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ABSTRACT

Context. Recent observations by Hing&OT show that MHD waves and mass flows are simultaneouslgmprésthe fine structure

of solar prominences.

Aims. We investigate standing kink magnetohydrodynamic (MHDYegain flowing prominence threads from a theoretical point of
view. We model a prominence fine structure as a cylindricajmatic tube embedded in the solar corona with its ends ietkin

the photosphere. The magnetic cylinder is composed of anegith dense prominence plasma, which is flowing along thgmatc
tube, whereas the rest of the flux tube is occupied by cordaahya.

Methods. We use the WKB approximation to obtain analytical expressior the period and the amplitude of the fundamental mode
as functions of the flow velocity. In addition, we solve th# fwoblem numerically by means of time-dependent simafai

Results. We find that both the period and the amplitude of the standifPMvaves vary in time as the prominence thread flows
along the magnetic structure. The fundamental kink modegiscal description for the time-dependent evolution of thaliagions,
and the analytical expressions in the WKB approximationmegreement with the full numerical results.

Conclusions. The presence of flow modifies the period of the oscillationthwéspect to the static case. However, for realistic
flow velocities this &ect might fall within the error bars of the observations. Taeation of the amplitude due to the flow leads to
apparent damping or amplification of the oscillations, watdould modify the real rate of attenuation caused by an iaddit damping
mechanism.
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1. Introduction that vertical threads might actually be a pile up of horizbnt
) . o o threads which appear as vertical structures when projectéue

Recent observational evidence of ubiquitous periodicadly- piane of the sky. This idea is consistent with Hbservations of
ing features in the solar corona (e.g.. Tomczyk et al. 200f‘%l'aments on the solar disk from the Swedish Solar Telescope
Jess et al. 2009; Tomczyk & McIntosh 2009; Wang et al. :200?@_9_’ Lin et al 2008, 2009), in which the filament fine struc-
has raised the debate on whether these observations aeticafife is seen as thin and long dark ribbons. On the other hand,
by magnetohydrodynamic (MHD) waves or by quasi-periodigther authors (e.d., CHae 2010) have argued that verticsddis
flows (see, e.gl, De Pontieu & McIntosh 2010). There seem 4@s real and are an indication of the existence of verticag-ma
be strong theoretical arguments supporting the wave i&p petic fields in quiescent prominences. Thus, it remainseaancl
tion (e.g./ Erdélyi & Feduh 2007; Van Doorsselaere €t al&0 \yhether all prominences have the same magnetic structure or
Terradas etal. 2010; Verth etal. 2010). However, waves agf the contrary, the magnetic field in quiescent promineiges
flows are not mutually exclusive and_, in fac_t, both phenomeﬂ?edominantly vertical and active region prominences tere
have been simultaneously observed in the fine structurel@af sq;ontal fields. A recent review on the properties of promien
prominences (e.g., Okamoto etlal. 2007). THi®Is us the 0p- threads can be foundin LA (2010).
portunity to study the interaction between waves and floviisén There are many evidences of transverse oscillations of
solar atmosphere. _ _ _the fine structures of both active region and quiescent promi

