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Observations show that small-amplitude prominence oscillations are usually damped after a few periods.
This phenomenon has been theoretically investigated in terms of non-ideal magnetoacoustic waves, non-
adiabatic effects being the best candidates to explain the damping in the case of slow modes. We study
the attenuation of non-adiabatic magnetoacoustic waves in a slab prominence embedded in the coronal
medium. We assume an equilibrium configuration with a transverse magnetic field to the slab axis and
investigate wave damping by thermal conduction and radiative losses. The magnetohydrodynamic equa-
tions are considered in their linearised form and terms representing thermal conduction, radiation and
heating are included in the energy equation. The differential equations that govern linear slow and fast
modes are numerically solved to obtain the complex oscillatory frequency and the corresponding eigen-
functions. We find that coronal thermal conduction and radiative losses from the prominence plasma
reveal as the most relevant damping mechanisms. Both mechanisms govern together the attenuation
of hybrid modes, whereas prominence radiation is responsible for the damping of internal modes and
coronal conduction essentially dominates the attenuation of external modes. In addition, the energy
transfer between the prominence and the corona caused by thermal conduction has a noticeable effect
on the wave stability, radiative losses from the prominence plasma being of paramount importance for
the thermal stability of fast modes. We conclude that slow modes are efficiently damped, with damping
times compatible with observations. On the contrary, fast modes are less attenuated by non-adiabatic
effects and their damping times are several orders of magnitude larger than those observed. The presence
of the corona causes a decrease of the damping times with respect to those of an isolated prominence
slab, but its effect is still insufficient to obtain damping times of the order of the period in the case of fast
modes.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Solar prominences are large-scale coronal magnetic structures
whose material, cooler and denser than the typical coronal
medium, is in plasma state. Prominences are supported against
gravity by the coronal magnetic field, which also maintains the
prominence material thermally isolated from the corona. Small-
amplitude oscillations in solar prominences were detected almost
40 years ago (Harvey, 1969). These oscillatory motions seem to be
of local nature and their velocity amplitude is typically less than
2–3 km s�1. Observations have also allowed to measure a wide
range of periods between 30 s (Balthasar et al., 1993) and 12 h
(Foullon et al., 2004). More recently, some high-resolution obser-
vations of prominence oscillations by the Hinode/SOT instrument
have been reported (Okamoto et al., 2007; Berger, 2008; Ofman
ll rights reserved.
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and Wang, 2008). From the theoretical point of view, the oscilla-
tions have been interpreted by means of the magnetoacoustic
eigenmodes supported by the prominence body. A recent example
is the work by Terradas et al. (2008) in which the observations of
Okamoto et al. (2007) are interpreted as fast kink waves. The read-
er is referred to Oliver and Ballester (2002), Ballester (2006), and
Banerjee et al. (2007) for extensive reviews of both observational
and theoretical studies.

Evidence of the attenuation of small-amplitude prominence
oscillations has been reported in some works (Molowny-Horas
et al., 1999; Terradas et al., 2002; Lin, 2004). A typical feature of
these observations is that the oscillatory motions disappear after
a few periods, hence they are quickly damped by one or several
mechanisms. The theoretical investigation of this phenomenon in
terms of magnetohydrodynamic (MHD) waves has been broached
by some authors by removing the ideal assumption and by includ-
ing dissipative terms in the basic equations. Non-adiabatic effects
appear to be very efficient damping mechanisms and have been
investigated with the help of simple prominence models (Ballai,
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Fig. 1. Sketch of the equilibrium. The dark region represents the prominence slab
while the light region corresponds to the corona. The photospheric walls are the
two hatched areas on both sides of the corona.
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2003; Carbonell et al., 2004; Carbonell et al., 2006; Terradas et al.,
2005). Nevertheless, other damping mechanisms have been also
proposed, like wave leakage (Schutgens, 1997a; Schutgens,
1997b; Schutgens and Tóth, 1999), dissipation by ion–neutral col-
lisions (Forteza et al., 2007) and resonant absorption (Arregui et al.,
2008).

In a previous work (Soler et al., 2007, hereafter Paper I), we have
studied for the first time the wave attenuation by non-adiabatic ef-
fects of a prominence slab embedded in the corona. In that work
the magnetic field is parallel to the slab axis and it is found that
the corona has no influence on the internal slow modes, but it is
of paramount importance to explain the damping of fast modes,
which are more attenuated than in simple models that do not con-
sider the coronal medium. Following the path initiated in Paper I,
here we investigate the wave damping due to non-adiabatic mech-
anisms (radiative losses and thermal conduction) in an equilibrium
made of a prominence slab embedded in a coronal medium, but
now we consider a magnetic field transverse to the slab axis. This
configuration and that studied in Paper I correspond to limit cases,
since measurements with Zeeman and Hanle effects indicate that
the magnetic field lines are skewed to the long axis of promi-
nences. On average, the prominence axis and the magnetic field
form an angle of about 20�. Thus, the skewed case is relegated to
a future investigation.

