
NONADIABATIC MAGNETOHYDRODYNAMIC WAVES IN A CYLINDRICAL
PROMINENCE THREAD WITH MASS FLOW

R. Soler, R. Oliver, and J. L. Ballester

Departament de Fı́sica, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain;

roberto.soler@uib.es, ramon.oliver@uib.es, joseluis.ballester@uib.es

Received 2008 March 17; accepted 2008 May 20

ABSTRACT

High-resolution observations show that oscillations and waves in prominence threads are common and that they
are attenuated in a few periods. In addition, observers have also reported the presence of material flows in such prom-
inence fine-structures. Here we investigate the time damping of nonleaky oscillations supported by a homogeneous
cylindrical prominence thread embedded in an unbounded corona and with a steady mass flow. Thermal conduction
and radiative losses are taken into account as damping mechanisms, and the effect of these nonideal effects and the
steady flow on the attenuation of oscillations is assessed. We solve the general dispersion relation for linear, non-
adiabatic magnetoacoustic and thermal waves supported by the model and find that slow and thermal modes are effi-
ciently attenuated by nonadiabatic mechanisms. On the contrary, fast kink modes are much less affected and their
damping times are much larger than those observed. The presence of flow has no effect on the damping of slow and
thermal waves, whereas fast kink waves are more ( less) attenuated when they propagate parallel (antiparallel) to the
flow direction. Although the presence of steady mass flows improves the efficiency of nonadiabatic mechanisms on
the attenuation of transverse, kink oscillations for propagation parallel to the flow, its effect is still not enough to obtain
damping times compatible with observations.

Subject headinggs: Sun: corona — Sun: magnetic fields — Sun: oscillations — Sun: prominences

1. INTRODUCTION

Prominences and filaments are large-scale magnetic structures
embedded in the solar corona and whose plasma density and tem-
perature are akin to those of the chromosphere. High-resolution
images of solar filaments (e.g., Lin et al. 2003, 2005, 2007) clearly
show the existence of horizontal fine-structureswithin thefilament
body. This observational evidence suggests that prominences are
composed of manyfield-aligned threads. These threads are usually
skewed with respect to the filament long axis by an angle of 20�

on average, although their orientation can vary significantly within
the same prominence (Lin 2004). The observed thickness, d, and
length, l, of threads are typically in the ranges 0:200 < d < 0:600

and 500 < l < 2000 (Lin et al. 2005). Since the observed thickness
is close to the resolution of present-day telescopes, it is likely that
even thinner threads could exist. According to some models (e.g.,
Ballester & Priest 1989), a thread is believed to be part of a larger
magnetic coronal flux tube which is anchored in the photosphere,
with denser and cooler material near its apex, i.e., the observed
thread itself. However, the process that leads to the formation of
such structures is still unknown.

There is much evidence of small-amplitude waves and oscil-
latory motions in quiescent prominences (this topic has been re-
viewed byOliver&Ballester 2002; Ballester 2006; Banerjee et al.
2007). Focusing on prominence fine-structures, some observ-
ers have detected oscillations and traveling waves in individual
threads or groups of threads (Yi et al. 1991; Yi & Engvold 1991;
Lin 2004; Lin et al. 2007), with periods typically between 3 and
20 minutes. In addition, mass flows along filament threads, with
a flow velocity in the range 5Y25 km s�1, have also been observed
(Zirker et al. 1998; Lin et al. 2003, 2005). Moreover, it is notice-
able that Zirker et al. (1998) and Lin et al. (2003) have detected
flows in opposite directions within adjacent threads, a phenomenon
known as counterstreaming. On the other hand, some observational
works have suggested signatures of wave damping in prominence

oscillations (Landman et al. 1977; Tsubaki & Takeuchi 1986; Lin
2004), but to date onlyMolowny-Horas et al. (1999) and Terradas
et al. (2002) have studied in detail this phenomenon, in particular
in two-dimensional Doppler velocity time series. This analysis
showed that oscillations detected in large areas of a quiescent
prominence were attenuated after a few periods. Although this
quick attenuation seems to be a common feature of prominence
oscillations, unfortunately no similar observational study focusing
on the attenuation of individual thread oscillations has been per-
formed yet.

From the theoretical point of view, the usual interpretation of
thread oscillations is in terms of the adiabatic magnetohydrody-
namic eigenmodes supported by the thread body. The first inves-
tigation of individual thread vibrations was performed by Joarder
et al. (1997), whose work was extended and corrected by Dı́az
et al. (2001), considering a nonisothermal Cartesian thread sur-
rounded by the coronal medium (based on the model by Ballester
& Priest 1989), in the � ¼ 0 approximation. These authors found
that only the low-frequency oscillatory modes are confined within
the dense region, and that perturbations can achieve large ampli-
tudes in the corona at long distances from the thread. Later, Dı́az
et al. (2003) assumed the same geometry, but took longitudinal
propagation into account, and obtained a better confinement for
the perturbations. Considering a more realistic and representa-
tive cylindrical geometry, Dı́az et al. (2002) found that a non-
isothermal cylindrical thread supports an even smaller number
of trapped oscillations and that perturbations are much more
efficiently confined within the cylinder in comparison with the
Cartesian case. It is worthwhile to mention that the collective os-
cillations of multithread systems have also been investigated by
Dı́az et al. (2005) and Dı́az & Roberts (2006), again in Cartesian
geometry. See Ballester (2006) for a review about theoretical
works.

