
Preamble 
• Second of two talks given at ISSI SOC First 

workshop. 
• NB Work on scaling of bursts in nonstationary 

scale free models like LFSM is preliminary, and 
expands/updates/corrects my PRE of 2009. 
Work in progress, if interested please contact 
me on nww62@yahoo.co.uk for latest 
situation. 
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Two themes interwoven 
• The reasons  why Mandelbrot  was led to 

study “non-classical” models that had features 
like extremely fat tails (infinite variance) in 
fluctuation amplitude, and extremely long 
range memory (1/f power spectra) in time.  

• Why, if such models in fact apply, but we don’t 
use them, we would tend to  underestimate 
“risk”-used simply to mean P(fluctuation) 

• Disclaimers: Not a professional historian or 
philosopher of science, nor an economist. Led 
to these questions from physical science. 



    
  

One more acknowledgement 
“They misunderestimated me ...” 

... One of his "most memorable additions to the language, and an 
incidentally expressive one: it may be that we rather needed a word for 
'to underestimate by mistake’”. – Philip Hensher  



5 ways to misestimate risk 
First 3 ( all "misunderestimation“, as they typically under-

estimate fluctuations), would be to use:  
• short tailed pdfs if they should have been longer. 
• short memory if you should instead have used lrd  
• additive models if system is in fact multiplicative  
Will just briefly  note also the problem of : 
•  in  multivariate models, using  iid variables if instead should 

have used coupled ones 
 And for balance, a fifth case, of  "misoverestimation“:  
e.g.  generating heavy tails  (~ 4 days) from spurious 

measurements [Edwards, Philips, Watkins et al, Nature, 
2007] although heavy tails (up to ~ 12 hours)  may still be 
buried in the data ... debate continues [Sims, Edwards, 2012]. 

  



 Why did an Antarctic scientist get 
interested in complexity ? via  

coupled solar  
wind-ionosphere        

   

 

Solar wind 

Magnetosphere 

Ionosphere 

Ultraviolet Imager – 
 NASA Polar 

Instrumentation 

Solar wind 

Problem 



and “Extremes” 

• Now a “hot topic” across many areas of 
science and policy.  

• Term used both loosely (“black swans”) and 
precisely (statistical Extreme Value Theory 
(EVT), most mature for iid case). 

• Today using it loosely, as “events which are 
“bigger” than expected ...” which immediately 
poses question of whether “size” here means 
amplitude, duration, ... 



“Extremes” in space weather  

• Example: Riley,  
Space Weather [2012] 
 
Drew inference from extrapolating 
distribution of  flare intensities, 
CME speeds etc that large events   
more common than was thought: 
“suggest that the likelihood  
of another Carrington  
event occurring within  the next  
decade  is ~ 12%” 



 Heavy tails & “Grey Swans” 

Light tailed 
Gaussian 

Heavy 
tailed 
power law 

Plot  number of 
events (#) versus  
magnitude (x). In 
red “normal” case, 
a magnitude 25  
event essentially 
never happens. 
 
 In the blue heavy 
tailed case, it 
becomes a  “1 in 
2000” event. 
“Extreme events 
… [are ] the norm”    
-John Prescott                
 

Idea applies in many natural and  
man-made situations e.g.   
Gutenberg-Richter law, and 
insurer’s “80-20” rule [cf Embrechts book] 

# 



Burst idea 

• Very general idea – inspired by energy release 
measures used in “sandpile”  models. My 
interest grew from these and our application 
of the burst idea to solar-terrestrial coupling 
data (e.g. Freeman et al, GRL, 2000). 
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Bursts in climate  
• Rather than, e.g. an unexpectedly high 

temperature, “extreme”  might be a long 
duration.  

• Runs of hot days above a fixed threshold, e.g. 
summer 1976 in UK, or summer  2003 in 
France. 

