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ABSTRACT

Context. Recent observations by Hinode/SOT show that MHD waves and mass flows are simultaneously present in the fine structure
of solar prominences.
Aims. We investigate standing kink magnetohydrodynamic (MHD) waves in flowing prominence threads from a theoretical point of
view. We model a prominence fine structure as a cylindrical magnetic tube embedded in the solar corona with its ends line-tied in
the photosphere. The magnetic cylinder is composed of a region with dense prominence plasma, which is flowing along the magnetic
tube, whereas the rest of the flux tube is occupied by coronal plasma.
Methods. We use the WKB approximation to obtain analytical expressions for the period and the amplitude of the fundamental mode
as functions of the flow velocity. In addition, we solve the full problem numerically by means of time-dependent simulations.
Results. We find that both the period and the amplitude of the standing MHD waves vary in time as the prominence thread flows
along the magnetic structure. The fundamental kink mode is agood description for the time-dependent evolution of the oscillations,
and the analytical expressions in the WKB approximation arein agreement with the full numerical results.
Conclusions. The presence of flow modifies the period of the oscillations with respect to the static case. However, for realistic
flow velocities this effect might fall within the error bars of the observations. Thevariation of the amplitude due to the flow leads to
apparent damping or amplification of the oscillations, which could modify the real rate of attenuation caused by an additional damping
mechanism.
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1. Introduction

Recent observational evidence of ubiquitous periodicallyvary-
ing features in the solar corona (e.g., Tomczyk et al. 2007;
Jess et al. 2009; Tomczyk & McIntosh 2009; Wang et al. 2009)
has raised the debate on whether these observations are caused
by magnetohydrodynamic (MHD) waves or by quasi-periodic
flows (see, e.g., De Pontieu & McIntosh 2010). There seem to
be strong theoretical arguments supporting the wave interpreta-
tion (e.g., Erdélyi & Fedun 2007; Van Doorsselaere et al. 2008;
Terradas et al. 2010; Verth et al. 2010). However, waves and
flows are not mutually exclusive and, in fact, both phenomena
have been simultaneously observed in the fine structure of solar
prominences (e.g., Okamoto et al. 2007). This offers us the op-
portunity to study the interaction between waves and flows inthe
solar atmosphere.

The fine structure of solar prominences is clearly visi-
ble in the high-resolution Hα and Ca II H-line images from
the Solar Optical Telescope (SOT) aboard the Hinode satellite
(e.g., Okamoto et al. 2007; Berger et al. 2008; Chae et al. 2008;
Ning et al. 2009; Schmieder et al. 2010; Chae 2010). When ob-
served above the limb, vertical structures are commonly seen
in quiescent prominences (e.g., Berger et al. 2008; Chae et al.
2008; Chae 2010), while horizontal threadlike structures are usu-
ally observed in active region prominences (e.g., Okamoto et al.
2007). Although it is apparently difficult to reconcile both pic-
tures, some authors (e.g., Schmieder et al. 2010) have suggested
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that vertical threads might actually be a pile up of horizontal
threads which appear as vertical structures when projectedon the
plane of the sky. This idea is consistent with Hα observations of
filaments on the solar disk from the Swedish Solar Telescope
(e.g., Lin et al. 2008, 2009), in which the filament fine struc-
ture is seen as thin and long dark ribbons. On the other hand,
other authors (e.g., Chae 2010) have argued that vertical threads
are real and are an indication of the existence of vertical mag-
netic fields in quiescent prominences. Thus, it remains unclear
whether all prominences have the same magnetic structure or,
on the contrary, the magnetic field in quiescent prominencesis
predominantly vertical and active region prominences havehor-
izontal fields. A recent review on the properties of prominence
threads can be found in Lin (2010).

There are many evidences of transverse oscillations of
the fine structures of both active region and quiescent promi-
nences, which have been interpreted in terms of kink MHD
waves (see the recent reviews by Ballester 2006; Oliver 2009;
Arregui & Ballester 2010). The reported periods are usuallyin
a narrow band between 2 and 10 minutes, while the oscilla-
tions are typically damped after a few periods. In addition,flows
and mass motions in prominences have been also reported (e.g.,
Zirker et al. 1998; Wang 1999; Kucera et al. 2003; Lin et al.
2003; Ahn et al. 2010). The typical flow velocities are less than
30 km s−1 in quiescent prominences, although larger values up to
40–50 km s−1 have been observed in active region prominences.

The work of Okamoto et al. (2007) is an example of simul-
taneous transverse oscillations and mass flows in prominence
fine structures observed with Hinode/SOT. In the present pa-
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per we focus on the theoretical analysis of the event reported
by Okamoto et al. (2007). Similar observations of simultaneous
flows and oscillations have been reported by Ofman & Wang
(2008) in coronal loops and by Cao et al. (2010) in filament foot-
points. Also, the recent work by Antolin & Verwichte (2011)
on observations of transverse oscillations of loops with coro-
nal rain is relevant for our present theoretical investigation.
Okamoto et al. (2007) observed an active region prominence
formed by a myriad of horizontal magnetic flux tubes which
are partially outlined by threads of cool and dense prominence
plasma. The magnetic tubes are probably rooted in the solar
photosphere. Although only the part of the tubes filled with
prominence material can be seen in the Ca II H-line images, the
length of the whole magnetic tube must be much longer than
the length of the prominence threads, which is roughly between
3,000 km and 16,000 km. Okamoto et al. (2007) detected that
some threads were flowing along the magnetic tubes and simul-
taneously oscillating in the vertical direction. The mean period
of the oscillations was 3 min and the apparent flow velocity on
the plane of sky was around 40 km s−1. The oscillations were in
phase along the whole length of the threads, and the wavelength
was estimated to be at least 250,000 km.