The fine structure of solar prominences is clearly vishences, which have been interpreted in terms of kink MHD
ble in the high-resolution ki and Ca Il H-line images from waves (see the recent reviews|by Balléster 2006; Oliver2009
the Solar Optical Telescope (SOT) aboard the Hinode satelli\rregui & Ballestelf 2010). The reported periods are usuially
(e.g.,Okamoto et al. 2007; Berger et al. 2008; Chae/et al20@ narrow band between 2 and 10 minutes, while the oscilla-
N|ng etal. 2009 SC.hmleder.et al. 20'.0 Chae :2010) When qh)'ns are typ|Ca“y damped after a few periods_ In add“:ﬂnws
served above the limb, vertical structures are commonly seghd mass motions in prominences have been also reported (e.g
in quiescent prominences (e.Q., Berger et al. 2008; Chde efArker et al.[1998] Wand 1999; Kucera et Al._2003; Lin et al.
2008 Chae 20:\.0), while horizontal threadlike structuresisu- 2003;  Ahn et al. 20]0) The typ|Ca| flow velocities are lesmth
ally observed in active region prominences (e.9., Okambéb e 30 km s in quiescent prominences, although larger values up to
2007). Although it is apparently fiicult to reconcile both pic- 40-50 km s* have been observed in active region prominences.
tures, some authors (e.g.. Schmieder 2t al. 2010) havestegge  The work of Okamoto et 4l (2007) is an example of simul-
taneous transverse oscillations and mass flows in promgnenc
Send offprint requests to: R. Soler fine structures observed with Hing&OT. In the present pa-
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per we focus on the theoretical analysis of the event regorteence plasma of densipy, while the rest of the tube, i.e., the
bylOkamoto et al! (2007). Similar observations of simultaree evacuated part, is occupied by less dense plasma of dersity
flows and oscillations have been reported by Ofman & \Warighe density of the external plasma is the density of the alron
(2008) in coronal loops and by Cao et al. (2010) in filamentfoomedium,pc. The length of the prominence region (thread)js
points. Also, the recent work by Antolin & Verwichte (2011)The thread flows along the tube as a block with constant speed
on observations of transverse oscillations of loops witlbeo vp. The magnetic field i8 = B&,, with B homogeneous. As the
nal rain is relevant for our present theoretical investaqat g = 0 approximation is used in the present work, wihhe
Okamoto et al.[(2007) observed an active region prominenegio of the gas pressure to the magnetic pressure, the @lasm
formed by a myriad of horizontal magnetic flux tubes whickemperature is irrelevant for the study of kink MHD waves
are patrtially outlined by threads of cool and dense promiaensupported by the model. In the absence of flow, standing kink
plasma. The magnetic tubes are probably rooted in the sdliHD waves supported by the present model were investigated
photosphere. Although only the part of the tubes filled withy|Joarder et al! (1997) and Diaz et al. (2001) in Cartese&n g
prominence material can be seen in the Ca Il H-line images, thmetry, and by Diaz et al. (2002), Dymova & Ruderiman (2005),
length of the whole magnetic tube must be much longer th@iaz et al. ((2010), and Soler et al. (2010) in cylindricabige-
the length of the prominence threads, which is roughly betwetry.
3,000 km and 16,000 km._Okamoto et al. (2007) detected that We adopt the TT approximation, which is valid flefL <« 1
some threads were flowing along the magnetic tubes and simatdR/L, < 1. To check whether or not this approximation is
taneously oscillating in the vertical direction. The meamipd reasonable in the context of prominence threads, we take int
of the oscillations was 3 min and the apparent flow velocity account that the values BandL, reported by the observations
the plane of sky was around 40 kmtsThe oscillations were in (e.g., Lin 2004; Okamoto et al. 2007; Lin et lal. 2008) are ia th
phase along the whole length of the threads, and the wawblenginges 50 knx R < 300 km and 3,000 krg L, < 28,000 km,
was estimated to be at least 250,000 km. respectively, and assume ~ 10° km as a typical length for
The event observed by Okamoto et al. (2007) was stughe magnetic tube. We obtaiR/L, and R/L in the ranges
ied from a theoretical point of view by Terradas et al. (2008} » 103 < R/L, < 0.1 and 5x 10* < R/L < 3x 1073,
who interpreted the observations in terms of standing kifkeaning that the use of the TT approximation is justified in
MHD modes supported by the magnetic structure (see, egrpminence fine structures. In the cage= 0, the basic equa-
Edwin & Roberts 1983; Diaz etal. 2002; Goossens et al. 20Gfn governing linear kink MHD waves of the flux tube in the
Soler etal.. 2010). An interpretation of the observations byt approximation was derived by Dymova & Ruderman (2005)
Okamoto et a.l.’(2_0()7) in terms of kink modes was also sug their Equation (21). In the absence of flow, the TT approx-
gested by Erdeélyi & Fedun (2007) and Van Doorsselaere et ghation was used by Dymova & Rudermdn (2005), Diaz kt al.
(2008). Terradas et al. (2008) used the observed wave fil€per010), and Soler et al. (2010). The results of these workg fu
provided by Okamoto et al. (2007) to perform a seismologicgyree with the general results beyond the TT approximatjon b
estimation of a lower bound of the prominence Alfvén spe€§parder et al[ (1997), Diaz et al. (2001), And Diaz let 802}
The time-dependent numerical simulations by Terradasetal | the presence of flow, an intuitive generalization of
(2008) suggested that the influence of the flow on the periggjyation (21) of Dymova & Rudermah (2005) was performed
was small. Nevertheless, the precisieet of the flow was not py[Terradas et all (2008) in their Equation (2). Matheméica
assessed in their work because a detailed parametric s@sly Wiorton & Erdélyi (2010a) also considered the variation efé
not performed. The purpose of this paper is to advance the angy with time and obtained a similar expression in their
ysis of the event observed by Okamoto etal. (2007) by comByuation (18). We refer the reader to Terradas et al. (2008) a
bining both analytical and numerical methods. In the amalyjyiorton & Erdélyi (2010a) for a detailed derivation of thesim
cal part, we use the WKB approximation to assess #ece equation. In the mathematical derivation[of Morton & Exdél
of the flow on the period and the amplitude of the transverggnio) it is assumed that thefférence of the flow velocity
oscillations. Expressions of these quantities as funstafithe petween the internal and external plasma is small, i.e.,hmuc
relevant parameters of the model are obtained. In the nealerismg|ler than the Alfvén velocity. So, we restrict our prese-
part, we go beyond the WKB approximation and solve the fullestigation to values of the flow velocity that satisgyva, < 1,

tlme-dependentproblem. The_ implications of our resuligtie whereva, = —E= is the prominence Alfvén speed. Assuming
magneto-seismology of prominences are also discussed. VEPp

This paper is organized as follows. Sectidn 2 contains te= 50 G ando, = 107*° kg m as realistic values of the mag-
model configuration and the basic governing equations. Tihe &€tic field strength and density in active region prominenoe
alytical investigation of standing kink MHD waves in flowingobtainva, ~ 446 km s*. Since the flow velocities on the plane
prominence threads using the WKB approximation is includéd sky estimated by Okamoto et al. (2007) are in the intereal b
in Section[B, while the full numerical solution of the timeiween 15 kmr' to 46 km s! (see their Table 1), the restriction

dependent prob'em is performed in Secm)n 4. Fina“y’ osulte VO/VAp < 1 is satisfied for realistic parameters in prominenceS.

are discussed in Sectibh 5. Thus, the governing equation we study in the present work is
Vv (2 1) v (z 1)
Az t)— =0, 1
2. Model and basic equations ot CD (1)

gich has to be solved along with the condition of line-tyatg
e photosphere expressedvasL/2,t) = 0, and a given initial
condition att = 0. In Equation[(IL)y;(z t) is the radial velocity
perturbation at the tube boundary andz t) is the kink speed,
SWhich in our model is a function afandt, namely