• Direct link to  weather 
    derivatives [e.g. book  
    by Jewson] 

 



  

  

  

  
 
  

  
 
 
  

              
 
  
 
           

log s 

log 
P(T) 

log 
P(τ) 

logT 

log τ 

Poynting flux in solar wind plasma from NASA 
Wind Spacecraft at Earth-Sun L1 point 
Freeman, Watkins & Riley [PRE, 2000]. 
 
  

log 
P(s) size 

length 

waiting time 

“Fat tailed” burst pdfs seen in 
solar wind data ... 

Data 

... and ionospheric in currents (not shown). 



 Our initial guess (1997-98):  … 
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Does Bak et al’s SOC  paradigm apply to 
magnetospheric energy storage/release cycle ? 

Lui et al, GRL, 2001 



    
  

  
 
  
  

Bak et al’s aim was to unify fractals in space 
with “1/f” noise in time directly, via a physical 
mechanism: 
 
 
 
  
 
 
 
Answering Kadanoff’s  
question: [spacetime] ...”fractals: where’s the 
physics” ? (often traduced, was plea, not a criticism)  



A different way ? 
Experience with SOC and complexity in space physics 
[summarised in Freeman & Watkins, Science, 2002; Chapman 
& Watkins, Space Science Reviews], and  the difficulty of 
uniquely attributing complex natural phenomena led us to 
“back up” one step. 
 
Got interested in applying the known models for non-Gaussian 
and non iid random walks. Partly to try and see what physics 
was embodied in any particular choice, partly for “calibration” 
of the  measurement tools. Link to risk and extremes. Such 
models go beyond the CLT. They are not always general “laws”, 
but they are mapping out a range of widely observed 
“tendencies”. In learning about these we have become 
interested in the history of Mandelbrot’s paradigmatic models 
and their relatives. 
 



Approaches to extremes  

• Stochastic processes 
• Dynamical systems [e.g. Franzke, 2012] 
• Mixture of both  
•  Complicated models like GCMs in climate  
• ... 
I am concerned today with stochastics, but 

clearly models that mix these properties are 
of interest, for example Rypdal and Rypdal’s 
stochastic models and their developments. 
 



“Textbook” stochastic models 

• “White” noise  
• Gaussian “short-tailed” distribution of 

amplitudes 
• Successive values  independent 
ACF                                             is   short-tailed 
•  When integrated leads to an additive random 

walk model 
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3  “giant leaps” made beyond these 1963-74 by Mandelbrot.  
All “well known” and yet process is instructive - recap 
 
 
1. BBM observes  heavy tailed fluctuations in 1963 in cotton 
prices---proposes alpha-stable model , self-similarity idea  
 
2. BBM hears about River Nile and “Hurst effect”. Initially (see  
Selecta volumes ) believes this will be explained by heavy tails,  
but when he sees that fluctuations are ~ Gaussian 
applies self-similarity [Comptes Rendus1965] in the form of a  
long range dependent  (LRD) model, roots of fractional Brownian motion.  BBM’s  
classic series of  papers on fBm in mathematical & hydrological  literature with  
Van Ness and Wallis in 1968-1969. BBM unites them in a  new self-similar  model,  
fractional hyperbolic motion, in  1969 paper with Wallis on robustness of R/S.  
Combines 1 & 2 above (heavy tails & LRD). 
 
3. BBM becomes dissatisfied with purely self-similar models, develops multifractal 
Cascade models, initially in context of debates then current in turbulence, JFM 1974.  
Later applications include finance. 
 
 
  



“It's very strange that in high school I never knew, I never felt that I 
had this very particular gift, but in that year in that special cramming 
school it became more and more pronounced, and in fact in many 
ways saved me. In the fourth week again I understood nothing, but 
after five or six weeks of this game it became established that I 
could spontaneously just listen to the problem and do one 
geometric solution, then a second and a third. Whilst the professor 
was checking whether they were the same, I would provide other 
problems having the same structure. It went on. I didn't learn much 
algebra. I just learned how better to think in pictures because I 
knew how to do it. I would see them in my mind's eye, intersecting, 
moving around, or not intersecting, having this and that property, 
and could describe what I saw in my eye. Having described it, I 
could write two or three lines of algebra, which is much easier if you 
know the results than if you don't”  
---Mandelbrot, at www.webofstories.com 