The effect of steady mass flows on the oscillatory modes of
magnetic structures has been theoretically investigated in some
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works. The most relevant ones for the present investigation are
Nakariakov & Roberts (1995), who studied the effect of steady
flow in coronal and photospheric slabs, and Terra-Homem et al.
(2003), who extended the former study to cylindrical geometry.
In addition to producing a shift of the oscillatory frequency, both
papers show that the main effect of the flow is to break the sym-
metry between wave propagation parallel and antiparallel to the
flow direction and, for sufficiently strong flows, that slow modes
can only propagate parallel to the flow direction, antiparallel prop-
agation being forbidden.

Turning to the damping of oscillations, its theoretical investi-
gation has been undertaken by a number of recent papers. Among
the proposed damping mechanisms to explain the attenuation
(Ballai 2003), nonadiabatic effects are the most extensively in-
vestigated to date, although other candidates like wave leakage
(Schutgens 1997a, 1997b; Schutgens&Tóth 1999) and ion-neutral
collisions (Forteza et al. 2007) have also been studied. By remov-
ing the adiabatic assumption and taking into account thermal con-
duction and radiative losses as dampingmechanisms, someworks
have studied the time damping in a homogeneous, unbounded
plasma (Carbonell et al. 2004), in an isolated prominence slab
(Terradas et al. 2005), and in a prominence slab embedded in the
solar corona (Soler et al. 2007a, hereafter Paper I; Soler et al.
2008). The common main result of these studies is that non-
adiabatic mechanisms can explain the observed damping times
in the case of slowmodes, whereas fast modes are much less at-
tenuated by nonadiabatic effects. It is important to note that all
these articles have studied the wave attenuation in models which
attempt to represent the whole prominence body. Thus, none of
them have neither considered the prominence fine-structure nor
mass flows.

More recently, Carbonell et al. (2008) have performed the first
attempt to study the combined effect of both nonadiabatic mech-
anisms and steady flows on the time damping of slow and ther-
mal waves in a homogeneous, unbounded prominence plasma.
These authors found that themass flowdoes notmodify the damp-
ing time of both slow and thermal waves with respect to the case
without flow, but the period of the slow wave increases dramati-

cally for flow velocities close to the nonadiabatic sound speed.
Moreover, the thermal disturbance behaves as a propagatingmode
in the presence of flow. The present work goes a step forward with
respect to Carbonell et al. (2008), since amore complicated geom-
etry is assumed here. Our aim is to describe the effect of bothmass
flow and nonadiabatic effects on the oscillations supported by an
individual prominence thread modeled as a homogeneous and in-
finite cylinder embedded in an unbounded and also homogeneous
corona. For simplicity, the hot, coronal part of the magnetic tube
that contains the thread is not taken into account. Gravity is also
discarded. The inclusion of gravity would involve the considera-
tion of a more complicated magnetic structure able to support the
prominence material (e.g., Ballester & Priest 1989; Schmitt &
Degenhardt 1995; Rempel et al. 1999). However, these kinds
of configurations are unstable and incomplete, since they do not
incorporate the physics that lead to stable solutions and,moreover,
the obtained prominence widths are much smaller than those ob-
served. Although some prominences and threads show unstable
behavior, there are a number of observations of stable oscillating
threads (e.g., Lin et al. 2003, 2005, 2007). For this reason and
since the present work is focused on the study of waves in stable
threads, we neglect the effect of gravity and consider a stable sim-
plified model that allows us to deal with wave solutions.
This paper is organized as follows. The description of themodel

configuration and the basic equations for the discussion of linear
nonadiabatic waves are given in x 2. Then, the results are presented
in x 3, first for the case without flow and later extended by includ-
ing a steady mass flow in the equilibrium. Finally, x 4 contains our
conclusions.

2. MODEL EQUATIONS

Themodel configuration considered in the presentwork (Fig. 1)
is made of a homogeneous and isothermal plasma cylinder of ra-
dius awith prominence conditions (density �p and temperature Tp)
embedded in an unbounded corona (density �c and tempera-
ture Tc). The cylinder is also unlimited in the axial direction.
The internal temperature and density, as well as the coronal tem-
perature, are considered as free parameters. However, the value

Fig. 1.—Sketch of the model.
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of the coronal density is given by imposing total pressure con-
tinuity across the interface between the flux tube and the external
medium. In all the following expressions, the subscript 0 indicates
local values, while subscripts p and c denote quantities explicitly
computed with prominence and coronal parameters, respectively.