The background model in which the waves are superimposed |
schematically shown in Figuig 1. It is composed of a straig
and cylindrical magnetic flux tube of radid® and lengthL,
whose ends are fixed at two rigid walls representing linagyi
at the solar photosphere. Thaxis is chosen so that it coincide
with the axis of the tube, and the photospheric walls aretémta _ i [Z—70 —vot] < Lp/2,

atz = +£L/2. The magnetic tube is partially filled with promi—Vk(Z’ b= Vie If 12—20 — Vot > Lp/2, @
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Fig. 1. Sketch of the prominence fine structure model adopted inbik.
where condition of applicability of the WKB approximation is fuléd
in the case of transverse oscillations of flowing threads.
2B2 2B2 Using the parametetwe define the dimensionless ting,
Vkp = - Vke = T N (3) as
u (pp + pc)  (pe + pc)
ty = dt, ®)

with u the magnetic permittivity, ang, corresponds to the po- . . .
sitiorﬁlof the cgenter gf the proyminence thre%d with respFe)Ct gd we express the solution to Equation (1) in the followorg
the center of the magnetic tube tat 0. Note thatzg < O if i

the thread is initially located on the left-hand side of teac Vr(Z t1) = Qu(z ta) exp(gﬂl(tl)), (6)
ter of the tube, whereag > O if the thread is initially located ) )

on the right-hand side. We see that the flow does not expliith Qi(z t1) andQa(t;) functions to be determined. Next, we
ity appear in Equation{1) since it is enclosed in the definfombine Equation${1) andl(6), and separate tfferaint terms
tion of v(z t) given in Equation[{R). Terradas el al. (2008) pe@ccording to their order with respectdoAs é is smalll, the dom-
formed time-dependent simulations and solved Equafiony1) inant terms are those with the lowest ordesinWe obtain two
merically. Here, our aim is to solve Equatidn (1) by usingrboteduations forQu(z tz) and Qu(t2) taking the terms witto (°)

analytical and numerical methods. ando (51), namely
- - I Qi(zt)  [(ou(t)\ t
3. Analytical investigation: WKB approximation Q;izz’ ) +( 6lt( l)) (321((;1)) =0, ()
1 Wzl
We solve Equation[{1) analytically by using the Wentzel- 2
Kramers-Brillouin  (WKB) approximation (see, e.g.,Ql(z,tl)a le(tl) +26Q1(Z’t1) ULCY = 0. (8)
Bender & Orszag 1978, for details about the method). The oty oty oty

WKB approximation has been recently applied to the investi ; ; ;

ggtion of MHD Wa\ée? inzgo%ling) coronal Ioolps ( I\k/llorton it SIEQ&%t:%nnSg]?érzgﬁi\;i(%gigae)erJ(Ie\/SapIS(r:l;[i\tlzls quations (24) aByl (2
10; Morton & Erdélyi 2010a.b). In particular, the work by e the fime. .

Morton & Erdélyi (2010a) is especially relevant for the geat Now, we define the time-dependent frequenefty), as

investigation as they studied kink oscillations of corolealps _0Q(ty)

with variable background. w(t) = oty ©)
The WKB approximation is an approximate method to study, . . .

waves in a changing background whose properties are smo\éﬁ'l(:h allows us to rewrite Equatiohl(7) as follows

functions of space arar time. In the present application Ofale(z, ) W (t)

the WKB approximation we assume that the time scale related 2 T2 Qi(zty) =0. (10)

to the waves, e.g., the period, is much shorter than the time %% iz t)

scale related to the changes of the background configuratiggyation[[ID) has to be solved taking into account the baynda

Under these conditions, it is possible to defirtena-dependent  conditionsQ;(+L/2,t;) = 0 due to photospheric line-tying. By

frequency which slowly varies because of the changing backsyying Equation[{10), the dependencezmf function Qy(z ty)
ground. To apply the WKB approximation we define the parargan be obtained. In addition, singi(z t;) is a piecewise con-

eters as stant function ok (see Equatiori{2)), the analytical solutions to
Vo Equation [(ID) are trigonometric functions with time-degent
0= T (4) arguments. Thus, the general solution to Equalioh (10fgaty

the boundary conditions at= +L/2 is
The validity of the WKB approximation is restricted to small

values 0f5 so asPs < 1, whereP is the period of the oscil- Ag(ts)sin(4 (z+ %)) if z<z,
lations. In the observations by Okamoto €t al. (2007), thamme _ w(ty) .
flow velocity and period arey ~ 40 km st andP ~ 3 min. For Quzt) = Ax(tr) COS( we 2 W) i 2 <257, (11)

L ~ 10° km these values resus ~ 0.072, meaning that the As(ts) sin(4) (z- %)) if z>z
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of time in Figure[2 for a particular set of parameters. We find
200 M that the dispersion diagram is symmetric with the time winen t
g : thread is located at the center of the magnetic tube (deryted
\/\/\ a vertical dotted line in Fig.]2) as point of symmetry. The-fun

150 L~ o~ damental mode and the first harmonic are smooth functions of
g ] time. The other harmonics displayed in Figlife 2 show a com-

plicated set of couplings and avoided crossings. The refmson

this behavior is that the fundamental mode and the first har-

monic correspond tglobal oscillations of the flux tube because

both the prominence and the evacuated parts of the tubesare di

turbed. On the contrary, high harmonics correspond to modes

more confined within one of these regions. Thus, the collec-
i : ] tion of modes and their properties are similar to those stlidi

0 ‘ o ‘ ‘ ‘ bylJoarder & Roberts (1992) and Oliver et al. (1993) in slab ge

6 8 10 12 Ometry.