Mandelbrot 



Dirac  

• “Her fundamental laws do not govern the 
world as it appears in our mental picture in 
any very direct way, but instead they control a 
substratum of which we cannot form a mental 
picture without introducing irrelevancies. "  

--- Preface  to The Principles of Quantum 
Mechanics [1930] 



    
   
 

“Noah effect”- e.g. Lévy 
flights where a < 2 

increases tail fatness  

a=1 

e.g. Hnat et al, NPG [2004] 

a=2 

Levy flight model 
Ionospheric  
Data (AE index) 

BBM observes  heavy tailed fluctuations in 1963 in 
cotton prices---proposes alpha-stable model , 
abstracts out self-similarity idea  



• H is the selfsimilarity parameter. Relates a 
walk time series  to same series dilated by a 
factor c. Not always same as Hurst parameter 

from R/S or similar. 

Selfsimilar scaling 
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Droughts & Bunching   
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Mandelbrot’s climate example:  Pharoah’s dream  7 years of plenty  
(green boxes) and 7 years of drought (red boxes). Now shuffle ... 



 
Droughts & Bunching   
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Mandelbrot’s climate example:  Pharoah’s dream 7 years of plenty  
(green boxes) and 7 years of drought (red boxes). Now shuffle ... 

Point is that frequency distribution  is same (c.f. Previous slide)  but  
that the two series represent very different hazards.  Don’t even  
need to come from heavy tails, e.g. a long run of very hot days ... 
 
 



“Joseph effect”- e.g. fractional Brownian   
(fBm) walk: steepness  of log(psd) of Y(t)  
with  log(f) increases with memory 
parameter d 

d=-1/2 

d=0 

S(f) ~ f-2(1+d) 

Fractional Brownian 
walk model Y(t) 

Mandelbrot heard about River Nile and 
“Hurst effect”. Initially (see  his Selecta) 
believed this would be explained by heavy 
tails.  
 
 
When he saw that fluctuations are ~ 
Gaussian applied self-similarity [Comptes 
Rendus1965] in the form of a long range 
dependent  (lrd)  model for Y(t). 
 
Related to the ordinary  
Brownian random walk  
But with long ranged memory, 
a  fractional Brownian  
motion (fBm) 
 
 
Mandelbrot’s classic series of  papers 
on  fBm in mathematical &  
hydrological  literature with  
Van Ness and Wallis in 1968-1969. 



What if heavy tailed and LRD ? 

• Mandelbrot & Wallis [1969] looked at this, proposed a version 
of fractional Brownian motion Y(t) which substitutes heavy 
tailed “hyperbolic” innovations for the Gaussian ones. First 
difference of this was their fractional hyperbolic noise X(t) 

• In such a model you not only get “grey swan” (heavy tail) 
events, but they are “bunched” by the long range dependence 
...  

 ( )X t



  

    
   

 
H = d+1/α: allows   
H “subdiffusive”  (i.e. < ½) while   
 “superdiffusive” (i.e. <2).  
R/S, DFA etc, measure d but not α  (e.g. Franzke et al, Phil Trans 
Roy Soc, 2012) , two series can share a value of H (or d, or α ) 
and be otherwise quite different c.f. Rypdal and Rypdal’s 
critique of Scaffetta and West. 

  

Memory kernel: 
Joseph  

α-stable jump: 
Noah 

An H-selfsimilar, stable successor  to 
 Mandelbrot’s model  

 To combine effects 1 & 2 (heavy tails & LRD) we nowadays  would use 
e.g Linear Fractional Stable Motion or its derivative noise. 
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Bursts in LFSM model 
• We have begun to study how bursts, defined as integrated 

area above thresholds, scale for the LFSM walk Y(t). [Watkins 
et al, PRE, 2009]  Scaling depends both on  alpha and d, via H. 