The equilibrium configuration assumed here was analysed in
detail by Joarder and Roberts (1992) and Oliver et al. (1993) in
the case of ideal, adiabatic perturbations. The main difference be-
tween both works is in the treatment of gravity. Joarder and
Roberts (1992) neglected the effect of gravity and so straight field
lines were considered. On the other hand, Oliver et al. (1993) took
gravity into account and assumed curved field lines according to
the Kippenhahn and Schülter (1957) model modified to include
the surrounding coronal plasma (Poland and Anzer, 1971). Despite
this difference, both studies agree in establishing a distinction be-
tween different normal modes depending on the dominant med-
ium supporting the oscillation. Hence, internal modes are
essentially supported by the prominence slab whereas external
modes arise from the presence of the corona. In addition, hybrid
(or string) modes appear due to the combined effect of both
media.

The investigation of the thermal attenuation of oscillations sup-
ported by such equilibrium is unsettled to date and, indeed, this is
the main motivation for the present study. However, two works
(Terradas et al., 2001; Terradas et al., 2005) studied the wave
damping in an isolated prominence slab. Terradas et al. (2001) con-
sidered radiative losses given by the Newtonian law of cooling as
damping mechanism and studied the attenuation in the
Kippenhahn and Schülter (1957) and Menzel (1951) prominence
models. Subsequently, Terradas et al. (2005) considered a more
complete energy equation including optically thin radiation, plas-
ma heating and parallel thermal conduction, and assumed straight
field lines since gravity was neglected. The main conclusion of both
works is that non-adiabatic mechanisms are only efficient in
damping slow modes whereas fast modes remain almost un-
damped. Nevertheless, in the light of the results of Paper I, the
presence of the coronal medium can have an important repercus-
sion on the wave damping. The investigation of this effect is the
main aim of the present work. Therefore, we extend here the work
of Terradas et al. (2005) by considering the presence of the corona
and neglect the effect of gravity as in Joarder and Roberts (1992)
for simplicity.

This paper is organised as follows. Section 2 contains a descrip-
tion of the equilibrium configuration and the basic equations
which govern non-adiabatic magnetoacoustic waves. Then, the re-
sults of this work are extensively discussed in Section 3. Finally,
our conclusions are given in Section 4.
2. Equilibrium and basic equations

The equilibrium configuration (see Fig. 1) is made of a homoge-
neous plasma slab with prominence conditions (density qp and
temperature Tp), whose axis is orientated along the z-direction,
embedded in a coronal environment (density qc and temperature
Tc). The system is bounded in the x-direction due to the presence
of two rigid walls representing the solar photosphere, but it is
unlimited in the y- and z-directions. The width of the prominence
slab is 2xp and the total width of the system is 2xc. The magnetic
field is transverse to the prominence slab,~B0 ¼ B0êx, with B0 every-
where constant.

In order to find the basic equations that govern non-adiabatic
magnetoacoustic waves we follow the same process as in Terradas
et al. (2005). We consider the usual MHD equations (Eqs. (1)–(6) of
Terradas et al., 2005) in which non-adiabatic terms have been in-
cluded in the energy equation,

Dp
Dt
� cp

q
Dq
Dt
þ ðc� 1Þ½qLðq; TÞ � r � ð~j � rTÞ� ¼ 0; ð1Þ

where p, q and T are the gas pressure, density and temperature,
respectively. The quantity c is the adiabatic ratio, here taken
c ¼ 5=3. The non-ideal terms in Eq. (1) are explained in detail in
Carbonell et al. (2004). Thermal conduction is represented by
r � ð~j � rTÞ, where ~j is the conductivity tensor which in coronal
and prominence applications is usually approximated by its parallel
component to the magnetic field, jk ¼ 10�11T5=2 Wm�1 K�1. Radia-
tive losses and heating are evaluated together through the heat-loss
function, Lðq; TÞ ¼ v�qTa � hqaTb, where radiation is parametrised
with v� and a (see Table I of Paper I) and the heating scenario is
given by exponents a and b (Rosner et al., 1978; Dahlburg and
Mariska, 1988).

Regarding our equilibrium configuration, the reader must be
aware that, although there have been some attempts to construct
a self-consistent prominence model including both magnetostatics
and thermodynamics (e.g. Milne et al., 1979; Low and Wu, 1981;
Anzer and Heinzel, 1999), to date this task remains to be done.
Here, we consider a simplified prominence–corona configuration,
but it includes the two basic ingredients observed in real promi-
nences. First, the existence of a steep temperature gradient be-
tween the prominence and the corona and, second, the apparent
thermal isolation of the prominence material from the much
hotter corona. The first point is addressed by considering that the



240 R. Soler et al. / New Astronomy 14 (2009) 238–248
temperature profile is a step function, and so the prominence–
corona transition region (PCTR) has not been considered. This
choice is supported by results of previous works (e.g. Oliver and
Ballester, 1996) which showed that the PCTR has a minor influence
on the prominence oscillatory modes. On the other hand, to repre-
sent the thermal isolation we have neglected the heat flux due to
thermal conduction at the boundary between the prominence
and the corona. Therefore, we impose that both the prominence
and the corona are isothermal and thermally isolated, and so radi-
ative losses and heating are locally balanced, i.e. Lðq0; T0Þ ¼ 0,
where q0 and T0 are the local equilibrium density and temperature,
respectively.