The event observed by Okamoto et al. (2007) was stud-
ied from a theoretical point of view by Terradas et al. (2008),
who interpreted the observations in terms of standing kink
MHD modes supported by the magnetic structure (see, e.g.,
Edwin & Roberts 1983; Dı́az et al. 2002; Goossens et al. 2009;
Soler et al. 2010). An interpretation of the observations by
Okamoto et al. (2007) in terms of kink modes was also sug-
gested by Erdélyi & Fedun (2007) and Van Doorsselaere et al.
(2008). Terradas et al. (2008) used the observed wave properties
provided by Okamoto et al. (2007) to perform a seismological
estimation of a lower bound of the prominence Alfvén speed.
The time-dependent numerical simulations by Terradas et al.
(2008) suggested that the influence of the flow on the period
was small. Nevertheless, the precise effect of the flow was not
assessed in their work because a detailed parametric study was
not performed. The purpose of this paper is to advance the anal-
ysis of the event observed by Okamoto et al. (2007) by com-
bining both analytical and numerical methods. In the analyti-
cal part, we use the WKB approximation to assess the effect
of the flow on the period and the amplitude of the transverse
oscillations. Expressions of these quantities as functions of the
relevant parameters of the model are obtained. In the numerical
part, we go beyond the WKB approximation and solve the full
time-dependent problem. The implications of our results for the
magneto-seismology of prominences are also discussed.

This paper is organized as follows. Section 2 contains the
model configuration and the basic governing equations. The an-
alytical investigation of standing kink MHD waves in flowing
prominence threads using the WKB approximation is included
in Section 3, while the full numerical solution of the time-
dependent problem is performed in Section 4. Finally, our results
are discussed in Section 5.

2. Model and basic equations

The background model in which the waves are superimposed is
schematically shown in Figure 1. It is composed of a straight
and cylindrical magnetic flux tube of radiusR and lengthL,
whose ends are fixed at two rigid walls representing line-tying
at the solar photosphere. Thez-axis is chosen so that it coincides
with the axis of the tube, and the photospheric walls are located
at z = ±L/2. The magnetic tube is partially filled with promi-

nence plasma of densityρp, while the rest of the tube, i.e., the
evacuated part, is occupied by less dense plasma of densityρe.
The density of the external plasma is the density of the coronal
medium,ρc. The length of the prominence region (thread) isLp.
The thread flows along the tube as a block with constant speed
v0. The magnetic field isB = Bêz, with B homogeneous. As the
β = 0 approximation is used in the present work, withβ the
ratio of the gas pressure to the magnetic pressure, the plasma
temperature is irrelevant for the study of kink MHD waves
supported by the model. In the absence of flow, standing kink
MHD waves supported by the present model were investigated
by Joarder et al. (1997) and Dı́az et al. (2001) in Cartesian ge-
ometry, and by Dı́az et al. (2002), Dymova & Ruderman (2005),
Dı́az et al. (2010), and Soler et al. (2010) in cylindrical geome-
try.

We adopt the TT approximation, which is valid forR/L≪ 1
andR/Lp ≪ 1. To check whether or not this approximation is
reasonable in the context of prominence threads, we take into
account that the values ofR andLp reported by the observations
(e.g., Lin 2004; Okamoto et al. 2007; Lin et al. 2008) are in the
ranges 50 km. R . 300 km and 3,000 km. Lp . 28,000 km,
respectively, and assumeL ∼ 105 km as a typical length for
the magnetic tube. We obtainR/Lp and R/L in the ranges
3 × 10−3

. R/Lp . 0.1 and 5× 10−4
. R/L . 3 × 10−3,

meaning that the use of the TT approximation is justified in
prominence fine structures. In the casev0 = 0, the basic equa-
tion governing linear kink MHD waves of the flux tube in the
TT approximation was derived by Dymova & Ruderman (2005)
in their Equation (21). In the absence of flow, the TT approx-
imation was used by Dymova & Ruderman (2005), Dı́az et al.
(2010), and Soler et al. (2010). The results of these works fully
agree with the general results beyond the TT approximation by
Joarder et al. (1997), Dı́az et al. (2001), and Dı́az et al. (2002).

In the presence of flow, an intuitive generalization of
Equation (21) of Dymova & Ruderman (2005) was performed
by Terradas et al. (2008) in their Equation (2). Mathematically,
Morton & Erdélyi (2010a) also considered the variation of den-
sity with time and obtained a similar expression in their
Equation (18). We refer the reader to Terradas et al. (2008) and
Morton & Erdélyi (2010a) for a detailed derivation of the basic
equation. In the mathematical derivation of Morton & Erdélyi
(2010a) it is assumed that the difference of the flow velocity
between the internal and external plasma is small, i.e., much
smaller than the Alfvén velocity. So, we restrict our present in-
vestigation to values of the flow velocity that satisfyv0/vAp ≪ 1,
wherevAp =

B√
µρp

is the prominence Alfvén speed. Assuming

B = 50 G andρp = 10−10 kg m−3 as realistic values of the mag-
netic field strength and density in active region prominences, we
obtainvAp ≈ 446 km s−1. Since the flow velocities on the plane
of sky estimated by Okamoto et al. (2007) are in the interval be-
tween 15 km−1 to 46 km s−1 (see their Table 1), the restriction
v0/vAp ≪ 1 is satisfied for realistic parameters in prominences.