• Our study benefits from earlier work of Kearney and 
Majumdar [J Phys A, 2005] on area defined by curve to its 
first return  (for Brownian motion started epsilon above a 
threshold) 

•  and of Carbone and Stanley , [PRE & Physica A] on bursts 
defined in fBm using a running average (similar to that used in 
detrended fluctuation analysis (DFA)). 

• We’ve  used the scaling properties of LFSM 
walk Y(t) to predict its burst distribution. 



 First passage-based burst  
• Illustrate idea first for Brownian motion. Instead of set of all 

threshold crossings we can use just the time         at which  a  
Brownian motion returns to the level L  that it exceeded at L 
(i.e. the first passage time) to define a burst :  
 
 
 
 

• We exploit the famous scaling behaviour of a random walk.   
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Relation of burst area to FPT 
•  Get burst area in terms of FPT  

 
 
 
 

• and vice versa 
2/3~f FPt A

3/2~FPA t



 Then fold in standard result for 
distribution of Brownian FPTs  

•  Note that expectation value here is infinite ! 
 
 
 
 

• Above can be combined with our previous result to give a 
distribution for burst sizes in Brownian walk  

3/2( ) ~f fP t t−

4/3( )P A A−≈



 Repeat for LFSM  
•  Instead of FPT we used level crossings to define bursts here  

(1 )~ H
I It A− +

2/(1 )( ) HP A A− +=

Simulations  [Watkins et al, PRE, 2009] confirm this works for  fBm at least. 



  

  
 
  

  
 
 
  

We adapted  Kearney-Majumdar  argument 
to pdf tails in LFSM case.  A well known 
consequence of  fractal nature of fBm trace, 
that the exponent for length of burst is β=2-H 
, enabled us to predict γ=-2/(1+H)  for size of 
bursts. 
 
 
 
 
 
 
 
 
 
 

 Same scalings β and γ  were found by Carbone et 
al [PRE, 2004]  but for fBm only-they a used 
running average, DFA-inspired, threshold rather 
than our fixed one (see also Rypdal and Rypdal, 
PRE 2008, again for fBm).  
 



  

Simulate numerically 
with Stoev-Taqqu 
algorithm.  
 
Exponents obtained 
using maximum  
likelihood  codes 
of Clauset et al, 
[SIAM Review, 2009]. 
Only power law case 
used so far. 

  
 
  

  
 
 
  

 fBm: Revisit our PRE but with 40 trials per exponent value    
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Burst length exponent, β , vs. H for α=2, &40 trials / exponent

 

 
<Simulation>
β = 2-H

 Agreement of prediction with averaged exponents not terrible, but not 
great either-we would like to quantify how “good” and  reasons for 
discrepancy. 



  

  
 
  

  
 
 
  

 fBm: one way to gauge agreement is box plots  
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Boxes show median  
(red line),upper and lower  
quartiles, with outliers as  
red crosses. 
 
Whisker length as per  
Matlab ‘s default 



  

  
 
  

  
 
 
  

 fBm: now checking predicted scaling of burst size   
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Burst size exponent, γ, vs. H for α=2, &40 trials / exponent

 

 
<Simulation>
γ = 2/(1+H)



  

  
 
  

  
 
 
  

 fBm:  again, more informative comparison via box plot  
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 LFSM, alpha =1.6 case,  burst length  
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Burst length exponent, β , vs. H for α=1.6, &40 trials / exponent

 

 
<Simulation>
β = 2-H

One might have guessed that fit would be poorer than fBm, but for LFSM 
expressions  for β & γ show similar levels of agreement   even for  α  
as low as 1.6. Again, not perfect but “in the ballpark”. 



  

  
 
  

  
 
 
  

 LFSM alpha =1.6 case,  burst length  
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 LFSM alpha =1.6 case,  burst size  
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<Simulation>
γ = 2/(1+H)



  

  
 
  

  
 
 
  

 LFSM alpha =1.6 case,  burst size  
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 LFSM alpha =1.2 case,  burst length  
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<Simulation>
β = 2-H

By the very heavy tailed case of α=1.2,  there is clearly a problem, though. 