Given the model geometry, we use cylindrical coordinates,
namely, r, ’, and z, for the radial, azimuthal, and longitudinal
coordinates, respectively. The magnetic field is uniform and
orientated along the cylinder axis, B0 ¼ B0êz, B0 being the same
constant in the thread and in the coronal medium. A steady mass
flow is assumed along the z-direction, whose flow velocity can be
different in the cylinder and in the corona. Thus, Up ¼ Upêz and
Uc ¼ Ucêz correspond to the steady flow in the flux tube and in
the corona, respectively.

Parallel thermal conduction to the magnetic field, radiative
losses, and heating are considered as nonadiabatic effects. We
assume that the plasma is fully ionized, and so the cross field or
perpendicular thermal conduction is absolutely negligible. The
contribution of neutrals to the thermal conduction in a partially
ionized plasma has been investigated by Forteza et al. (2008).
Radiation and heating are evaluated together by means of the
heat-loss function, L(�;T ) ¼ ���T �� h�a�T b� , in which radia-
tion is parameterized with �� and � (Hildner 1974) and the heat-
ing scenario is given by the exponents a� and b� (Rosner et al.
1978; Dahlburg & Mariska 1988). Since the results for different
heating scenarios do not show significant differences for promi-
nence conditions (Carbonell et al. 2004; Terradas et al. 2005;
Paper I; Soler et al. 2008), here we restrict ourselves to a constant
heating per unit volume (a� ¼ b� ¼ 0).

The basic equations for the discussion of nonadiabatic oscilla-
tions supported by this equilibrium correspond to equations (1)Y
(6) of Paper I, whose linearized version applied to the present case
is given as
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�0
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Here, p0, �0, T0, B0, and U0 are the equilibrium gas pressure,
density, temperature, magnetic field, and flow velocity, respec-
tively. We also have that p1, �1, T1, B1 ¼ Br êrþ B’ê’þ Bz êz,
and v1¼ vr êrþ v’ ê’þ vz êz are the linear gas pressure, density,
temperature, magnetic field, and velocity perturbations, respec-
tively. Finally, c2s ¼ �p0/�0 is the adiabatic sound speed squared,
�k ¼ 10�11T 5/2 W m�1 K�1 is the thermal conductivity parallel
to the magnetic field, and L� and LT are the partial derivatives of
the heat-loss function with respect to density and temperature,
respectively (see Paper I for details).

Assuming perturbations of the form f̃1(r; ’) exp i!t � ikzzð Þ,
where! is the (complex) oscillatory frequency and kz is the (real)

longitudinal wavenumber, one can combine equations (3) and (6)
to obtain the following relation between the perturbed pressure
and density,

p1 ¼ �̃2
0�1; ð7Þ

with

�̃2
0 �

c2s
�
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2
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� �
þ i��0
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� �
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" #
; ð8Þ

where �0 ¼ !� U0kz is the Doppler-shifted frequency (Terra-
Homem et al. 2003), and !� and !T are defined in Paper I. We
see than the complex quantity �̃0 is a generalization, due to the
presence of the flow, of the nonadiabatic sound speed defined in
Paper I. The real part of �̃0 plays the role of the sound speed
when nonadiabatic effects are present. By means of this defini-
tion, one can see that the effect of nonadiabatic terms is to mod-
ify the medium sound speed, and so they most probably affect
slowmodes, since they are mainly governed by acoustic effects.
See x 3.2.3 for more details about this quantity.

Now, following Terra-Homem et al. (2003), we combine the
basic equations and arrive at the following expressions,

�2 � 2� �̃2
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� �
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where v2A ¼ B2
0 /��0 is the Alfvén speed squared, � is a linear

operator defined as

� ¼ @

@t
þ U0

@

@z
; ð11Þ

and� and � are the divergence and the z-component of the ro-
tational of the velocity perturbation, respectively,

� ¼ := v1; ð12Þ

� ¼ :< v1ð Þ = êz: ð13Þ

Equation (10) is the same as equation (14) of Terra-Homem et al.
(2003) and governs torsional, Alfvén waves, which are not damped
by nonadiabaticmechanisms and so are not considered in the pres-
ent investigation. On the other hand, equation (9) represents fast
and slow magnetosonic waves, together with the thermal or con-
densationmode (Field 1965). If nonadiabatic terms are neglected,
�̃0 ¼ cs and then our equation (9) reduces to equation (13) of
Terra-Homemet al. (2003), which in the absence of flow (U0 ¼ 0)
is equivalent to the well-known equation (17) of Lighthill (1960).