Thus, the governing equation we study in the present work is

∂2vr(z, t)
∂t2

− v2
k(z, t)

∂2vr(z, t)
∂z2

= 0, (1)

which has to be solved along with the condition of line-tyingat
the photosphere expressed asvr(±L/2, t) = 0, and a given initial
condition att = 0. In Equation (1),vr(z, t) is the radial velocity
perturbation at the tube boundary andvk(z, t) is the kink speed,
which in our model is a function ofz andt, namely

vk(z, t) =

{

vkp if |z − z0 − v0t| ≤ Lp/2,
vke if |z − z0 − v0t| > Lp/2,

(2)
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Fig. 1. Sketch of the prominence fine structure model adopted in thiswork.

where

vkp =

√

√

2B2

µ
(

ρp + ρc

) , vke =

√

2B2

µ (ρe+ ρc)
, (3)

with µ the magnetic permittivity, andz0 corresponds to the po-
sition of the center of the prominence thread with respect to
the center of the magnetic tube att = 0. Note thatz0 < 0 if
the thread is initially located on the left-hand side of the cen-
ter of the tube, whereasz0 > 0 if the thread is initially located
on the right-hand side. We see that the flow does not explic-
itly appear in Equation (1) since it is enclosed in the defini-
tion of vk(z, t) given in Equation (2). Terradas et al. (2008) per-
formed time-dependent simulations and solved Equation (1)nu-
merically. Here, our aim is to solve Equation (1) by using both
analytical and numerical methods.

3. Analytical investigation: WKB approximation

We solve Equation (1) analytically by using the Wentzel-
Kramers-Brillouin (WKB) approximation (see, e.g.,
Bender & Orszag 1978, for details about the method). The
WKB approximation has been recently applied to the investi-
gation of MHD waves in cooling coronal loops (Morton et al.
2010; Morton & Erdélyi 2010a,b). In particular, the work by
Morton & Erdélyi (2010a) is especially relevant for the present
investigation as they studied kink oscillations of coronalloops
with variable background.

The WKB approximation is an approximate method to study
waves in a changing background whose properties are smooth
functions of space and/or time. In the present application of
the WKB approximation we assume that the time scale related
to the waves, e.g., the period, is much shorter than the time
scale related to the changes of the background configuration.
Under these conditions, it is possible to define atime-dependent
frequency which slowly varies because of the changing back-
ground. To apply the WKB approximation we define the param-
eterδ as

δ ≡ v0

L
. (4)

The validity of the WKB approximation is restricted to small
values ofδ so asPδ ≪ 1, whereP is the period of the oscil-
lations. In the observations by Okamoto et al. (2007), the mean
flow velocity and period arev0 ≈ 40 km s−1 andP ≈ 3 min. For
L ∼ 105 km these values resultPδ ≈ 0.072, meaning that the

condition of applicability of the WKB approximation is fulfilled
in the case of transverse oscillations of flowing threads.

Using the parameterδ we define the dimensionless time,t1,
as

t1 = δt, (5)

and we express the solution to Equation (1) in the following form

vr(z, t1) = Q1(z, t1) exp
( i
δ
Ω1(t1)

)

, (6)

with Q1(z, t1) andΩ1(t1) functions to be determined. Next, we
combine Equations (1) and (6), and separate the different terms
according to their order with respect toδ. Asδ is small, the dom-
inant terms are those with the lowest order inδ. We obtain two
equations forQ1(z, t1) andΩ1(t1) taking the terms withO

(

δ0
)

andO
(

δ1
)

, namely

∂2Q1(z, t1)
∂z2

+

(

∂Ω1(t1)
∂t1

)2 Q1(z, t1)

v2
k(z, t1)

= 0, (7)

Q1(z, t1)
∂2Ω1(t1)

∂t21
+ 2
∂Q1(z, t1)
∂t1

∂Ω1(t1)
∂t1

= 0. (8)

Equations (7) and (8) are equivalent to Equations (24) and (25)
of Morton & Erdélyi (2010a), respectively.

Now, we define the time-dependent frequency,ω (t1), as

ω (t1) ≡ ∂Ω1(t1)
∂t1

, (9)

which allows us to rewrite Equation (7) as follows

∂2Q1(z, t1)
∂z2

+
ω2 (t1)

v2
k(z, t1)

Q1(z, t1) = 0. (10)

Equation (10) has to be solved taking into account the boundary
conditionsQ1(±L/2, t1) = 0 due to photospheric line-tying. By
solving Equation (10), the dependence onz of functionQ1(z, t1)
can be obtained. In addition, sincev2

k(z, t1) is a piecewise con-
stant function ofz (see Equation (2)), the analytical solutions to
Equation (10) are trigonometric functions with time-dependent
arguments. Thus, the general solution to Equation (10) satisfying
the boundary conditions atz = ±L/2 is

Q1(z, t1) =































A1(t1) sin
(

ω(t1)
vke

(

z + L
2

))

if z < z−,

A2(t1) cos
(

ω(t1)
vkp

z + φ(t1)
)

if z− ≤ z ≤ z+,

A3(t1) sin
(

ω(t1)
vke

(

z − L
2

))

if z > z+

(11)
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Fig. 2. Dimensionless frequency,ωτAp, versus time in units of
the internal Alfvén travel time,τAp = L/vAp. Results correspond-
ing to the fundamental mode and the lowest seven harmonics ob-
tained by numerically solving Equation (14) for a flowing thread
with Lp/L = 0.1, v0/vAp = 0.05, andz0/L = −0.25. The verti-
cal dotted line denotes the time when the prominence thread is
centered within the flux tube.

whereA1(t1), A2(t1), andA3(t1) are time-dependent coefficients,
φ(t1) is a time-dependent phase, andz− andz+ denote the loca-
tions of the interfaces between the prominence thread and the
evacuated regions, namely

z± = z0 ±
Lp

2
+ t1L. (12)

The locations of the interfaces change as the dense thread moves
along the magentic tube.Q1 must satisfy appropriate boundary
conditions atz = z±. Since the interfaces correspond to con-
tact discontinuities (see Goedbloed & Poedts 2004), the bound-
ary conditions are

[[ Q1]] = 0,

[[

∂Q1

∂z

]]

= 0, (13)

where [[X]] stands for the jump of the quantityX at z = z±.
Applying the conditions of Equation (13) on the solutions

given by Equation (11), we arrive at the following equation

vke

vkp
tan

[

ω (t1)
vke

(

z0 −
L − Lp

2
+ t1L

)]