Assuming that the plasma is at rest in the equilibrium state (i.e.
no flux of material) and considering small perturbations, we find
the linearised version of the MHD equations (Eqs. (10)–(15) of Ter-
radas et al. (2005)). According to the geometry of our model, we as-
sume perturbations of the form f1ðxÞ exp iðxt þ kyyþ kzzÞ and
exclude Alfvén waves from this analysis by considering only mo-
tions and propagation in the xz-plane (vy ¼ 0, ky ¼ 0). Now we
combine the resultant expressions and eliminate all the perturbed
quantities in favour of the velocity perturbations, vx and vz, and the
temperature perturbation, T1. By this process, we obtain three cou-
pled ordinary differential equations:

c2
s

d2vx

dx2 þ cx2vx þ ikzc2
s

dvz

dx
� ixc2

s

T0

dT1

dx
¼ 0; ð2Þ

v2
A

d2vz

dx2 þ x2 � k2
z v2

A þ
c2

s

c

� �� �
vz þ ikz

c2
s

c
dvx

dx
þxkz

c2
s

c
T1

T0
¼ 0; ð3Þ

jk
1
p0

d2T1

dx2 � xT þ
ix

c� 1

� �
T1

T0

� 1þ ixq

x

� �
dvx

dx
� ikz 1þ ixq

x

� �
vz ¼ 0; ð4Þ

where c2
s ¼

cp0
q0

is the adiabatic sound speed squared whereas
v2

A ¼
B2

0
lq0

is the Alfvén speed squared. p0 and B0 denote the equilib-
rium gas pressure and magnetic field strength, respectively, and l
is the magnetic permittivity (l ¼ 4p10�7 in MKS units). Quantities
xT and xq are defined as follows:

xq �
q0

p0
ðLþ q0LqÞ; xT �

q0

p0
T0LT ;

Lq and LT being the partial derivatives of the heat-loss function with
respect to density and temperature, respectively,

Lq �
oL
oq

� �
T
; LT �

oL
oT

� �
q
:

Eqs. (2)–(4) govern fast and slow magnetoacoustic waves together
with the thermal or condensation mode. In this work we do not
study the thermal wave since we pay our attention to the magne-
toacoustic modes. Terradas et al. (2005) found an approximate ana-
lytical solution of Eqs. (2)–(4) by neglecting thermal conduction, a
valid assumption in prominence plasmas. However, thermal con-
duction has an important role in coronal conditions and cannot be
neglected in order to perform a realistic description of the oscilla-
tory modes supported by our equilibrium configuration. Hence,
we solve the full set of Eqs. (2)–(4) using the numerical code PDE2D
(Sewell, 2003) based on finite elements (see Terradas et al., 2005,
for an explanation of the method). The jump conditions at the inter-
face between the prominence and the corona are automatically
well-treated by the code. These jump conditions are (Goedbloed
and Poedts, 2004)

½~v� ¼~0; ½~B� ¼~0; ½p� ¼ 0; ð5Þ

where~v and~B are the perturbed velocity and the magnetic field vec-
tors, respectively. For a complete closure of the system we need to
supply a physically consistent set of boundary conditions for the
perturbations at the photospheric walls, x ¼ �xc. In this work, we
consider two different sets of boundary conditions,

vx ¼ vz ¼ T1 ¼ 0; at x ¼ �xc; ð6Þ

and

vx ¼ vz ¼ T 01 ¼ 0; at x ¼ �xc; ð7Þ

where 0 indicates derivative with respect to x. Both sets consider
line-tied conditions for the velocity perturbations, i.e. the distur-
bances are unable to perturb the dense photospheric plasma which
acts as perfectly rigid wall. On the other hand, sets (6) and (7) differ
by the condition for T1, which has different physical implications.
Set (6) assumes that the perturbation to the temperature vanishes
at x ¼ �xc and this means that the photospheric walls are taken
as isothermal. On the contrary, set (7) considers a zero-temperature
gradient for the perturbation between the corona and the photo-
sphere, so no perturbed heat flux is allowed at the boundaries. From
our point of view, set (6) makes more physical sense than set (7),
since one can expect that the much denser photospheric plasma
can instantaneously radiate away any incoming perturbed heat flux
from the corona. However, set (7) imposes that there is no heat ex-
change between the corona and the photosphere, although the tem-
perature perturbation can have a non-zero value at the walls.
Regarding these boundary conditions, Cargill and Hood (1989) per-
formed a study of the thermal stability of wave and thermal modes
in a Cartesian coronal slab and pointed out that the solutions com-
puted by assuming the boundary conditions given by set (6) are
more thermally stable than those obtained for boundary conditions
of set (7).