Next, the cylindrical symmetry of themodel allows us to write
the divergence of the velocity perturbation in the following form,

� ¼ R(r) exp i!t þ in’� ikzzð Þ; ð14Þ

where n is an integer that plays the role of the azimuthal wave-
number. Expressions for the perturbed quantities as a function
of � can be found in Appendix A. Now, applying this last ex-
pression to equation (9), one finds that R(r) satisfies the well-
known Bessel equation of order n,

r 2
d 2R

dr 2
þ r

dR

dr
þ m2

0 r
2� n2
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R ¼ 0; ð15Þ

NONADIABATIC MHD WAVES 727No. 1, 2008



with
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The radial wavenumber squared, m2
0 , is in general a complex

quantity; hence, no pure bodylike or surfacelike waves are pos-
sible in nonadiabatic magnetohydrodynamics. If one assumes
that jRe(m2

0 )j> jIm(m2
0 )j (i.e., nonadiabatic effects produce a small

correction to the adiabatic wavemodes), the dominant wave char-
acter depends on the sign of Re(m2

0 ). Thus, oscillations aremainly
bodylike if Re(m2

0 ) > 0 and solutions of equation (15) are Bessel
functions. On the contrary, if Re(m2

0 ) < 0, oscillations aremainly
surfacelike (or evanescent) and solutions of equation (15) are
modified Bessel functions. In this work we assume nowave prop-
agation in the coronal medium, so the evanescent condition in the
corona is imposed on the perturbations, namely, Re(m2

c ) < 0. On
the other hand, the present ordering of sound and Alfvén speeds
does not permit the existence of surface waves within the fibril, so
Re(m2

p ) > 0 is assumed. Then R(r) is a piecewise function,

R(r) ¼
A1Jn(mpr); r � a;

A2Kn(ncr); r > a;

	
ð18Þ

with n2
c ¼ �m2

c , A1 and A2 being complex constants. The func-
tions Jn and Kn are the usual Bessel and modified Bessel func-
tions of order n, respectively (Abramowitz & Stegun 1972). In
order to obtain the dispersion relation that governs the behavior
of wave modes, we impose the continuity of the Lagrangian ra-
dial displacement, vr/�0, and the total pressure perturbation, pT1 ,
at the cylinder edge, r ¼ a. After some algebra, the following ex-
pression is obtained,
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� 2
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z v
2
A;c

� �
mp

J 0
n mpa
� �

Jn mpa
� � ¼ �2

p � k 2
z v

2
A; p

� �
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K 0
n ncað Þ

Kn ncað Þ ;

ð19Þ

where the prime denotes the derivative taken with respect to r.
Equation (19) is formally identical to equation (21) of Terra-
Homem et al. (2003), since our nonadiabatic terms are enclosed
in the definition of mp and nc. If both nonadiabatic effects and
the flow are dropped, equation (19) simply reduces to the well-
known dispersion relation of Edwin & Roberts (1983).

The solution of equation (19) for a real kz is a complex fre-
quency,! ¼ !R þ i! I. The oscillatory period (P), damping time
(�D), and the ratio of both quantities are computed as follows,

P ¼ 2	

j!Rj
; �D ¼ 1

! I

;
�D
P

¼ 1

2	

j!Rj
! I

: ð20Þ

3. RESULTS

3.1. Configuration without Flow

In this sectionwe first perform a study of the solutions of the dis-
persion relation (eq. [19]) in the absence of steady flow. In this case,
Up ¼ Uc ¼ 0 and so �p ¼ �c ¼ !. This situation corresponds to
the case studied by Edwin & Roberts (1983) with the addition of
nonadiabatic effects. Unless otherwise stated, the following equi-
librium parameters are used in all computations: Tp ¼ 8000 K,

�p ¼ 5 ; 10�11 kg m�3, Tc ¼ 106 K, �c ¼ 2:5 ; 10�13 kg m�3,
B0 ¼ 5 G, and a ¼ 30 km. Thus, the characteristic speeds of
the internal and external media are cT ; p ¼ 11:56 km s�1, cs; p ¼
11:76 km s�1, vA;p¼ 63:08 km s�1, cT ; c ¼ 163:51 km s�1, cs;c ¼
166:33 km s�1, and vA;c ¼ 892:06 km s�1. In addition, both
prominence and coronal plasmas are taken as optically thin (see
Table 1 in Paper I for the values of parameters �� and � of the
heat-loss function).
In the absence of flow, the complex oscillatory frequencies

obtained by solving equation (19) for a fixed, real, and positive
kz appear in pairs,!1 ¼ !R þ i! I and!2 ¼ �!R þ i! I. The so-
lution !1 corresponds to a wave propagating toward the positive
z-direction (parallel to magnetic field lines), whereas !2 corre-
sponds to a wave that propagates toward the negative z-direction
(antiparallel to magnetic field lines). For short, we call them par-
allel and antiparallel waves, respectively. Both parallel and anti-
parallel wave modes are equivalent and show exactly the same
physical properties when no flow is considered. For the sake of
simplicity, the results presented in this section correspond to par-
allel waves, which have a positive phase speed. Equivalent re-
sults for antiparallel waves are deduced by considering negative
phase speeds.