=

vkp + vke cot
(

ω(t1)
vkp

Lp

)

tan
[

ω(t1)
vke

(

z0 +
L−Lp

2 + t1L
)]

vkp cot
(

ω(t1)
vkp

Lp

)

− vke tan
[

ω(t1)
vke

(

z0 +
L−Lp

2 + t1L
)]

. (14)

Equation (14) is the time-dependent dispersion relation. For
fixed t1, the solution of Equation (14) isω (t1). Note that, al-
though Equation (14) is written in a more compact form, it is
consistent with dispersion relations previously obtainedfor nor-
mal modes in the static case, i.e.,v0 = 0. Equation (14) with
v0 = 0 is equivalent to Equation (11) of Soler et al. (2010) if the
substitutionsL+e →

L−Lp

2 − z0 andL−e →
L−Lp

2 + z0 are performed
in their expression. Also forv0 = 0, Equation (14) is similar to
Equation (17) of Joarder & Roberts (1992) and Equation (A5) of
Oliver et al. (1993) obtained in Cartesian geometry.

We have solved Equation (14) by standard numerical tech-
niques. The frequencies of the fundamental mode and of the low-
est seven harmonics with respect toz are displayed as functions

of time in Figure 2 for a particular set of parameters. We find
that the dispersion diagram is symmetric with the time when the
thread is located at the center of the magnetic tube (denotedby
a vertical dotted line in Fig. 2) as point of symmetry. The fun-
damental mode and the first harmonic are smooth functions of
time. The other harmonics displayed in Figure 2 show a com-
plicated set of couplings and avoided crossings. The reasonfor
this behavior is that the fundamental mode and the first har-
monic correspond toglobal oscillations of the flux tube because
both the prominence and the evacuated parts of the tube are dis-
turbed. On the contrary, high harmonics correspond to modes
more confined within one of these regions. Thus, the collec-
tion of modes and their properties are similar to those studied
by Joarder & Roberts (1992) and Oliver et al. (1993) in slab ge-
ometry.

3.1. Approximation to the fundamental mode frequency

From hereon we restrict our analysis to the fundamental mode
of oscillation, whose frequency is the lowest order solution to
Equation (14). To obtain an approximation to the frequency,we
perform a Taylor expansion of Equation (14) and neglect terms
with O

(

ω4
)

and higher orders inω. The following expression is
obtained

ω (t1) ≈ 2vkp

√

L
Lp

× 1
√

(

L − Lp

) (

L + 1
3Lp

)

− 4(z0 + t1L)2
(

1+ ρe+ρc

ρp+ρc

(L−Lp)
Lp

)

. (15)

The effect of the flow is contained in the denominator of
the right-hand side of Equation (15). We see that the effect
of the flow on the frequency is more complicated than a sim-
ple Doppler shift. There are two reasons that cause this depen-
dence. On the one hand, our model is a complicated structure
in the sense that only the dense prominence material is mov-
ing. It is well known that a wave propagating in a uniform mag-
netic tube with a constant siphon flow is affected by a constant
Doppler shift of the frequency due to the flow. However, the
effect of the flow is not so simple in more complicated con-
figurations. Even in the case of a flux tube with a constant
flow within the tube but no flow in the exterior of the tube the
wave frequencies suffer corrections due to the flow that are not
simple frequency shifts (see, e.g., Nakariakov & Roberts 1995;
Terra-Homem et al. 2003). Our configuration is very different
from the typical uniform magnetic flux tube with a siphon flow,
so that the frequency is also modified by the change of position
of the dense plasma within the magnetic tube. On the other hand,
we are dealing with standing modes, not propagating waves. For
standing modes in flux tubes Terradas et al. (2011) have shown
that flow produces a spatially dependent phase shift along the
magnetic tube. In our case, this phase shift is contained in the
time-dependent phaseφ(t1) of Equation (11).

For typical prominence and coronal densities,ρp ≫ ρc
and ρp ≫ ρe. Therefore, the term with the ratio of densities
in the denominator of Equation (15) can be neglected. Then,
Equation (15) simplifies to

ω (t1) ≈
2vkp

√

L
Lp

√

(

L − Lp

) (

L + 1
3Lp

)

− 4(z0 + t1L)2
. (16)



R. Soler and M. Goossens: Kink oscillations of flowing prominence threads 5

In the absence of flow, i.e.,t1 = 0, and forz0 = 0, Equation (16)
loses its time dependence and becomes,

ω ≈ 2vkp

√

L
(

L − Lp

) (

L + 1
3Lp

)

Lp

. (17)

Equation (17) is consistent with the approximation of the normal
mode frequency obtained by Dı́az et al. (2010, Equation (8a)).
For Lp ≪ L we can approximateL + 1

3Lp ≈ L, and
Equation (17) reduces to the expression found by Soler et al.
(2010, Equation (17)). Although the caseLp → L is very un-
realistic in prominences because the observed lengths of promi-
nence threads correspond toLp/L ≪ 1, it is instructive to take
into account this limit. ForLp → L the frequency given in
Equation (17) tends to infinity. The reason is that the fundamen-
tal kink mode behaves as ahybrid mode like those described by
Oliver et al. (1993) in a Cartesian slab (see also thestring modes
investigated by Joarder & Roberts 1992). Equations (15)–(17)
are approximations of thehybrid mode frequency. As explained
by Oliver et al. (1993),hybrid modes owe their existence to the
presence of both the dense part and the evacuated part of the
tube. In the limitLp → L the evacuated part is absent and the
hybrid kink mode disappears. Thus forLp → L the fundamen-
tal kink mode is not thehybrid mode but the firstinternal mode
with frequency

ω = vkp
π

L
. (18)

SinceLp/L ≪ 1 in prominences, the fundamental mode in a re-
alistic thread is thehybrid mode and Equations (15)–(17) apply.