£/ Tho

Fig. 2. Dimensionless frequencyirap, versus time in units of 3-1- Approximation to the fundamental mode frequency

the internal Alfvén travel timega, = L/Vap. Results correspond- From hereon we restrict our analysis to the fundamental mode
ing to the fundamental mode and the lowest seven harmonics gp oscillation, whose frequency is the lowest order sohutio
tained by numerically solving Equatidn {14) for a flowingebd  Equation [T4). To obtain an approximation to the frequeney,
with Lp/L = 0.1,Vo/Vap = 0.05, andzy/L = -0.25. The verti- (&)erform a Taylor expansion of Equatidn14) and neglect serm

cal dotted line denotes the time when the prominence theeagy, O(w“) and higher orders iw. The following expression is
centered within the flux tube. obtained

whereA; (t1), Ax(t1), andAg(t;) are time-dependent cfiients, L
#(t1) is a time-dependent phase, andandz, denote the loca- w (t1) = 2vip .

tions of the interfaces between the prominence thread asd th

evacuated regions, namely o 1 (15)

L eTPc L-L
z=2%5 +tl. (12) \/(L—Lp)(L+%Lp)—4(zo+t1L)2(1+ e (L))

ptoc

;&ilofﬁe“?gg Oefrg?ig ![Ett?gacrﬁlsjscth:aq[?s? a; thioderirj—jz ggsﬁs;?o The dfect of the flow is contained in the denominator of
g 9 &1 . y approp Y¥he right-hand side of Equatiofi {15). We see that tffece
conditions atz = z.. Since the interfaces correspond to con-

: A : —— of the flow on the frequency is more complicated than a sim-
tact discontinuities (see Goedbloed & Poedts 2004), thadou ple Doppler shift. There are two reasons that cause thisrdepe
ary conditions are

dence. On the one hand, our model is a complicated structure
0Q in the sense that only the dense prominence material is mov-
EH =Y (13) ing. It is well known that a wave propagating in a uniform mag-
. ) netic tube with a constant siphon flow ifected by a constant
where [[X]] stands for the jump of the quantityatz=z.. ~  poppler shift of the frequency due to the flow. However, the
~ Applying the conditions of Equatiof_{IL3) on the solutiongfrect of the flow is not so simple in more complicated con-
given by Equation((111), we arrive at the following equation  figyrations. Even in the case of a flux tube with a constant

Vie w(t) L-Ly flow within the tube but no flow in the exterior of the tube the
— tan[ (zo - + tlL) wave frequencies $ier corrections due to the flow that are not

[[Q:l =0

Vip Vke 2 simple frequency shifts (see, elg., Nakariakov & Rolier8519
Vio + Vie COI(ML )tan[w(tl) (Zo y b tlL)] Terra-Homem et al. 2003). Our configuration is veryfetient
_ P Vo P Ve 2 (14) from the typical uniform magnetic flux tube with a siphon flow,
oty \_ o(t) L-L, ' so that the frequency is also modified by the change of positio
Vip COt( Vi L”) Vie tan[ Vie (ZO M tlL)] of the dense plasma within the magnetic tube. On the othet,han

Equation [T4) is the time-dependent dispersion relaticor. FV€ are dealing with standing modes, not propagating waves. F
fixed t1, the solution of Equatio (14) ie (t1). Note that, al- standing modes in flux tut_>es Terradas etlal. (2011) _have shown
though Equation{34) is written in a more compact form, it i§'at flow produces a spatially dependent phase shift aloag th
consistent with dispersion relations previously obtaifeechor- Magnetic tube. In our case, this phase shift is containetién t
mal modes in the static case, i.&, = 0. Equation[[T4) with time-dependent phag#t;) of Equation[(IL).

Vo = 0 is equivalent to Equation (11) of Soler et al. (2010) if the dFor typical [;]romfinenci and cor(.)r;]alhdensi_ti%,f z> P
substitutiond s — S — z andL; — S + 7, are performed a"dPp > pe Therefore, the term with the ratio of densities

5 . . .
in their expression. Also for, = 0, Equation[[TH) is similar to in the denominator of Equatiof_(15) can be neglected. Then,

Equation (17) of Joarder & Roberts (1992) and Equation (A5) gquatlon [I5) simplifies to
Oliver et al. (1993) obtained in Cartesian geometry.

We have solved Equatioh (14) by standard numerical tech- 2Vkp\/L:p
niques. The frequencies of the fundamental mode and ofhe lgv () ~ .
est seven harmonics with respecttare displayed as functions \/(L - Lp) (L + %Lp) —4(zp + t11)?

(16)
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In the absence of flow, i.ety = 0, and forzy = 0, Equation[(I6) 3.2. Dependence of the amplitude on time

I its tim nden n m . . .
oses its time dependence and becomes, Here, we estimate the variation of the amplitude of the os-

cillations with time. To do so, we use Equatidd (8). By tak-
L 17) ing into account the definition of the time-dependent fregye

@~ 2p \/(L _ Lp) (|_ i %Lp) Lp' (Equation[(®)), we rewrite Equationl(8) as

0Qi(z 11 1 OJw(ty
Equation[(1¥) is consistent with the approximation of thenmal 3(t1 ) + 20(t) 351 )Ql(Z t1) =0. (20)
mode frequency obtained by Diaz et al. (2010, Equation)(8a)
For L, < L we can approximatd. + iL, ~ L, and Next, we consider the approximatgti) for the fundamental
Equation [IV) reduces to the expression found by Solell et@iode obtained in Equatiof{{15) to express this last Equaison
(2010, Equation (17)). Although the cakg — L is very un-
realistic in prominences because the obsserved lengthoafipr 0Quzt) | 2L (0 + tal) Quzt) =0.
nence threads correspondlig/L < 1, it is instructive to take on (L - Lp) (L + %Lp) -4(z + tlL)2
into account this limit. FoL, — L the frequency given in (21)
Equation[(I¥) tends to infinity. The reason is that the funelam
tal kink mode behaves adwbrid mode like those described byNote that to solve Equatioi (R1) we do not have to care about
Oliver et al. (1993) in a Cartesian slab (see alscsttieg modes  the dependence @; on z For a giverg, Equation[{2]l) can be
investigated by Joarder & Roberts 1992). Equatién$ ([H)—(lintegrated to obtain the temporal dependenc®ofat a fixed
are approximations of thieybrid mode frequency. As explainedposition, namely
bylOliver et al. (1993)hybrid modes owe their existence to the