  

  
 
  

  
 
 
  

 LFSM alpha =1.2 case,  burst length  
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 LFSM alpha =1.2 case,  burst size  
 
 
 
 
 
           

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

H

γ
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<Simulation>
γ = 2/(1+H)



  

  
 
  

  
 
 
  

 LFSM alpha =1.2 case,  burst size  
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 Comparison with reality ? 
Remember instead of FPT we used level crossings to define 

bursts here  
(1 )~ H

I It A− +

2/(1 )( ) HP A A− +=
Agreement  in our simulations less tight than seen by Carbone and Stanley,  
evidence that their DFA-inspired detrending indeed helps remove some  nonstationary  
aspects of  the walk, without removing (all) the scaling  ? 
  
However, predicts an exponent of about -(2/1.4)  i.e. roughly -4/3 for AE index.  
Observations sufficiently different  (more like -6/5)  to motivate further work. 

AE data 



  

  
 
  

  
 
 
  

  But what if a self-similar additive model is 
thought  not to be the best one for other a 
priori reasons ? 

Could for example believe that physics of 
system is intrinsically a turbulent cascade-
especially true of solar wind-then expect 
multifractality. 

  
 

 



Natural examples include ice cores  (e.g. Davidsen and Griffin, PRE , 2009), 
and returns of ionospheric AE index (above), see also Consolini et al, PRL, 
1996.   Man-made example from which name volatility is taken is finance. 
 
Effect not seen in fractional Levy models c.f.  Rypdal & Rypdal, JGR 2010  
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AE data:  acf of squared returns

First differenced AE data 

ACF of diff. AE 

ACF of (diff. AE) squared 

Having introduced 3 models in 6 years, Why did BBM   
remain dissatisfied ? Partly because his eyes told him ... 
Effect that multifractals capture is “volatility clustering” 



Meneveau  
& Srinivasan 
 
P-model 

Multiplicative models:  
 
BBM becomes dissatisfied with purely self-similar models, develops  
multifractal cascade, initially in context of turbulence, JFM 1974.  
 
Later applications include finance in late 1990s by BBM, Ghashgaie et al. 
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 Open: what do we expect bursts 
to do in multifractals ? 

For a monofractal  

Instead we see a downward curvature of the zeta function at higher orders  
in a multifractal, but high variability over ensembles at these high orders  c.f.  
Dudok de Wit, NPG. A line drawn through zeta plot would look like a  
smaller H value ? 
 
Intuitively should act to reduce size of a burst of a given duration ? Or make  
P(A) plot steeper i.e. more negative exponent ?  Now looking at this with  
Martin Rypdal and  Ola Lovsletten [Poster at Fall AGU 2012] 
 
Some early indicative  results from multifractal models and turbulence in  
Bartolozzi et al; in Uritsky et al, 2010, and in Watkins et al, PRE, 2009. 



Recap Themes 
• Why do space and climate physicists care about extremes ? Several 

approaches to extremes including stochastic. 
• What might we lose either by failing to spot scaling and correlations when  

present, or alternatively by inferring them when actually absent ? [“Five 
ways to misestimate risk”, NERC-KTN PURE white paper in prep, 2012] 

• Idea of selfsimilar extreme “bursts” from SOC. Can we predict statistics  of 
bursts from scaling? [Watkins et al, PRE;  2009; Hyderabad Chapman 
Conference proceedings, 2012 ] 

• But how often is reality actually selfsimilar ? Why did Mandelbrot come to 
embrace richer, multifractal models?  [c.f. Rypdal & Rypdal, 2011]. 
Indications of how multifractality affects a time series’ properties 
including bursts [Watkins et al, PRL, 2009 ] and AGU 2012 poster. 

•  Open issues, next steps, collaboration ?  



Another way ? 
See also speakers’ talks at recent Warwick aggregation workshop  
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