3.1.1. Dispersion Diagram and Eigenfunctions
of Magnetoacoustic Modes

Magnetoacousticmodes supported by amagnetic cylinder have
been extensively investigated (e.g., Spruit 1982; Edwin&Roberts
1983; Cally 1986). Fast oscillations with n ¼ 0, n ¼ 1, and n � 2
correspond to sausage, kink, and fluting or ballooning modes, re-
spectively. On the basis that thread oscillations are observed in
Doppler time series, this work is mainly focused on kink modes,
which produce displacements of the thread axis from its original
position. The fundamental fast kink mode is trapped for realistic
values of the thickness and width of threads. Regarding slow
modes, the fundamental modes and their harmonics are all trapped
for any value of kz and n, but all of them have an almost identical
frequency, as in the slab case (Paper I). Thus, we also restrict our-
selves to the fundamental slow mode with n ¼ 1 for simplicity.
An additional solution of equation (19) is the thermal mode
which, in the absence of flow, has a purely imaginary frequency
(see x 3.1.3).
Figure 2 displays the phase speed diagram corresponding to

the fundamentalmodeswith n ¼ 0 and 1 (compare thiswith Fig. 2

Fig. 2.—Phase speed (!R/kz) vs. the dimensionless longitudinal wavenumber
(kza) for the fundamental magnetoacoustic modes with n ¼ 1 (solid line) and 0
(dashed line). The shaded zones are projections of the leaky regions on the plane
of this diagram. Note the cutoff frequency of the fundamental fast sausagemode.
The vertical axis is not drawn to scale.
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of Paper I). One can see that the behavior of slow modes and the
fast sausage mode is similar to that in a slab. An important differ-
ence with the results of Paper I is that in the cylindrical case the
fast kinkmode does not couple with the external leaky slowmodes
enclosed in the region Re(c̃Tc ) < !R/kz < Re(�̃c), because its
phase speed in the long-wavelength limit is ck < Re(c̃Tc ), with
c2k ¼ (�pv

2
A;pþ �cv

2
A;c)/(�p þ �c).

Next, we plot in Figure 3 the eigenfunctions corresponding to
the radial and longitudinal velocity perturbations, vr and vz, and
the total pressure perturbation, PT1 , for the fundamental slow and
fast kink magnetoacoustic modes. Contrary to the slab case of
Soler et al. (2007b, Fig. 4), perturbations are efficiently confined
within the cylinder for any value of the longitudinal wavenumber.
Thus, this suggests that the influence of the corona on the damp-
ing of oscillations could be of smaller importance than in a mag-
netic slab. On the other hand, the expected velocity polarization is
obtained, the slow mode being mainly polarized along the longi-
tudinal direction (vz3 vr) and the fast kink mode being respon-
sible for transverse, radial motions (vr3 vz).

3.1.2. Damping Times of Fast Kink and Slow Waves
and Comparison with a Longitudinal Slab

We now compute the period, damping time, and their ratio
for the fundamental fast kink and slow modes for a wide range
of kz (10

�10 m�1 < kz < 10�2 m�1). This range includes the val-
ues corresponding to the observed wavelengths in prominences
(10�8 m�1 P kz P 10�6 m�1). In Figure 4 these results are com-
paredwith those obtained for a longitudinal slabwhose half-width
is equal to the cylinder radius (i.e., the case analyzed in x 4.4 of
Paper I).We see that the results of the slowmode are almost iden-
tical in both cylindrical and slab geometries; hence, the reader is
referred to Paper I for a description of the slow mode behavior.

On the contrary, the results of the fast kink mode show signifi-
cant differences between the slab and the cylinder. For small and
intermediate kz, both the period and damping time in a cylinder
are larger than in a slab. This effect is specially noticeable for the
damping time in the observed range of wavelengths, since its
value in the cylindrical case is more than 3 orders of magnitude
larger than in the slab. This causes the ratio �D/P to be in the range
105 P �D/PP 109 for the observed wavelengths. Therefore, non-
adiabatic effects are much less efficient in damping the fast kink
mode in a cylinder than in the slab geometry. In addition, we see
that the fast kinkmode damping time due to nonadiabatic effects is
much larger than typical lifetimes of filament threads and prom-
inences. Hence, nonadiabatic fast kink waves are in practice un-
damped when these results are applied in the solar context.

3.1.3. Thermal Mode

Now we turn our attention to the thermal or condensation
mode. The condensation instability has been studied in uniform,
unbounded plasmas (Field 1965), in coronal slabs (van der Linden
&Goossens 1991), and in coronal cylinders (An 1984). Since the
thermal mode has a purely imaginary frequency, we now assume
! ¼ is, where s is real and often called the damping (or growing)
rate. The situation s > 0 corresponds to a damped thermal mode,
whereas s < 0 occurs if the mode is thermally unstable. The sign
of s can be estimated a priori by considering the stability criterion
provided by Field (1965),

�k;p k
2
z þ �p LT ;p�

�p
Tp

L�;p

� �
> 0: ð21Þ

Since for prominence conditions this inequality is verified for any
real value of kz, the thermal mode is always a damped solution,