For a fixed real kz, the numerical solution of Eqs. (2)–(4) pro-
vides with a complex frequency, x ¼ xR þ ixI. In the ideal, adia-
batic case xI ¼ 0 and therefore the solutions of Eqs. (2)–(4) are
those of Joarder and Roberts (1992). Using the real and imaginary
parts of the frequency, we can compute the oscillatory period, P,
the damping time, sD, and the ratio of both quantities,

P ¼ 2p
xR

; sD ¼
1
xI

;
sD

P
¼ 1

2p
xR

xI
: ð8Þ
3. Results

Unless otherwise stated, the following equilibrium parameters
are considered in all computations: Tp ¼ 8000 K, q p ¼ 5�
10�11 kg m�3, Tc ¼ 106 K, q c ¼ 2:5� 10�13 kg m�3, B0 ¼ 5 G, xp ¼
3000 km and xc ¼ 10xp. The coronal density is computed by fixing
the coronal temperature and imposing pressure continuity across
the interfaces. In addition, we assume an optically thin prominence
plasma (regime Prominence (1) of Paper I) and a constant heating
per unit volume (a ¼ b ¼ 0). In all the following expressions, sub-
script 0 indicates local equilibrium values, while subscripts p and
c denote quantities explicitly computed with prominence and
coronal parameters, respectively.

3.1. Dispersion diagram and wave modes

Solutions of Eqs. (2)–(4) can be grouped in internal, external
and hybrid modes. Although there is an infinite number of har-
monics for internal and external modes, only two hybrid modes
are possible: the hybrid slow mode and the hybrid fast mode (this
nomenclature is taken from Oliver et al., 1993). Fig. 2 shows the
dimensionless real part of the frequency versus kzxp for the funda-
mental symmetric oscillatory modes (i.e. solutions with vx even
with respect x ¼ 0) and some of their harmonics, where we have
assumed the boundary conditions given by Eq. (6). A similar



Fig. 2. Dimensionless real part of the frequency versus kzxp for the oscillatory
symmetric modes: hybrid slow (solid line at the bottom), fundamental internal
slow and first harmonics (dotted lines), fundamental external slow and first
harmonics (dashed lines), fundamental internal fast and first harmonic (dash-
dotted lines) and fundamental external fast (three dot-dashed line at the upper left
corner).

R. Soler et al. / New Astronomy 14 (2009) 238–248 241
diagram can be obtained for the antisymmetric modes (i.e. solu-
tions with vx odd with respect x ¼ 0) and for the other set of
boundary conditions (Eq. (7)).

The behaviour of the real part of the frequency is the same as
that explained by Oliver et al. (1993). The value of xR for both
internal and external slow modes and for the hybrid slow mode
shows a very weak dependence on kz since almost horizontal lines
are seen in Fig. 2. On the contrary, both internal and external fast
modes show a quasi-parabolic dependence on kz (this is also appli-
cable to the hybrid fast mode, present in the dispersion diagram for
antisymmetric modes). The reader is referred to Oliver et al. (1993)
for more extensive details about the behaviour of xR.

Next, we focus on the fundamental modes and their eigenfunc-
tions vx, vz and T1 are displayed in Fig. 3 for kzxp ¼ 1 and for both
sets of boundary conditions. The spatial structure of the distur-
bances vx and vz is the one shown by Oliver et al. (1993). Hence,
non-adiabatic effects do not modify the spatial behaviour of veloc-
ity perturbations. Internal modes produce large plasma displace-
ments inside the slab, external modes achieve large amplitudes
in the corona and the amplitude of hybrid modes is of the same or-
der in both media. It is worth to mention that the hybrid fast mode
can be considered as an internal-like mode for large kzxp since the
amplitude of its perturbations in the corona decreases as kzxp in-
creases. Regarding the temperature perturbation, it is larger for
the slow modes than for the fast modes and, in general, is larger
in the prominence than in the corona. Finally, the differences be-
tween the eigenfunctions for the two sets of boundary conditions
(Eqs. (6) and (7)) are only relevant for the hybrid slow mode.

From the observational point of view, internal and hybrid
modes could be more easily observed than external modes by
instruments focusing on prominences, since the amplitude of the
latter ones is very small in the prominence body. For this reason,
the results corresponding to internal and hybrid modes are the
most interesting for prominence seismology. However, here we
study the three kinds of solutions in order to perform a complete
description of the fundamental wave modes supported by the
equilibrium configuration.

3.2. Mode coupling

Oliver et al. (1993) showed that avoided crossings occur in the
dispersion diagram when two solutions couple and interchange
their magnetoacoustic properties. Nevertheless, no avoided cross-
ings seem to take place in our dispersion diagram (Fig. 2) since
the curves of xR for the internal fast modes and for the slow modes
cut each other. This fact can be understood by considering that in
the present, non-adiabatic case the complete dispersion diagram is
in a three-dimensional space because the frequency has an imagi-
nary part. So, Fig. 2 actually corresponds to a projection of the com-
plete three-dimensional dispersion diagram on the kzxR-plane.

Upon exploring the complete dispersion diagram, we have
found that three different couplings can take place:

(1) If the imaginary parts of the frequency of the coupling
modes differ by several orders of magnitude, there is no
avoided crossing between the real parts. Hence, the coupling
between modes is ‘‘weak” and only becomes apparent by
means of a slight mutual approach of the imaginary parts
of x (see Fig. 4, left panel).

(2) If both imaginary parts of the frequency have a similar value,
the real parts show an avoided crossing and so a ‘‘strong”
coupling takes place (see Fig. 4, mid panel).

(3) In very peculiar cases, an ‘‘anomalous” coupling takes place
when the imaginary parts of x of the two coupling modes
repel each other (see Fig. 4, right panel). This situation has
important effects on the wave stability, as we explain in Sec-
tion 3.5.