presence of both the dense part and the evacuated part of the (L - Lp)(L + %Lp) —4(zp + t1L)? v
tube. In the limitL, — L the evacuated part is absent and th@:(z.t1) = Qo(2) 1 . (22)
hybrid kink mode disappears. Thus fop — L the fundamen- ('— - Lp) (L + ELD) - 4Z<23

tal kink mode is not théybrid mode but the firsinternal mode

with frequency where Qo(2) is the amplitude at; = 0. Thus, Equation{11)

gives the spatial dependence @f for a fixed timet;, while

x Equation [[2R) provides the temporal dependence at a fixed po-

W = Vip - (18) sition z. By comparing Equationg_(1.6) and_{22), we see that
Qu(z 1) « w(t) V2. Then, the amplitude of the oscillation de-

SinceL,/L < 1 in prominences, the fundamental mode in a r&réases when the thread flows from the center of the tube to the

alistic thread is théwybrid mode and Equations ([L5)={17) applyf00tpoint, and increases otherwise. This means that thdiamp

We plot in FigurdB the solution of Equatidi{14) for the funtude is maximal when the thread is located at the center of the

damental mode as a function of time, along with the anal tic@agnetic tube. . . . :
approximation given by Equatiof {1L6). Equgatiﬁ](14) hasn%)ee We must_bear in r_mnd that EqugtldE(ZZ).was derived from
solved by using standard numerical methods to obtain this rof1€ terms withO (61) in the governing equation, whereas the
of transcendental equations. These computations haveg_imeen leading terms whe#i is a small parameter are those V\@m(go)_
formed for diferent values ot,/L andvo/vap, and for fixed Therefore, we have to be cautious about the actual accufacy o
Zo/L. There is a very good agreement between the full SO'““%uation [2ZR), although we expect the behavior of the aomgdit

(solid lines in Figuré®3) and the approximation (symbolsprf i, time to be, at least, qualitatively described by Equaf22).
Figure[3(a), we see that the frequency decreases as tha &gt

the prominence thread increases. On the other hand, Fifjoye 3

shows that the variation of the frequency with time is more in$.3. Application to magneto-seismology
portant as the flow velocity gets faster. We find that the min.i=h
mum of the frequency takes place when the thread is centetg
within the magnetic tube. Therefore, the minimum of the fr

analytical expression of the fundamental mode frequenc
ound before can be used to perform magneto-seismology of
rominence fine structures by using observed periods of-osci

guency depen_ds on both th_e initial position of the thrgathed lations in flowing threads. We use Equatibnl(16) to compuge th
flow velocity since the relatiom, + vot = 0 has to be satisfied. period of the oscillation as a function of time, namely

Equation [(I6) corresponds to the instantaneous frequency.
However, the actual temporal dependence of the oscillation 2

the WKB approximation is given by functiof,(t;). We ob- P1(t) = w (1)
tain Qq(t;) from Equation [(P) by integrating (1) given by - 1
Equation[(16). Hence, ~ | (|_ _ Lp)(L + —Lp) _4(zm Vet (23)
Vkp L 3
Ou(ty) = Vip arcta 2(20 +t1L) which we have explicitly written in terms of the dimensional
w = \/T : >| time,t, and the flow velocityyo. By using Equation(23) along
P \/(L - LP) (L + §LP) —4(z+ul) with observational values of the period, it is possible tegn
estimation ofL, i.e., the total length of the flux tube, which is
_ arcta 27y (19) a parameter dlicult to measure from the observations. Let us

1 assume that we have performed an observation of a tranverse
\/(L h LP) (L + éLP) - 425 oscillating and flowing thread with a good cadence and we have
determined the evolution of the period with time. For conve-
where we have used the conditiOn = 0 att; = 0. nience, we set = 0 when the maximum of the period takes
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Fig. 3. Dimensionless frequencyrap, versus time in units of the internal Alfvén travel time, = L/vap, for (a) Lp/L = 0.05,
0.1, 0.2 withvp/vap = 0.05, and (b)o/Vap = 0.03, 0.05, 0.1 with_,/L = 0.1. In all caseszy/L = —0.25. The solid lines are the
results obtained by numerically solving Equatibn|(14), vefas the symbols correspond to the analytical approximaficen by
Equation[(I6). The vertical dotted line in panel (a) denttesminimum of the curves, i.e., the time when the prominghiead is
centered within the flux tube.

place, namely,(0), so we can also fizg = 0 in Equation[(ZB).

Then, we denote aB;(7) the instantaneous period measured at ]
t = 7. We use Equatiori.(23) and compute the r&igr)/P1(0) 1
to find an estimation of the length of the magnetic flux tube as 2.5 Vot = 005 4

V2 2 N
L~ Lp + OL—T%, (24) %2
> 1-(55) =

Vg /Uy, = 0.05

where again we assumed that the flow velocity is slow. We see 1 5L
that the right-hand side of Equatidn{24) depends on questit -
that can be directly measured from the observations. As an ex i Vo Vs
ample, let us assume the following valu®s(r)/P.(0) = 0.9,
Vo = 40 km s?, L, = 10,000 km, andr = 5 min. From p
Equation [24) we obtaih. ~ 1.6 x 10° km. However, the ac- 4/
curacy of Equatiori(24) is limited by the uncertainties arrdre ’
bars of the observations. In particular, a very accuraterdeha- _. : . . _

tion of the ratioPy(r)/P1(0) is needed. For instance, a 10% unZ?‘L4;ng%g 1]4) 2rF\’/2 /(\)/an ﬂoe/)v '(?3? g]BesadOV\ftr!r‘ﬁ/e L d(_)ttgé Ifiir?g is
certainty ofP1(7)/P1(0) produces a 85% uncertainty lofwhen N i B

propagation of errors is used in Equatibnl(24) and the reimgin the result frorrlthugtllorﬂtEg) |{1t:]he ca?e W;t?hout row;l_nd 1;or
parameters are kept constant. This makes a reliable aﬁpﬁcaﬁjféommence readlocated at the center ot the magnalic-Str

of Equation[(Z4) diicult in practice. :