We plot in Figure 3 the solution of Equation (14) for the fun-
damental mode as a function of time, along with the analytical
approximation given by Equation (16). Equation (14) has been
solved by using standard numerical methods to obtain the roots
of transcendental equations. These computations have beenper-
formed for different values ofLp/L and v0/vAp, and for fixed
z0/L. There is a very good agreement between the full solution
(solid lines in Figure 3) and the approximation (symbols). From
Figure 3(a), we see that the frequency decreases as the length of
the prominence thread increases. On the other hand, Figure 3(b)
shows that the variation of the frequency with time is more im-
portant as the flow velocity gets faster. We find that the mini-
mum of the frequency takes place when the thread is centered
within the magnetic tube. Therefore, the minimum of the fre-
quency depends on both the initial position of the thread andthe
flow velocity since the relationz0 + v0t = 0 has to be satisfied.

Equation (16) corresponds to the instantaneous frequency.
However, the actual temporal dependence of the oscillationin
the WKB approximation is given by functionΩ1(t1). We ob-
tain Ω1(t1) from Equation (9) by integratingω (t1) given by
Equation (16). Hence,

Ω1(t1) =
vkp

√

LLp























arctan

























2(z0 + t1L)
√

(

L − Lp

) (

L + 1
3Lp

)

− 4(z0 + t1L)2

























− arctan

























2z0
√

(

L − Lp

) (

L + 1
3 Lp

)

− 4z2
0















































, (19)

where we have used the conditionΩ1 = 0 at t1 = 0.

3.2. Dependence of the amplitude on time

Here, we estimate the variation of the amplitude of the os-
cillations with time. To do so, we use Equation (8). By tak-
ing into account the definition of the time-dependent frequency
(Equation (9)), we rewrite Equation (8) as

∂Q1(z, t1)
∂t1

+
1

2ω(t1)
∂ω(t1)
∂t1

Q1(z, t1) = 0. (20)

Next, we consider the approximateω(t1) for the fundamental
mode obtained in Equation (15) to express this last Equationas

∂Q1(z, t1)
∂t1

+
2L (z0 + t1L)

(

L − Lp

) (

L + 1
3Lp

)

− 4(z0 + t1L)2
Q1(z, t1) = 0.

(21)

Note that to solve Equation (21) we do not have to care about
the dependence ofQ1 on z. For a givenz, Equation (21) can be
integrated to obtain the temporal dependence ofQ1 at a fixed
position, namely

Q1(z, t1) = Q0(z)
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(
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− 4z2
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1/4

, (22)

whereQ0(z) is the amplitude att1 = 0. Thus, Equation (11)
gives the spatial dependence ofQ1 for a fixed timet1, while
Equation (22) provides the temporal dependence at a fixed po-
sition z. By comparing Equations (16) and (22), we see that
Q1(z, t) ∝ ω (t1)−1/2. Then, the amplitude of the oscillation de-
creases when the thread flows from the center of the tube to the
footpoint, and increases otherwise. This means that the ampli-
tude is maximal when the thread is located at the center of the
magnetic tube.

We must bear in mind that Equation (22) was derived from
the terms withO

(

δ1
)

in the governing equation, whereas the

leading terms whenδ is a small parameter are those withO
(

δ0
)

.
Therefore, we have to be cautious about the actual accuracy of
Equation (22), although we expect the behavior of the amplitude
with time to be, at least, qualitatively described by Equation (22).

3.3. Application to magneto-seismology

The analytical expression of the fundamental mode frequency
found before can be used to perform magneto-seismology of
prominence fine structures by using observed periods of oscil-
lations in flowing threads. We use Equation (16) to compute the
period of the oscillation as a function of time, namely

P1 (t) =
2π
ω (t)

≈ π

vkp

√

Lp

L

√

(

L − Lp

)

(

L +
1
3

Lp

)

− 4(z0 + v0t)2, (23)

which we have explicitly written in terms of the dimensional
time, t, and the flow velocity,v0. By using Equation (23) along
with observational values of the period, it is possible to give an
estimation ofL, i.e., the total length of the flux tube, which is
a parameter difficult to measure from the observations. Let us
assume that we have performed an observation of a transversely
oscillating and flowing thread with a good cadence and we have
determined the evolution of the period with time. For conve-
nience, we sett = 0 when the maximum of the period takes
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Fig. 3. Dimensionless frequency,ωτAp, versus time in units of the internal Alfvén travel time,τAp = L/vAp, for (a) Lp/L = 0.05,
0.1, 0.2 withv0/vAp = 0.05, and (b)v0/vAp = 0.03, 0.05, 0.1 withLp/L = 0.1. In all cases,z0/L = −0.25. The solid lines are the
results obtained by numerically solving Equation (14), whereas the symbols correspond to the analytical approximation given by
Equation (16). The vertical dotted line in panel (a) denotesthe minimum of the curves, i.e., the time when the prominencethread is
centered within the flux tube.

place, namelyP1(0), so we can also fixz0 = 0 in Equation (23).
Then, we denote asP1(τ) the instantaneous period measured at
t = τ. We use Equation (23) and compute the ratioP1(τ)/P1(0)
to find an estimation of the length of the magnetic flux tube as

L ≈ Lp +
v2

0τ
2

Lp

2

1−
(

P1(τ)
P1(0)

)2
, (24)

where again we assumed that the flow velocity is slow. We see
that the right-hand side of Equation (24) depends on quantities
that can be directly measured from the observations. As an ex-
ample, let us assume the following values:P1(τ)/P1(0) = 0.9,
v0 = 40 km s−1, Lp = 10, 000 km, andτ = 5 min. From
Equation (24) we obtainL ≈ 1.6 × 105 km. However, the ac-
curacy of Equation (24) is limited by the uncertainties and error
bars of the observations. In particular, a very accurate determina-
tion of the ratioP1(τ)/P1(0) is needed. For instance, a 10% un-
certainty ofP1(τ)/P1(0) produces a 85% uncertainty ofL when
propagation of errors is used in Equation (24) and the remaining
parameters are kept constant. This makes a reliable application
of Equation (24) difficult in practice.