The behaviour of the mode coupling was previously described
by Terradas et al. (2001) in the cases that we call ‘‘weak” and
‘‘strong” couplings (compare our Fig. 4 with Fig. 12 of Terradas et
al. (2001)).

3.3. Periods and damping times

Hereafter we restrict ourselves to the fundamental modes and
compute the oscillatory period, P, the damping time, sD, and the ra-
tio of the damping time to the period as functions of the dimen-
sionless wavenumber, kzxp. We consider values for kzxp between
0.01 and 3, which correspond to wavelengths between
5� 103 km and 105 km, approximately. These values cover the
range of typically observed wavelengths in prominence oscillations
(Oliver and Ballester, 2002). The results of the computations are
displayed in Fig. 5 considering the two sets of boundary conditions
(Eqs. (6) and (7)).

The periods obtained here agree with those provided and com-
mented by Joarder and Roberts (1992) and Oliver et al. (1993),
therefore we turn our attention to the damping times. Regarding
slow modes, we see that they are strongly damped, with values
of sD=P close to 1 for the three modes. However, fast modes are
much less attenuated and the obtained values of sD=P are much
larger than those observed. This fact involves an important differ-
ence with the results of Paper I, in which fast waves were effi-
ciently attenuated for some values of the wavenumber. Such as
happens with the period, the damping time of slow modes is al-
most independent of kz. On the contrary, fast modes are less atten-
uated for small kz than for large kz. This evidence can be
understood by means of the following arguments. Considering
kz ¼ 0 then Eqs. (2)–(4) become

c2
s

d2vx

dx2 þ cx2vx �
ixc2

s

T0

dT1

dx
¼ 0; ð9Þ

v2
A

d2vz

dx2 þx2vz ¼ 0; ð10Þ

jk
1
p0

d2T1

dx2 � xT þ
ix

c� 1

� �
T1

T0
� 1þ ixq

x

� �
dvx

dx
¼ 0: ð11Þ

Eqs. (9) and (11) are still coupled and govern slow and thermal
waves, which are affected by non-adiabatic mechanisms through



Fig. 3. Modulus of the eigenfunctions vx , vz and T1 (in arbitrary units) versus the dimensionless distance to the slab axis corresponding to the fundamental oscillatory modes
for kzxp ¼ 1. The solid line corresponds to the boundary conditions vx ¼ vz ¼ T 01 ¼ 0 at x ¼ �xc, while the dotted line corresponds to the boundary conditions vx ¼ vz ¼ T1 ¼ 0
at x ¼ �xc. The shaded region shows the location of the prominence slab.

Fig. 4. Three-dimensional dispersion diagrams (solid lines) close to a coupling between a fast mode and a slow mode. Dashed and dotted lines are the projections of the
dispersion curves on the horizontal and vertical planes. The left-hand side panel presents a ‘‘weak” coupling, the middle panel shows a ‘‘strong” coupling and the right-hand
side panel displays an ‘‘anomalous” coupling.
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Fig. 5. Period (left), damping time (centre) and ratio of the damping time to the period (right) versus kzxp for the fundamental oscillatory modes. The solid line corresponds to
the boundary conditions vx ¼ vz ¼ T 01 ¼ 0, while the dotted line corresponds to the boundary conditions vx ¼ vz ¼ T1 ¼ 0.
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the terms with jk, xT and xq in Eq. (11). On the contrary, Eq. (10) is
now decoupled from the rest and governs fast modes alone, which
become pure Alfvén waves and are not affected by non-adiabatic
terms. Thus, for kz ! 0 fast waves tend to the ideal, undamped
behaviour. When kz is increased, fast modes are more affected by
acoustic effects and their damping time decreases and stabilises.
The little peaks shown in the bottom panels of Fig. 5, corresponding
to the external fast mode, are in fact the result of ‘‘strong” couplings
with slow mode harmonics. The differences arising from the differ-
ent boundary conditions are only of importance for the hybrid slow
mode, as we indicated in Section 3.1. We see that the boundary con-
dition T 01 ¼ 0 produces a substantially stronger damping for the hy-
brid slow mode than the condition T1 ¼ 0.

Finally, an approximate value to the frequency of internal and
external slow modes can be obtained by considering the approxi-
mation given in Appendix B of Paper I, namely
x 	 Kkx; ð12Þ

where kx is the wavenumber in the field direction and K is the mod-
ified sound speed due to the presence of non-adiabatic effects, de-
fined in Paper I as follows:

K2 � c2
s

c

c� 1ð Þ T0
p0

jkk
2
x þxT �xq

� �
þ icx

ðc� 1Þ T0
p0

jkk
2
x þxT

� �
þ ix

2
4

3
5: ð13Þ

The value of kx is fixed by the equilibrium geometry, but for simplic-
ity we consider now the analytical approximations of the dominant
wavenumbers given by Joarder and Roberts (1992) in the adiabatic
case and for the long wavelength limit, namely

kx 	
p

2xp
ð14Þ
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for the fundamental internal mode, and

kx 	
p

xc � xp
ð15Þ

for the fundamental external mode. One must bear in mind that the
wavenumbers in the present, non-adiabatic case are complex quan-
tities, but we expect that their real part is similar to that in the adi-
abatic case, such as happens with the value of the frequency.
Applying now Eq. (12) to the internal slow mode, i.e. considering
prominence parameters in the expression for K (Eq. 13) and the
approximation for kx given by Eq. (14), one obtains P 	 23.50 min,
sD 	 73:05 min and sD=P 	 3:11. On the other hand, if the process
is repeated for the external slow mode, this gives P 	 6:20 min,
sD 	 6:70 min and sD=P 	 1:08. We see that these approximate val-
ues reasonably agree with those numerically obtained and repre-
sented in Fig. 5.