Fig. 3.—Modulus of the eigenfunctions (in arbitrary units) corresponding to the radial velocity perturbation, vr , the longitudinal velocity perturbation, vz, and the total
pressure perturbation, PT1 , as functions of the dimensionless distance to the cylinder axis for the fundamental slow (top) and fast kink (bottom) modes. The solid lines
correspond to kza ¼ 1, while the dashed lines correspond to kza ¼ 10�2. Note that vz is not continuous at the cylinder edge, whose location is denoted by the vertical dotted
lines.
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and therefore, we expect s > 0. According to van der Linden &
Goossens (1991), seeAppendixB formore details, the evanescent
assumption in the corona (m2

c < 0) together with the body-wave
assumption within the fibril (m2

p > 0) is satisfied in a narrow
range of s. However, there is an extremely narrow range of kz
(1:68 ; 10�7 m�1 P kz P 1:70 ; 10�7 m�1) in which m2

p > 0
and m 2

c > 0, and so the evanescent assumption is not verified.
Then, the thermal mode does not exist as a nonleaky solution in
such a range of kz. Despite this, the fundamental thermal mode
and all its harmonics have an almost identical damping rate s,
whose value is also almost independent of the azimuthal wave-
number, n. For this reason and for the sake of simplicity, we
again restrict ourselves to solutions with n ¼ 1 and focus on the
fundamental mode.

Figure 5 displays the spatial distribution of perturbations vr,
vz, and PT1 corresponding to the fundamental thermal mode with
n ¼ 1. We see that the velocity field is dramatically polarized
along the cylinder axis and that the eigenfunctions are very sim-
ilar to those obtained for the slow mode (compare with Fig. 3,

top). On the other hand, the damping time (�D ¼ 1/s) is plotted in
Figure 6 as a function of kz. One can see that this mode is very
quickly attenuated and that radiative losses from the prominence
plasma are responsible for the attenuation in the observed wave-
length range, whereas prominence thermal conduction is only rel-
evant for large kz. Coronal mechanisms have a negligible effect.

3.2. Effect of Steady Flow

Hereafter, we include a steady mass flow in the model in order
to assess its influence on the oscillatory modes described above.
With no loss of generality, we assume no flow in the external me-
dium, i.e., Uc ¼ 0. Moreover, the internal flow is assumed flow-
ing toward the positive z-direction, i.e., Up > 0. Note that any
other possible configuration can be obtained by means of a suit-
able election of the reference frame.

3.2.1. Phase Speed Shift

The reader is referred to Terra-Homem et al. (2003) for a de-
tailed description of themodification of the phase speed diagram

Fig. 4.—Period (left), damping time (middle), and ratio of the damping time to the period (right) vs. the longitudinal wavenumber for the fundamental oscillatorymodes in
the absence of flow. Top and bottom panels correspond to the slow and fast kink modes, respectively. Solid lines are the solutions of the present, cylindrical equilibrium,
whereas dotted lines are the results of a longitudinal slab (Paper I ). Both lines overlap in the top panels. Shaded zones indicate the range of observed wavelengths.

Fig. 5.—Same as Fig. 3, but for the fundamental thermal mode with kza ¼ 1.
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due to the presence of flow. In short, the symmetry between par-
allel (!R > 0) and antiparallel (!R < 0) waves is broken by the
flow. Phase speeds of slow and fast parallel waves are now in
the ranges ½Re(c̃Tp )þUp;Re(�̃p)þ Up� and vA;p þ Up; vA;c

� �
, re-

spectively. On the other hand, phase speeds of slow and fast an-
tiparallel waves lie now within the regions ½�Re(�̃p)þ Up;
�Re(c̃Tp )þ Up� and �vA;c;�vA;p þ Up

� �
, respectively. For a

flow velocity larger than the internal nonadiabatic sound speed
(see Carbonell et al. 2008), the phase speed of antiparallel slow
waves is dragged to positive values, and so they become parallel
waves in practice. These solutionswere called backwardwaves by
Nakariakov & Roberts (1995). An equivalent phenomenon can
also occur for fast waves for a super-Alfvénic flow, i.e.,Up > vA;p.
Note that super-Alfvénic flows seem to be unrealistic in light of
observations.

Regarding thermal modes, the real part of their frequency now
acquires a positive value, and their phase speed is equal to the flow
velocity. Thus, thermal modes behave as parallel-propagating
waves with respect to the static, external reference frame. Al-
though this result could be relevant for the observational point
of view, since thermal modes might be detected as propagating
waves in filament threads (Lin et al. 2007), their extremely quick
attenuation makes them undetectable in practice.

Fig. 6.—Damping time vs. the longitudinal wavenumber for the fundamental
thermal mode. Different line styles represent the omitted nonadiabatic mechanism:
all mechanisms considered (solid line), prominence conduction eliminated (dotted
line), prominence radiation eliminated (dashed line), coronal conduction eliminated
(dot-dashed line), and coronal radiation eliminated (triple-dotYdashed line). The
vertical line with symbols inside the shaded zone indicates the range of kz in which
the thermalmode does not exist as a nonleaky solution (seeAppendix B for details).