Another relevant parameter that can give us a seismological
determination ofL is the ratioP1/2P2, whereP2 is the period
of the first harmonic. The deviation of this ratio from unity is an
indication of the longitudinal inhomogeneity length scaleof the
magnetic tube. Its application was used for the first time in the
context of coronal loop oscillations by Andries et al. (2005a,b)
and has been explored in subsequent works (see the recent re-
view by Andries et al. 2009, and references therein). In promi-
nence thread oscillations, Dı́az et al. (2010) explored theimpor-
tance of the ratioP1/2P2 to estimateLp/L in static threads.
While in coronal loopsP1/2P2 < 1, Dı́az et al. (2010) found
that in prominence threadsP1/2P2 > 1. The reason for this re-
sult is that in prominence threads mass density is arranged just
in the opposite way to that in coronal loops. In loops the density
is larger in the footpoints than in the apex due to gravitational
stratification, while in prominence threads the density is much
larger in the center of the magnetic tube because of the presence
of the prominence material.

Fig. 4. Ratio P1/2P2 of a flowing thread withLp/L = 0.1 and
z0/L = −0.25 for v0/vAp = 0.03, 0.05, 0.1. The dotted line is
the result from Equation (25) in the case without flow and for
a prominence thread located at the center of the magnetic struc-
ture.

For a large density contrast between the prominence and the
coronal plasmas, and assuming that the thread is located at the
center of the magnetic cylinder, the relation betweenP1/2P2 and
Lp/L obtained by Dı́az et al. (2010) in their Equation (11) is

P1

2P2
≈

√

3
4Lp/L

. (25)

Let us see how the ratioP1/2P2 is affected by the flow and
so how the results of Dı́az et al. (2010) are modified. However,
it is difficult to obtain an analytical expression forP2 when
flow is present. Instead, we compute bothP1 andP2 by solving
Equation (14) with numerical methods. Figure 4 showsP1/2P2
as a function of time forLp/L = 0.1 andz0/L = −0.25, and for
different values ofv0/vAp. The numerical results are compared
with the analytical expression of Dı́az et al. (2010). Firstof all,
we see that the period ratio is strongly influenced by the veloc-
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ity at which the prominence thread flows along the flux tube.
P1/2P2 is maximal when the thread in centered within the tube
(P1/2P2 ≈ 2.5 for the particular set of parameter in Fig. 4) and
P1/2P2 → 1 when the thread reaches the footpoint. The an-
alytical approximation of Dı́az et al. (2010) for the staticcase
gives a larger value ofP1/2P2 in comparison to the case with
flow. This means that flow reduces the period ratio. Therefore,
Equations (24) and (25) could be used together to obtain a more
accurate determination of the magnetic tube length, as the value
of L inferred from Equation (25) should be considered as a upper
bound for this parameter.

4. Numerical results: time-dependent simulations

Here, we compare the analytical results of the WKB approxi-
mation with the full numerical solution of the time-dependent
problem. We use the PDE2D code (Sewell 2005) for that pur-
pose. The set-up of the numerical code is similar to that of
Terradas et al. (2008). Equation (1) is integrated assumingthe
boundary conditionsvr(±L/2, t) = 0. An initial condition for
vr at t = 0 is also provided. In the code, the distances are ex-
pressed in units ofL and the velocities in units of the prominence
Alfvén speed,vAp =

B√
µρp

. We takeL = 105 km. Assuming

B = 50 G andρp = 10−10 kg m−3 as realistic values in active
region prominences, we obtainvAp ≈ 446 km s−1. The flow ve-
locities on the plane of sky estimated by Okamoto et al. (2007)
are in the interval between 15 km−1 to 46 km s−1. Hence in our
simulations we consider values for the ratiov0/vAp in the range
0.03 . v0/vAp . 0.1. In the code, time is expressed in units of
the Alfvén travel time, i.e.,τAp = L/vAp ≈ 3.74 min. In addition,
in all the following computations we have usedρp/ρc = 200 and
ρe/ρc = 1.

4.1. Excitation of the fundamental mode

First, we use the eigenfunction of the fundamental kink modeas
the initial condition forvr at t = 0. The eigenfunction is obtained
by solving the dispersion relation of the normal mode problem
and computing the spatial distribution of the corresponding per-
turbation (see details in Dymova & Ruderman 2005; Soler et al.
2010; Dı́az et al. 2010). Hence, we make sure that, after the ini-
tial excitation, the magnetic tube mainly oscillates in itsfunda-
mental mode.

As a check of the numerical code, we consider the static case
and put the thread at the center of the magnetic tube, i.e.,v0 = 0
and z0 = 0. In this test simulation, we takeLp/L = 0.1. By
looking at the time-dependent evolution ofvr, we check that the
magnetic tube oscillates as a whole. A plot ofvr at z = 0 as a
function of time (not displayed here for the sake of simplicity)
shows that the amplitude of the oscillation is constant during the
whole duration of the simulation, meaning that numerical dissi-
pation is negligible in the simulation. Later, we perform a power
spectrum ofvr at z = 0 (see, e.g., Carbonell & Ballester 1991)
and find a large peak centered around the fundamental normal
mode frequency. The maximum of the power spectrum agrees
very well with the approximate frequency of the normal mode
given by Equation (16). For the set of parameters used in thisnu-
merical test, the period in dimensional units isP ≈ 2.6 min. We
have performed similar simulations but using different values of
Lp/L andz0. Equivalent results to those commented before have
been obtained in all cases. This indicates, on the one hand, that
the normal mode interpretation is a very good representation for

the time-dependent evolution of the oscillation in the static case
and, on the other hand, that the numerical code works properly.

