spp.astro.umd.edu/spaceweather

Pdf’s provide measures of 
predictability, and can used to 
estimate associated risk 
Forecast using the weighted 
mean-field model   



Spatio-Temporal Properties:
Information Theoretic Approach

• Average mutual information (AMI): 

• AMI represents the expectation of the average degree of 
independence incorporating all higher orders

• AMIs of 12 spatially distributed magnetometer time series

• Spread of Localized Integrated Mutual Information (SLIMI):
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Edwards et al., AGU Spring Mtg., 2000
Chen et al., JGR, 2008

Shannon, 1948, 
Wiener, 1949
Jaynes, 1983



• AMI represents the average degree of independence or 
correlation time
• Spread among the AMIs of 12 spatially distributed 
magnetometers:
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Average Mutual Information: 
Data from 12 Auroral stations



Long-range Correlations:
Detrended Fluctuation Analysis (DFA) 

 Detection of long-range correlations in time 
series data

 Based on auto-correlation function C(s)
 Removes effects due to non-stationarities (?)
 Yields a scaling exponent:

F(s) ~ sα

α = 0.5  - uncorrelated (diffusion)
> 0.5 - long-range correlation



Why detrend data?



Detrended Fluctuation Analysis

Kantelhardt et al. Physica A, 2001
Bryce and Sprangue, Sci. Rep. 2:315, 2012



Auto-correlation Function  of AL index



Mutual Information Function – AL index



DFA analysis of AL and Solar Wind  

- Uncorrelated beyond ~ 4-5 hrs

Veeramani et al., 2008



Correlation Time of 4 – 5 hrs 

Randomness from the definition of  indices
Artificial stochasticity - Anthropogenic

Envelopes:
upper AU
lower AL



DFA  Analysis – Return Intervals



Fractional Brownian motion 
with Hurst exponent of 0.8



Fractional Gaussian noise 
with Hurst exponent of 0.8



FGn data riding on FBm trend 
(FBm + σ.FGn)



Detrended data (σ.FGn)



Fluctuation analysis: 
Actual and Detrended data





Extreme Events



Extreme Events: 
Data-enabled Modeling Framework



Extreme Events: 
Data-enabled Modeling Framework

Information Theory
- Long-range Corr.
- Recurrence 

Complexity Science
- Dynamics
- Predictability

Time Series Data
- Natural phenomena
- Anthropogenic 



“Simple Lessons from Complexity”
Goldenfeld and Kadanoff, Science 1999

As science turns to complexity, one must realize 
that complexity demands attitudes quite different 
from those heretofore common in physics. Up to 
now, physicists looked for fundamental laws true 
for all times and all places. But each complex 
system is different; apparently there are no 
general laws of complexity. Instead, one must 
reach for “lessons” that might, with insight and 
understanding, be learned in one system and 
applied to another.



Criticality and Long-range correlation

Unique relationship in Second order phase transition

Not all transitions in systems with long-range 
correlations are critical

“Self-organized complexity”
Don Turcotte

Dynamics of systems with long-range correlations