Another relevant parameter that can give us a seismological ] )
determination ofL is the ratioP1/2P,, whereP, is the period For a large density contrast between the prominence and the
of the first harmonic. The deviation of this ratio from unigyan coronal plasmas, and assuming that the thread is locatée at t
indication of the longitudinal inhomogeneity length scafghe ~center of the magnetic cylinder, the relation betwPgf2P, and
magnetic tube. Its application was used for the first timehin t Lp/L obtained by Diaz et al. (2010) in their Equation (11) is
context of coronal loop oscillations by Andries et al. (26108
and has been explored in subsequent works (see the recentfe- 3 (25)
view by|Andries et al. 2009, and references therein). In prompp, ~ al,/L’
nence thread oscillatiors, Diaz el al. (2010) exploredrtipor-
tance of the ratioP1/2P, to estimatel,/L in static threads. Let us see how the rati®,/2P, is affected by the flow and
While in coronal loopsP;/2P, < 1,|Diaz etal.[(2010) found so how the results of Diaz etlal. (2010) are modified. However
that in prominence thread® /2P, > 1. The reason for this re- it is difficult to obtain an analytical expression f8 when
sult is that in prominence threads mass density is arranggd jflow is present. Instead, we compute b&handP, by solving
in the opposite way to that in coronal loops. In loops the dgns Equation[[T#) with numerical methods. Figlite 4 shdvwg2P,
is larger in the footpoints than in the apex due to gravitwilo as a function of time fot,/L = 0.1 andz/L = —0.25, and for
stratification, while in prominence threads the density icci different values ofip/vap. The numerical results are compared
larger in the center of the magnetic tube because of thepresewith the analytical expression pbf Diaz et al. (2010). Fafkall,
of the prominence material. we see that the period ratio is strongly influenced by theorelo

rol o o
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ity at which the prominence thread flows along the flux tubéhe time-dependent evolution of the oscillation in theistedse
P1/2P, is maximal when the thread in centered within the tub&nd, on the other hand, that the numerical code works pioperl

(P1/2P, ~ 2.5 for the particular set of parameter in Fig. 4) and  pgreafter, we incorporate théfect of the flow. First, we fix
Pl/_2P2 -1 when_the thrgad reaches the footpoint. 'I_'he ap_;)/L = 0.1 andz = 0, and considevy/Vap = 0.05. In this situ-
alytical approximation of Diaz etal. (2010) for the stat@se aiion, the thread is initially located at the center of thegretic
gives a larger value oP1/2P, in comparison to the case withy,ne \We make sure that the simulation stops before thedbrea
flow. Thls means that flow reduces the period ratio. Therefor@aches the photospheric wall. We plot in Figure 5(a) theatad
Equations[(24) and (25) could be used together to obtain @ MQEocity perturbation az = 0 as a function of time. Contrary
accurate determination of the magnetic tube length, asah@Vv (, the static case, now the amplitude of the oscillation eeses
of L inferred from Equatiori(25) should be considered as a UpRgfiime as the thread moves from the center towards the end of
bound for this parameter. the magnetic tube. This behavior is qualitatively desatibg
Equation [2R) obtained in the WKB approximation (see dashed
line in Fig.[8(a)), although Equatioh (22) underestimakesac-
4. Numerical results: time-dependent simulations tual decrease of the amplitude. Inspired by Equatioh (22), w

_ propose the following fit for the amplitude,
Here, we compare the analytical results of the WKB approxi-

mation with the full numerical solution of the time-depentle

problem. We use the PDE2D code (Sewell 2005) for that pur- (L _ Lp)(L + %Lp) — 4(z+ t1L)? n
pose. The set-up of the numerical code is similar to that @h(zt1)) = Qo(2 1 ,  (26)
Terradas et all (2008). Equatidd (1) is integrated assurifiag ('— - '—p) ('— + §Lp) — 4z

boundary conditions;(xL/2,t) = 0. An initial condition for

v, att = 0 is also provided. In the code, the distances are ex- .. . . .
pressed in units df and the velocities in units of the prominencdVith n an empirical exponent. When Equatidnl(26) is applied

Alfvé - _B_ \We takel = 10° km. A ; to the _results of Fig_urE]S(a), we o_btain that the expomert
ven speedyap vy Ve take 0 km. Assuming 1 provides a good fit for the amplitude (see the dotted line in

B = 50 G andpp = 107 kg m™® as realistic values in active Figure[B(a)).
region prominences, we obtaig, ~ 446 km si. The flow ve-
locities on the plane of sky estimated by Okamoto et al. (20050
are in the interval between 15 knh to 46 km s. Hence in our

simulations we consider values for the ratigva, in the range
0.03 < vo/vap < 0.1. In the code, time is expressed in units
the Alfvén travel time, i.ezap = L/Vap = 3.74 min. In addition,
in all the following computations we have usgdp. = 200 and

On the other hand, we perform in Figureé 5(b) a wavelet
wer spectrum_(Torrence & Compo 1998) of the signal dis-
played in Figurgb(a). We find that the period decreases ia disn

e thread moves towards the footpoint of the magneticirec

he WKB approximation for the period given by Equatibnl(23)
is in excellent agreement with the position of the maximum of
the wavelet spectrum (see dashed line in Figure 5(b)). As dis