Hereafter, we incorporate the effect of the flow. First, we fix
Lp/L = 0.1 andz0 = 0, and considerv0/vAp = 0.05. In this situ-
ation, the thread is initially located at the center of the magnetic
tube. We make sure that the simulation stops before the threads
reaches the photospheric wall. We plot in Figure 5(a) the radial
velocity perturbation atz = 0 as a function of time. Contrary
to the static case, now the amplitude of the oscillation decreases
in time as the thread moves from the center towards the end of
the magnetic tube. This behavior is qualitatively described by
Equation (22) obtained in the WKB approximation (see dashed
line in Fig. 5(a)), although Equation (22) underestimates the ac-
tual decrease of the amplitude. Inspired by Equation (22), we
propose the following fit for the amplitude,

Q1(z, t1) = Q0(z)
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, (26)

with n an empirical exponent. When Equation (26) is applied
to the results of Figure 5(a), we obtain that the exponentn =
1 provides a good fit for the amplitude (see the dotted line in
Figure 5(a)).

On the other hand, we perform in Figure 5(b) a wavelet
power spectrum (Torrence & Compo 1998) of the signal dis-
played in Figure 5(a). We find that the period decreases in time as
the thread moves towards the footpoint of the magnetic structure.
The WKB approximation for the period given by Equation (23)
is in excellent agreement with the position of the maximum of
the wavelet spectrum (see dashed line in Figure 5(b)). As dis-
cussed in Section 3.2, the WKB approximation for the period
is much more accurate than the WKB approximation for the
amplitude. In addition, we see that the rate at which the period
changes with respect to the value att = 0 is not constant. Using
Equation (23) and considering the parameters of this particular
simulation, the period of the oscillation when the thread isat
z = L/4 has decreased of about 9% with the respect to its initial
value atz = 0, whereas the period decreases of about 45% when
the thread finally reaches the footpoint of the magnetic tubeat
z = L.

We repeat the simulation forLp/L = 0.2 and a faster flow,
v0/vAp = 0.1, and takez0/L = −0.25 to consider the thread
initially displaced from the center of the flux tube. The radial
velocity perturbation atz = 0 is plotted in Figure 5(c), and the
corresponding wavelet power spectrum is shown in Figure 5(d).
These results are equivalent to those of Figures 5(a)–(b), i.e.,
both the amplitude and the period of the oscillation depend on
the position of the prominence thread within the flux tube, taking
both of them their maximum value when the thread is centered.
As before, Equation (23) is a very good approximation to the
period.

4.2. Arbitrary excitation

In the previous Section, we have used an initial condition for
vr that corresponds to the fundamental mode eigenfunction, so
only this mode is excited. However, it is expected that the en-
ergy from an arbitrary disturbance of the flux tube is deposited
in many normal modes (see a discussion on this issue in, e.g.,
Terradas et al. 2007). To represent an arbitrary disturbance of the



8 R. Soler and M. Goossens: Kink oscillations of flowing prominence threads

Fig. 5. (a)vr atz = 0 (solid line in arbitrary units) as a function of time in a prominence fine structure withLp/L = 0.1,v0/vAp = 0.05,
andz0 = 0. The initial excitation is the fundamental kink mode eigenfunction forv0 = 0. The dashed line is the amplitude in the
WKB approximation (Equation (22)), while the dotted line corresponds to the fit proposed in Equation (26) withn = 1. (b) Wavelet
power spectrum for the dimensionless period,P/τAp, corresponding to the signal displayed in panel (a). The white dashed line is
the period in the WKB approximation (Equation (23)), whereas the horizontal dotted line is the period att = 0. The red solid line
denotes 99% of confidence level. (c) Same as panel (a) but forLp/L = 0.2, v0/vAp = 0.1, andz0/L = −0.25. (d) Same as panel (b)
but for the signal of panel (c), and with the horizontal dotted line denoting the maximum of the period.

flux tube, we consider a Gaussian function as the initial condi-
tion of vr at t = 0, namely

vr(z, t = 0) = exp

[

− (z − ζ)2

σ2

]

, (27)

whereζ andσ are arbitrary parameters. Whereasζ correspond
to the position of the maximum of the excitation,σ determines
its width.

In the following simulations, we consider the same model
parameters as in Figures 5(c)–(d), i.e.,Lp/L = 0.2, v0/vAp =

0.1, andz0/L = −0.25, but use the initial condition given by
Equation (27). To begin with, we takeσ/L = 0.2 and consider
different values ofζ. First we useζ/L = −0.25, so the excitation
is mainly confined to the dense prominence region of the flux
tube. The result of this simulation is displayed in Figure 6(a),
which shows the evolution in time ofvr at z = 0, whereas
Figure 6(b) shows the corresponding wavelet power spectrum.
It is interesting to compare Figures 5(d) and 6(b) to see that, in
the present case, the oscillation dynamics is still governed by
the fundamental normal mode. We see in Figure 6(a) that there
is some contribution of higher harmonics to the behavior ofvr in
time, although their contribution to the overall oscillation is of
very minor importance. In addition, the evolution of the ampli-
tude ofvr remains qualitatively described by Equation (26) with
n = 1.

Next, we perform another simulation by taking the same pa-
rameters as before but assumingζ/L = 0. In this case, the max-
imum of the initial excitation is located in the evacuated part of

the magnetic tube. Again, we plot in Figure 6(c)vr at z = 0 ver-
sus time, and in Figure 6(d) the wavelet power spectrum. The
behavior ofvr in time is substantially different in the present
situation compared to the case of Figures 6(a)–(b). First ofall,
we see thatvr is not governed by the fundamental mode ex-
clusively. The wavelet power spectrum indicates that the energy
from the initial disturbance is mainly deposited to the fundamen-
tal mode, but also the first harmonic is excited. The dependence
in time of the fundamental mode period is again well described
by Equation (23). However, the contribution of the first harmonic
to the overall oscillation seems to have disappeared when the
thread is located at the center of the magnetic tube. The reason
for this result is that the first harmonic eigenfunction has anode
at z = 0 when the thread is centered, and so the first harmonic
does not contribute to the signal displayed in Figure 6(c) insuch
a case. On the other hand, it is now difficult to determine the
effect of the flow on the amplitude of the oscillation.