3.4. Importance of the damping mechanisms

In order to know which are the mechanisms responsible for the
damping of each mode, we now follow the same procedure as in
Paper I. We compare the damping time obtained when considering
all non-adiabatic terms (displayed in the middle column of Fig. 5)
with the results obtained when a specific mechanism is removed
from the energy equation (Eq. (1)). This analysis allows us to know
whether the omitted mechanism has a relevant effect on the
attenuation.

Before undertaking this investigation, we need to know if both
sets of boundary conditions are adequate in the absence of thermal
conduction. If one imposes jk ¼ 0 in Eq. (4) then T1 can be written
as function of vz and v0x,

T1 ¼ �
T0ð1þ ixq=xÞ
xT þ ix=ðc� 1Þ ðv

0
x þ ikzvzÞ; ð16Þ

which can be substituted into Eqs. (2) and (3) in order to obtain two
coupled differential equations involving the perturbed velocities
alone:

c2
s 1þ ix

x̂

� �
d2vx

dx2 þ cx2vx þ ikzc2
s 1þ ix

x̂

� �
dvz

dx
¼ 0; ð17Þ
a

d e

b

Fig. 6. Damping time versus kzxp for the fundamental modes: (a) hybrid slow, (b) inte
Different linestyles represent the omitted mechanism: all mechanisms considered (so
eliminated (dashed line), coronal conduction eliminated (dot-dashed line) and coronal
location of thermal instabilities (xI < 0) which appear if prominence radiation is omitte
v2
A

d2vz

dx2 þ x2 � k2
z v2

A þ
c2

s

c
1þ ix

x̂

� �� �� 	
vz þ ikz

� c2
s

c
1þ ix

x̂

� �
dvx

dx
¼ 0: ð18Þ

Here x̂ is introduced to simplify the notation,

x̂ � xT þ ix=ðc� 1Þ
1þ ixq=x

:

Now, the system formed by Eqs. (17) and (18) is fully determined by
assuming only boundary conditions for vx and vz. Hence, the behav-
iour of T1 at the boundaries cannot be imposed but is fixed by the
conditions over the velocity perturbations. If one takes vx ¼ vz ¼
T 01 ¼ 0 as boundary conditions, then Eq. (16) yields the constraint
v00x þ ikzv0z ¼ 0, which substituted in Eq. (17) automatically gives
the redundant condition vx ¼ 0. On the other hand, if one assumes
vx ¼ vz ¼ T1 ¼ 0 at x ¼ �xc, then Eq. (16) now imposes v0x ¼ 0 at
the boundaries. This last condition substituted in Eq. (18) gives
the extra condition v00z ¼ 0 over the system, which implies a new
restriction that is not generally satisfied by all solutions. Thus,
T 01 ¼ 0 reveals itself as the ‘‘natural” boundary condition for the
temperature perturbation when thermal conduction is neglected.
So, for the following investigation we restrict ourselves to the
boundary conditions vx ¼ vz ¼ T 01 ¼ 0 since the conditions
vx ¼ vz ¼ T1 ¼ 0 are not consistent with the differential equations
when thermal conduction is neglected.

The results of the computations are displayed in Fig. 6. Although
we have explored a wide range of values of kz, the plots are only
drawn again for 0:01 < kzxp < 3 since we have found that the
importance of the damping mechanisms does not show a strong
dependence on kz. Regarding slow modes, we clearly see that the
damping of the internal mode is dominated by the radiation from
the prominence plasma, as expected, while coronal conduction has
a minor effect. On the other hand, the hybrid and external modes
are affected by coronal conduction together with prominence radi-
ation. Both mechanisms have a similar influence on the hybrid
mode, while coronal conduction dominates the attenuation of the
external mode. This result for the hybrid mode is coherent with
the fact that its perturbations achieve large amplitudes both in
f

c

rnal slow, (c) external slow, (d) hybrid fast, (e) internal fast, and (f) external fast.
lid line), prominence conduction eliminated (dotted line), prominence radiation
radiation eliminated (three dot-dashed line). Arrows in panels d and e point the
d (dashed line).
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the prominence and the corona (see top row of Fig. 3), so one ex-
pects that the most relevant damping mechanisms of each medium
govern together the attenuation of the hybrid mode. However, the
result for the external mode is a priori surprising because its per-
turbations are very small in the prominence (see fifth row of
Fig. 3) and one expects that the prominence-related mechanisms
have a minor effect on its damping. The following discussion at-
tempts to explain why prominence radiation affects so much the
external mode.