Pelpe = 1. cussed in Section 3.2, the WKB approximation for the period
( pp 1 Tor the p
is much more accurate than the WKB approximation for the
4.1. Excitation of the fundamental mode amplitude. In addition, we see that the rate at which thegpleri

changes with respect to the valud at O is not constant. Using

First, we use the eigenfunction of the fundamental kink masle Equation [ZB) and considering the parameters of this paatic
the initial condition forv; att = 0. The eigenfunction is obtainedsimulation, the period of the oscillation when the threacitis
by solving the dispersion relation of the normal mode problez = L/4 has decreased of about 9% with the respect to its initial
and computing the spatial distribution of the correspoggier- value aiz = 0, whereas the period decreases of about 45% when
turbation (see details In Dymova & Ruderman 2005; Soler.et #he thread finally reaches the footpoint of the magnetic atbe
2010; Diaz et al. 2010). Hence, we make sure that, aftenthe iz= L.
tial excitation, the magnetic tube mainly oscillates infitada- We repeat the simulation fdr,/L = 0.2 and a faster flow,
mental mode. . . _ Vo/Vap = 0.1, and takez/L = -0.25 to consider the thread

As a check of the numerical code, we consider the static caggially displaced from the center of the flux tube. The edi
and put the thread at the center of the magnetic tubeyé.e.0  velocity perturbation az = 0 is plotted in Figur€I5(c), and the
andz = 0. In this test simulation, we take,/L = 0.1. By corresponding wavelet power spectrum is shown in Fighrg 5(d
looking at the tlme—_dependent evolutionvef we check that the These results are equivalent to those of Figlifes 5(a)—), i
magnetic tube oscillates as a whole. A plotwfatz = 0 as a poth the amplitude and the period of the oscillation depemd o
function of time (not displayed here for the sake of Simpyii the position of the prominence thread within the flux tubleirtg
shows that the amplitude of the oscillation is constantritiie  poth of them their maximum value when the thread is centered.

whole duration of the Simulation, meaning that numericasdi As before, Equaﬂom?,) is a very good approximation to the
pation is negligible in the simulation. Later, we performaver f)eriod.

spectrum ofv, atz = 0 (see, e.gl, Carbonell & Ballester 1991

and find a large peak centered around the fundamental normal

mode frequency. The maximum of the power spectrum agreeg. Arbitrary excitation

very well with the approximate frequency of the normal mode

given by Equatior[(16). For the set of parameters used imthis In the previous Section, we have used an initial conditian fo
merical test, the period in dimensional unit$isz 2.6 min. We v, that corresponds to the fundamental mode eigenfunction, so
have performed similar simulations but usinfelient values of only this mode is excited. However, it is expected that the en
L,/L andz. Equivalent results to those commented before hagegy from an arbitrary disturbance of the flux tube is defeaksit
been obtained in all cases. This indicates, on the one hiaad, in many normal modes (see a discussion on this issue in, e.g.,
the normal mode interpretation is a very good represemtédio [Terradas et al. 2007). To represent an arbitrary distusbafithe
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Fig.5. (a)v, atz = 0 (solid line in arbitrary units) as a function of time in a primence fine structure with, /L = 0.1,vp/vap = 0.05,
andz, = 0. The initial excitation is the fundamental kink mode eifygrction forvg = 0. The dashed line is the amplitude in the
WKB approximation (Equatiori{22)), while the dotted line@sponds to the fit proposed in Equatibnl (26) wita 1. (b) Wavelet
power spectrum for the dimensionless periBgkap, corresponding to the signal displayed in panel (a). Thaeutashed line is
the period in the WKB approximation (Equatidn{23)), wheréze horizontal dotted line is the periodtat 0. The red solid line
denotes 99% of confidence level. (c) Same as panel (a) bupfér= 0.2, vo/vap = 0.1, andz/L = -0.25. (d) Same as panel (b)
but for the signal of panel (c), and with the horizontal ddtiae denoting the maximum of the period.

flux tube, we consider a Gaussian function as the initial eondhe magnetic tube. Again, we plot in Figliie 6¢)atz = 0 ver-

tion of v; att = 0, namely sus time, and in Figurel 6(d) the wavelet power spectrum. The
) behavior ofv; in time is substantially dierent in the present
izt = 0) = exp| - (z-9) ’ 27) situation compared to the case of Figures 6(a)—(b). Firstlof
o2 we see that; is not governed by the fundamental mode ex-

clusively. The wavelet power spectrum indicates that thexgn

from the initial disturbance is mainly deposited to the fangbn-

tal mode, but also the first harmonic is excited. The deperelen

in time of the fundamental mode period is again well describe

Srll Equation[(ZB). However, the contribution of the first hanic

to the overall oscillation seems to have disappeared when th

thread is located at the center of the magnetic tube. Themeas

for this result is that the first harmonic eigenfunction ha®ode

atz = 0 when the thread is centered, and so the first harmonic
es not contribute to the signal displayed in Fidgure 6(syich

wheref ando are arbitrary parameters. Whergasorrespond
to the position of the maximum of the excitatiandetermines
its width.