Finally, we have performed several simulations for different
values ofσ. If the maximum of the excitation is located within
the dense part of the flow tube, the results are rather insensitive to
σ unless values much smaller thanLp are used. In all the cases,
the fundamental mode is predominantly excited. However, the
results are more affected by the value ofσ if the maximum of
the excitation is located in the evacuated part of the tube. In such
a case, the largerσ, the more energy is deposited in the funda-
mental mode. On the contrary, asσ gets smaller the energy of the
initial excitation is more distributed among higher harmonics.
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Fig. 6. (a) Same as Figure 5(c) but for a initial excitation given by Equation (27) withζ/L = −0.25 andσ/L = 0.2. (b) Wavelet
power spectrum corresponding to the signal displayed in panel (a). (c) Same as panel (a) but forζ/L = 0 andσ/L = 0.2. (d) Same
as panel (b) but for the signal displayed in panel (c), with the dash-dotted line denoting the period of the first harmonic.

The results of this Section point out that the time-dependent
behavior of standing kink MHD waves of flowing prominence
threads is strongly influenced by the form of the initial distur-
bance. If the initial disturbance mainly perturbs the densepromi-
nence part of the flux tube, the oscillations are governed by the
fundamental kink mode. In such a case, the dependence of both
the period and the amplitude with the flow velocity are approx-
imately given by Equations (23) and (26), respectively. On the
contrary, the behavior is more complicated if the initial pertur-
bation takes place in the evacuated part of the fine structureas
other harmonics are excited in addition to the fundamental mode.
The contribution of the different harmonics depends on both the
position and the width of the initial excitation, while the ampli-
tude of the oscillation does not have a simple dependence on the
flow velocity.

5. Discussion and conclusions

In this paper, we have investigated standing kink MHD waves in
the fine structure of solar prominences, modeled as coronal mag-
netic flux tubes partially filled with flowing threads of promi-
nence material. The present study extends and complements the
previous work by Terradas et al. (2008), who restricted them-
selves to the numerical investigation of this phenomenon and
did not perform an in-depth parametric study. Here, we have
combined analytical methods based on the WKB approximation
with time-dependent numerical simulations to assess the precise
effect of the flow on both the period and the amplitude of the
fundamental kink mode.

As for the effect of the flow on the period, we can distinguish
two different situations. On the one hand, we find that the flow
has a small effect on the period when the thread is located near

the center of the supporting magnetic flux tube. In this case,the
variation of the period with respect to the static case may fall
within the error bars of the observations, and so the effect may
be undetectable. There our results confirm the qualitative discus-
sion of Terradas et al. (2008) about the effect of the flow on the
period. On the other hand, the variation of the period is much
more important when the thread approaches the footpoint of the
magnetic structure. Then, the decrease of the period can be larger
than 50% with respect to the static case. The case in which the
thread is near one of the footpoints of the magnetic tube was not
analyzed by Terradas et al. (2008).

We have also found that the flow affects the amplitude
of the fundamental mode. This result was not discussed by
Terradas et al. (2008). During the motion of the prominence
thread along the magnetic structure, we find that the ampli-
tude grows as the thread gets closer to the center of the tube
and decreases otherwise. This produces an apparent amplifica-
tion or damping of the oscillations, respectively. Observations
often indicate that thread transverse oscillations are strongly
damped (see, e.g., Lin 2004, 2010; Ning et al. 2009). While sev-
eral mechanisms have been proposed and investigated to ex-
plain the quick attenuation (see the recent reviews by Oliver
2009; Arregui & Ballester 2010), the process of resonant absorp-
tion seems the most likely explanation (e.g., Arregui et al.2008;
Soler et al. 2009a,b, 2010). Our present results indicate that the
actual damping rate of the oscillations might be affected by the
change of the amplitude due to the flow. This fact should be
taken into account when the damping rate is used as a seismo-
logical tool to infer physical parameters of prominence threads,
because the presence of flow may introduce some uncertainties
on these estimations (see details in Arregui & Ballester 2010).
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In addition, our numerical simulations have allowed us to de-
termine how different perturbations excite the oscillations of the
magnetic structure. Based on the cases studied in this paper, we
have obtained that the fundamental mode is mostly excited when
the perturbation initially disturbs the dense, prominencepart of
the tube. From the wavelet power spectrum of the radial velocity
perturbation, we conclude that the contribution of higher har-
monics is negligible, thus the overall oscillation is governed by
the fundamental mode. On the contrary, a perturbation located at
the evacuated part of the tube excites the fundamental mode and
higher harmonics, producing a more complex behavior of the os-
cillations. In this last case, the effect of the flow on the amplitude
is more complicated and no simple dependence can be extracted
from the simulations.

This paper has explored the properties of MHD waves in
a coronal magnetic structure with a changing configuration.
Previous similar works in this line are, e.g., Terradas et al. (2008)
in prominences, and Morton et al. (2010); Morton & Erdélyi
(2010a,b) in coronal loops. During the revision of this paper
it also came to our knowledge the recent work by Ruderman
(2011). In view of the highly dynamic nature of the coronal
medium in general, and the prominence plasma in particular,this
kind of modeling represents a better description of the actual
oscillatory phenomena in the corona and in prominences. The
present investigation could be extended in the future by incorpo-
rating the effect of the density inhomogeneity in the transverse
direction and so investigating the resonant damping of the kink
mode.
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