The equilibrium configuration assumed in the present work im-
plies an additional complication with respect to the equilibrium
considered in Paper I, in which magnetic field lines were taken par-
allel to the interface between the prominence and the corona.
Hence, both media were thermally isolated in the model of Paper
I since there was no transfer of energy from one medium to the
other. However, in the present model thermal conduction connects
both media since field lines are transverse to the interfaces. This
fact allows heat transfer between the prominence and the corona.
So, some energy can flow along field lines and can be injected from
the corona into the prominence, where the energy is efficiently
radiated away by the plasma. In this way, the influence of promi-
nence radiation on the damping of the external slow mode, and
also the hybrid slow mode, is amplified by means of coronal ther-
mal conduction.

Next we turn our attention to the fast modes. At first sight, the
behaviour of the fast modes when a specific mechanism is re-
moved from the energy equation is absolutely different from that
seen in the case of the slow modes and needs more extensive
explanations. In Section 3.3, we commented that the damping time
of the fast modes is affected by the couplings with the slow modes.
Now, we see that the nature of these couplings (being ‘‘weak”,
‘‘strong” or ‘‘anomalous”) changes depending on which is the
non-adiabatic mechanism omitted in the energy equation. These
changes in the coupling nature cause the damping time of the hy-
brid fast mode and the internal fast mode to vary from small values
to very large values depending on the proximity to the couplings.
So, we see that the consideration of both prominence radiation
and coronal conduction has the effect of smoothing the curves of
sD.

In addition, the results corresponding to hybrid and internal
fast modes show the appearance of thermal instabilities in very
localised values of kzxp when prominence radiation is neglected
(dashed lines), since then the interactions between fast modes
and external slow modes leads to ‘‘anomalous” couplings. At these
couplings, the value of xI for the fast modes is pushed towards
negative values (see the right-hand panel of Fig. 4). Such a situa-
tion has very important repercussions on the wave behaviour
since for xI < 0 waves are amplified in time. The location of these
instabilities in panels d and e of Fig. 6 have been pointed by means
of arrows.
Fig. 7. Modulus of the eigenfunction T1 (in arbitrary units) versus the dimension-
less distance to the slab axis corresponding to the fundamental internal fast mode
for kzxp 	 0:3 if (a) all non-adiabatic mechanisms are considered, and (b) without
prominence radiation. The shaded region shows the location of the prominence
slab.
3.5. Wave instabilities

Wave instabilities discussed in Section 3.4 require a more in-
depth investigation. According to Field (1965), the criterion for
the appearance of wave instabilities is given by

jk
q0

k2
x þ LT þ

1
c� 1

q0

T0
Lq < 0; ð19Þ

where kx is the wavenumber in the field direction. Results of
Carbonell et al. (2004), see also Paper I, point out that the heating
scenario used in our calculations (constant heating per unit volume)
cannot lead to thermal destabilisation. So, we can affirm that
instabilities described in Section 3.4 are not caused by the heating
mechanism. In addition, instabilities only appear when radiative
losses are omitted. In such situation, the instability criterion
becomes

jk
q0

k2
x < 0: ð20Þ

Eq. (20) is never satisfied unless an additional source of heating is
present, which seems to be the present case. This extra energy
source corresponds to heat injected from the corona into the prom-
inence by thermal conduction, as was commented in Section 3.4. In
the absence of radiation, prominence thermal conduction is the
only mechanism that can dissipate this extra injected heat. One
expects that in such situation the value of kx grows in order to
increase the efficiency of prominence conduction. Fig. 7 shows the
eigenfunction of the temperature perturbation corresponding to
the internal fast mode for kzxp 	 0:3 when all non-adiabatic mech-
anisms are considered, panel (a), and when radiative losses from the
prominence plasma are omitted, panel (b). For this value of kzxp, the
wave becomes unstable (xI < 0) if prominence radiation is omitted.
We see that smaller spatial-scales (i.e. larger kx) are obtained within
the prominence when prominence radiation is not taken into
account, as expected. Although the efficiency of prominence con-
duction is increased in this way, it is still not enough to stabilise
the perturbation.

This last discussion points out that prominence radiative losses
are of paramount importance to stabilise the disturbances. The effi-
ciency of prominence radiation can be quantified by means of the
radiation time-scale for the prominence plasma (De Moortel and
Hood, 2004),

sr ¼
cp0

ðc� 1Þq2
pv�pTap

p

: ð21Þ
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Fig. 8. Damping time versus kzxp for the fundamental (a) hybrid and (b) internal
fast modes. The linestyles represent different optical thicknesses for the promi-
nence plasma: Prominence (1) in solid line (this corresponds to the solid lines in
Fig. 6d and e), Prominence (2) in dotted line and Prominence (3) in dot-dashed line.
The dashed line corresponds to the results when the prominence radiation is
omitted (dashed lines in Fig. 6d and e). The boundary conditions considered are
vx ¼ vz ¼ T 01 ¼ 0.
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Considering fixed equilibrium parameters, the value of sr changes
for different optical thicknesses of the prominence material (see re-
gimes listed in Table I of Paper I). For Prominence (1) parameters
(optically thin plasma), sr 	 309 s, whereas for Prominence (2)
and Prominence (3) regimes (optically thick and very thick plasma),
sr 	 2876 s and sr 	 47;822 s, respectively, and so prominence
radiation is less efficient. Obviously, sr !1 if the radiative term
is omitted. The coronal plasma is always taken optically thin.
Fig. 8 shows the damping time of the fundamental hybrid and inter-
nal fast modes as a function of kzxp for the different prominence
optical regimes. We see that the larger the optical thickness, the lar-
ger the damping time. This effect is especially relevant at the cou-
pling points with the external slow modes, where thermal
instabilities appear if radiative losses are completely inhibited.
3.6. Exploring the parameter space