Fig. 7.—Period (left), damping time (middle), and ratio of the damping time to the period (right) vs. the flow velocity for the fundamental oscillatorymodes with kza ¼
10�2. Top, middle, and bottom panels correspond to the slow, fast kink, and thermal modes, respectively. Different line styles represent parallel waves (solid lines), anti-
parallel waves (dashed lines), and solutions in the absence of flow (dotted lines).
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3.2.2. Influence on the Damping Time

Regarding the effect of the flow on the damping time of oscil-
lations, we plot in Figure 7 the dependence of the period, damp-
ing time, and their ratio as a function of the flow velocity. The
longitudinal wavenumber has been fixed to kza ¼ 10�2, which
corresponds to a value within the observed range of wavelengths.
The flow velocity is considered in the range 0 km s�1 < Up <
30 km s�1, which corresponds to the observed flow speeds in
quiescent prominences. In agreement with Carbonell et al. (2008),
the antiparallel slow wave becomes a backward wave for Up �
8:5 km s�1, which corresponds to the nonadiabatic sound speed
(eq. [8]). This causes the period of this solution to grow dramati-
cally near this flow velocity. However, the period of both parallel
and antiparallel fast kink waves is only slightly modified with re-
spect to the solution in the absence of flow, and the thermal wave

now has a finite period, which is comparable to that of the parallel
slow mode.
On the other hand, we see that the damping time of both slow

and thermal modes is not affected by the presence of flow, as in
Carbonell et al. (2008). Nevertheless, the attenuation of the fast
kink mode in the present case is influenced by the flow. The
larger the flow velocity, the more attenuated the parallel fast kink
wave, whereas the opposite occurs for the antiparallel solution.
This behavior can be understood with the help of Figure 8, which
displays the phase speed of the parallel fast kink mode and its
damping time for a wider range of the flow velocity and for dif-
ferent values of the thread density. We see that for a specific value
of the flow velocity the parallel fast mode phase speed coincides
with that of the external leaky slow modes, which is in the range
Re(c̃T ;c);Re(�̃c)
� �

. Then, for this flow velocity, the parallel fast
kink wave couples with the external slow modes by means of a

Fig. 8.—(a) Phase speed and (b) damping time vs. the flow velocity for the parallel fast kink mode with kza ¼ 10�2. Different line styles represent different values
of the prominence density, �p ¼ 5 ; 10�11 (solid lines), 4 ; 10�11 (dotted lines), 3 ; 10�11 (dashed lines), and 6 ; 10�11 kg m�3 (dot-dashed lines). The shaded zone in
(a) shows the region of phase speeds corresponding to external leaky slow modes.

Fig. 9.—Internal nonadiabatic sound speed (in units of the internal adiabatic sound speed) vs. the longitudinal wavenumber. (a) Results for different flow velocities,
Up ¼ 0 (solid line), 5 (dotted line), 10 (dashed line), 20 (dot-dashed line), and 30 km s�1 (dot-dot-dashed line). (b) Result for Up ¼ 10 km s�1 considering all non-
adiabatic mechanisms (dashed line), neglecting prominence conduction (asterisks), and neglecting prominence radiation (diamonds). The shaded zones in both panels
indicate the range of observed wavelengths.
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‘‘weak’’ coupling, according to the nomenclature from Soler et al.
(2008). This coupling causes aminimum in the damping time as is
clearly seen in Figure 8b. On the other hand, a similar argument
can be adopted to explain the increase of the antiparallel fastmode
damping time with Up, since the phase speed of the antiparallel
wave moves away to the phase speed region of (antiparallel) ex-
ternal slowmodes, i.e., �Re(�̃c);�Re(c̃T ;c)

� �
, as the flow speed

increases. For parallel waves, the flow velocity for which the
coupling takes place depends on the thread density in such a way
that the smaller the density, the smaller the flow velocity. Hence,
the minimum of the damping time moves to smaller values of
the flow velocity for a small thread density. Nevertheless, this
minimum takes place at a flow velocity of about 40 km s�1 for a
representative thread density of �p ¼ 5 ; 10�11 km s�1, which is
a larger velocity than those observed by at least a factor of 2.
Moreover, even the smallest damping time is several orders of
magnitude larger than the lifetimes of prominence threads, mean-
ing that the effect of the flow is not enough to obtain a reasonable
and realistic attenuation for kink modes.