In the following simulations, we consider the same mod
parameters as in Figurés 5(c)—(d), ikp/L = 0.2, Vo/Vap =
0.1, andz/L = -0.25, but use the initial condition given by
Equation[[2F). To begin with, we take/L = 0.2 and consider
different values of. First we use’/L = —0.25, so the excitation
is mainly confined to the dense prominence region of the fl
&Jr?i?;hT:r?O\:\/esSLt]EeOfegglsuﬁ)Tuilr?t'lf?r:elso?lsa?tliye:d '(;] '\:A'I%E}rg?s( a case. On the other hand, .it is nowffidult to d_etermine the

\ - ' effect of the flow on the amplitude of the oscillation.
Figure[6(b) shows the corresponding wavelet power spectrum
It is interesting to compare Figurek 5(d) did 6(b) to see that
the present case, the oscillation dynamics is still gowtime Finally, we have performed several simulations fdfatient
the fundamental normal mode. We see in Fidure 6(a) that thewdues ofc. If the maximum of the excitation is located within
is some contribution of higher harmonics to the behaviof @ the dense part of the flow tube, the results are rather irntgenisi
time, although their contribution to the overall osciltatiis of ¢ unless values much smaller thepare used. In all the cases,
very minor importance. In addition, the evolution of the dimp the fundamental mode is predominantly excited. However, th
tude ofv; remains qualitatively described by Equatibnl(26) withesults are morefBected by the value of if the maximum of
n=1. the excitation is located in the evacuated part of the tubsuth

Next, we perform another simulation by taking the same pa-case, the larger, the more energy is deposited in the funda-
rameters as before but assumifi¢. = 0. In this case, the max- mental mode. On the contrary,@gets smaller the energy of the
imum of the initial excitation is located in the evacuatedjpd initial excitation is more distributed among higher harrasn
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Fig.6. (a) Same as Figufd 5(c) but for a initial excitation given mu&tion [2¥) with//L = —0.25 ando/L = 0.2. (b) Wavelet
power spectrum corresponding to the signal displayed irlg@). (¢) Same as panel (a) but {9 = 0 ando-/L = 0.2. (d) Same
as panel (b) but for the signal displayed in panel (c), withdash-dotted line denoting the period of the first harmonic.

The results of this Section point out that the time-depenhdehe center of the supporting magnetic flux tube. In this ctiee,
behavior of standing kink MHD waves of flowing prominenc&ariation of the period with respect to the static case mdly fa
threads is strongly influenced by the form of the initial dist within the error bars of the observations, and so tfiect may
bance. If the initial disturbance mainly perturbs the dgareeni- be undetectable. There our results confirm the qualitataeud-
nence part of the flux tube, the oscillations are governedhby tsion of Terradas et al. (2008) about theeet of the flow on the
fundamental kink mode. In such a case, the dependence of hmthiod. On the other hand, the variation of the period is much
the period and the amplitude with the flow velocity are approxnore important when the thread approaches the footpoitieof t
imately given by Equation§ (23) anld {26), respectively. 8& t magnetic structure. Then, the decrease of the period camdw |
contrary, the behavior is more complicated if the initiaftpe  than 50% with respect to the static case. The case in which the
bation takes place in the evacuated part of the fine struessirethread is near one of the footpoints of the magnetic tube was n
other harmonics are excited in addition to the fundamentalen analyzed by Terradas et al. (2008).

The contribution of the dierent harmonics depends on both the
position and the width of the initial excitation, while thepli-

tude of the oscillation does not have a simple dependendeeont, Ve have also found that the flowffects the amplitude
flow velocity. of the fundamental mode. This result was not discussed by

Terradas et al.| (2008). During the motion of the prominence

thread along the magnetic structure, we find that the ampli-

tude grows as the thread gets closer to the center of the tube

and decreases otherwise. This produces an apparent amplific

In this paper, we have investigated standing kink MHD wawes iion or damping of the oscillations, respectively. Obsédores

the fine structure of solar prominences, modeled as coroagd moften indicate that thread transverse oscillations arengty

netic flux tubes partially filled with flowing threads of promi damped (see, e.@., Lin 2004, 2010; Ning et al. 2009). While se

nence material. The present study extends and complenhentssral mechanisms have been proposed and investigated to ex-

previous work by Terradas etial. (2008), who restricted therplain the quick attenuation (see the recent reviews by ®live

selves to the numerical investigation of this phenomenah aB009; Arregui & Ballester 2010), the process of resonanmigis

did not perform an in-depth parametric study. Here, we hatien seems the most likely explanation (e.g., Arregui €2808;

combined analytical methods based on the WKB approximati@oler et al. 2009a,b, 2010). Our present results indicatitiie

with time-dependent numerical simulations to assess #&g®# actual damping rate of the oscillations might lfEeeated by the

effect of the flow on both the period and the amplitude of thehange of the amplitude due to the flow. This fact should be

fundamental kink mode. taken into account when the damping rate is used as a seismo-
As for the dfect of the flow on the period, we can distinguistogical tool to infer physical parameters of prominenceé#us,

two different situations. On the one hand, we find that the floaecause the presence of flow may introduce some uncertintie

has a small #ect on the period when the thread is located nean these estimations (see details in Arregui & Balleste0201

5. Discussion and conclusions
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In addition, our numerical simulations have allowed us to deoossens, M., Terradas, J., Andries, J., Arregui, 1., Badle J. L. 2009, A&A,

termine how dfferent perturbations excite the oscillations of th
magnetic structure. Based on the cases studied in this,paper

have obtained that the fundamental mode is mostly excitehwy,

the perturbation initially disturbs the dense, prominepag of
the tube. From the wavelet power spectrum of the radial ¥igloc
perturbation, we conclude that the contribution of highar-h
monics is negligible, thus the overall oscillation is gowed by
the fundamental mode. On the contrary, a perturbationédalcait
the evacuated part of the tube excites the fundamental mmatie
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cillations. In this last case, théfect of the flow on the amplitude

is more complicated and no simple dependence can be extrag

from the simulations.
This paper has explored the properties of MHD waves

a coronal magnetic structure with a changing configuratio
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present investigation could be extended in the future byripa-
rating the &ect of the density inhomogeneity in the transver
direction and so investigating the resonant damping of thie k
mode.
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