3.2.3. Nonadiabatic Sound Speed

Next, we study the influence of the steady mass flow on the
value of the internal nonadiabatic sound speed. Since the internal
nonadiabatic sound speed corresponds to the value of the flow ve-
locity for which antiparallel slowwaves become backwardwaves,
it is interesting to assess its behavior of as a function of the wave-
number and the flow velocity. We perform a study similar to that
by Carbonell et al. (2008) and compute the internal nonadiabatic
sound speed as a function of kz for different values of the flow
velocity (Fig. 9). The dependence on kz is the one explained by
Carbonell et al. (2008) and presents three different plateaus. For
large kz the dominant mechanism is prominence thermal conduc-
tion, and the nonadiabatic sound speed coincides with the iso-
thermal value. For intermediate kz the nonadiabatic sound speed
does not depend on nonideal effects, and its value corresponds to
the adiabatic sound speed. For small kz, including the observed
region of wavelengths, the nonadiabatic sound speed becomes
slightly smaller than the isothermal one, and prominence radia-
tion is the governing mechanism. On the other hand, one can see
that the effect of the flow is to widen the range of kz in which the
nonadiabatic sound speed matches the adiabatic value: the larger
the flow, the wider the range. For large flow velocities, the tran-
sition between the intermediate-kz (adiabatic) and the small-kz
plateaus takes place within the observed wavelength region.

4. CONCLUSIONS

In the present work we have studied the combined effect of
both nonadiabatic effects and a steady mass flow on the damping
of oscillations supported by an individual, cylindrical, and homo-
geneous prominence thread. Our main conclusions are summa-
rized as follows.

1. In the absence of flow, slow modes are efficiently damped
by nonadiabatic effects, while fast kink waves are in practice non-
attenuated, since their damping times are much larger than typical
lifetimes of filament threads.

2. The damping by nonadiabatic mechanisms of transverse,
kink oscillations is much less efficient in the present, cylindrical
case than in the slab geometry.

3. The thermal wave is a nonpropagating solution in the ab-
sence of flow, and its attenuation by radiative losses is extremely
quick.

4. The presence of flow breaks the symmetry between waves
propagating parallel or antiparallel to the flow. For a flow veloc-
ity larger than the internal nonadiabatic sound speed, antiparallel
slow waves become backward waves.

5. In the presence of flow, the thermal mode behaves as a wave
that propagates parallel to the flow, and its motions are mainly
polarized along the longitudinal direction. Nevertheless, this os-
cillatory behavior cannot be likely observed in practice due to its
quick damping.

6. The damping time of both slow and thermal waves is not
affected by the flow. On the contrary, for realistic values of the
flow velocity, the larger the flow, the larger the attenuation of
parallel fast kink waves, whereas the contrary occurs for anti-
parallel fast kink solutions. Nevertheless, this effect is not enough
to obtain realistic damping times in the case of fast kink modes.

In agreement with previous studies, the consideration of non-
adiabatic mechanisms provides damping times that are compat-
ible with observations in the case of slow modes, which can be
related to long-period oscillations. Themain effect of the flow on
these solutions is that only propagation parallel to the flow is al-
lowed for strong enough flows. The negligible attenuation of fast
kinkmodes in the absence of flow is slightly improved in the case
of parallel waves when flow is present, the damping time being
diminished by an order of magnitude for realistic flow velocities.
However, the damping time is still several orders of magnitude
larger than the lifetimes of filament threads, and therefore, neither
nonadiabatic mechanisms nor mass flows provide reasonable fast
mode damping times applicable to prominences. For this reason,
it is likely that another damping mechanism is responsible for a
more efficient attenuation of transverse thread motions, resonant
absorption being a good candidate which should be investigated.
On the other hand, the investigation of the effect of flow, and in
particular counterstreaming flows, on the damping of collective
transverse oscillations of cylindrical multithread models is inter-
esting in light of the present results and could be the subject of
future research.
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APPENDIX A

EXPRESSIONS FOR THE PERTURBATIONS

Expressions for the perturbations as functions of the divergence of the perturbed velocity, � ¼ := v1, and its derivative are given as
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APPENDIX B

REGION OF NONEXISTENCE OF THE THERMAL MODE

Following a similar argument to that used by van der Linden &Goossens (1991), let us consider that the thermal mode frequency in
the absence of flow is given by ! ¼ is, with s a real quantity. So, from equation (16) one obtains

m2
0 ¼ �

s2 þ k 2
z v

2
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Quantities A and B are the following third-order polynomials in s,

A ¼ s3�N 2s
2 þ k 2

z c
2
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The condition m 2
p > 0 implies that sgn(Ap) 6¼ sgn(Bp). The solutions of A ¼ 0 are a pair of complex conjugate roots and a real root,

while the same stands for the roots of B ¼ 0. Then, the condition m2
p > 0 is only verified in the region between the real roots of Ap ¼ 0

and Bp ¼ 0, namely, sAp
and sBp

, respectively, which are very close to each other. On the other hand, the external evanescent requirement
(m 2

c < 0) is verified outside the region between the real solutions of Ac ¼ 0 and Bc ¼ 0, namely, sAc
and sBc

, respectively. By computing
these real roots (Fig. 10), one obtains that both regions do not overlap except for 5:04 ; 10�3 P kzaP 5:10 ; 10�3. Thus, outside this
extremely narrow overlapping region, the thermal mode exists with a damping rate in the range sBp

< s < sAp
, where both conditions

m2
p > 0 and m2

c < 0 are satisfied.
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