In this section we investigate how the attenuation of oscilla-
tions is affected by changing the equilibrium parameters. The
motivation of this study is based on the fact that the estimated val-
ues for prominence plasma parameters, such as temperature, den-
sity, magnetic field strength or optical thickness, varies from one
prominence to another, sometimes in a significant way (e.g.
Patsourakos and Vial, 2002). Thus, it is important for our investiga-
tion to ascertain the sensitivity of the damping time to the
equilibrium parameters around the values considered in our previ-
ous calculations.

First, we plot in Fig. 9 the ratio of the damping time to the per-
iod corresponding to the fundamental modes as a function of equi-
librium physical conditions, namely the prominence temperature,
the prominence density, the magnetic field strength and the coro-
nal temperature. The following ranges of values have been consid-
ered: 5000 K < Tp < 15;000 K;10�11 kg m�3

< qp < 10�10 kg m�3;
1 G < B0 < 15 G; and 800; 000 K < Tc < 2;000;000 K.

At first sight, we notice that the attenuation of fast modes is
much more sensitive to the equilibrium conditions than the
damping of slow modes. The attenuation of slow modes does
not change in a significant way if the equilibrium physical
conditions are modified, since the obtained sD=P are always small
and of the same order of magnitude. On the contrary, fast modes
are highly sensitive especially to the prominence density and the
magnetic field. It is noticeable that small values of sD=P are
obtained for the fast modes when large densities and weak
magnetic fields are considered. If the magnetic field strength is
increased or the prominence density is reduced, then sD=P
grows dramatically. Additionally, fast modes are again strongly
affected by the couplings with slow modes, a fact that shows
up in the form of very localised increases and decreases of
sD=P.

On the other hand, we have studied the effect of considering a
different heating scenario on the wave attenuation. In agreement
with previous investigations (Carbonell et al., 2004; Terradas
et al., 2005), results do not show significant discrepancies if differ-
ent heating mechanisms are assumed.

Finally, we have also varied the length of magnetic field lines
(by modifying the value of xc) and the prominence half-width, xp,
in order to assess their effect on the damping time. For realistic val-
ues of both xc and xp, no significant influences appear in the results
with respect to those previously discussed. It is worth to mention
that prominence conduction becomes a relevant mechanism for
very a small, unrealistic prominence half-width (xp K 10 km), and
coronal radiation is only important for very large, and again unre-
alistic, length of magnetic field lines (xc J 106 km).

3.7. Comparison with Terradas et al. (2005)

The final check of the importance of the coronal medium comes
from the comparison between our results and those obtained by
Terradas et al. (2005) in the case of an isolated prominence slab
(see Fig. 10). Obviously, this comparison can only be performed
for internal modes, since external and hybrid modes are not sup-
ported by an isolated slab. The boundary conditions assumed in
the work of Terradas et al. (2005) are vx ¼ vz ¼ T 01 ¼ 0. According
to the arguments given in Section 3.4, this condition for the pertur-
bation to the temperature is the most suitable since thermal con-
duction is negligible in prominences. However, the line-tying
condition at the edges of the prominence slab seems not to be
the most appropriate election in the light of the eigenfunctions
plotted in Fig. 3. Hence, our results point out that the interface be-
tween the prominence slab and the corona does not act as a rigid
wall, and perturbations can be important in the corona even for
internal modes.

Contrary to what was shown in Paper I, in which only the fast
mode was affected by the corona, in the present case both slow
and fast modes of the isolated slab differ from those of a promi-
nence–corona equilibrium. A decrement of the damping time is ob-
tained for both waves in comparison with the solution of an
isolated slab. The slow mode is less affected by the presence of
the corona but the fast mode damping time is reduced by an order
of magnitude, although it is still far from the observed values. As in
the longitudinal magnetic field case, the consideration of the coro-
na is of paramount importance for a correct description of the
behaviour of oscillations and their attenuation, although its effect
on the damping of fast modes is less noticeable than in the longi-
tudinal case.



Fig. 10. Period (left), damping time (centre) and ratio of the damping time to the period (right) versus kz for the internal fundamental slow (upper panels) and fast (bottom
panels) oscillatory modes. The solid lines are the solutions of a prominence plus corona equilibrium whereas the dotted lines represent the solutions of an isolated slab
(Terradas et al., 2005).

Fig. 9. Ratio of the damping time to the period for the fundamental oscillatory modes as function of, from the left to the right, the prominence temperature, the prominence
density, the magnetic field strength and the coronal temperature. Computations performed considering kzxp ¼ 1 and the boundary conditions vx ¼ vz ¼ T1 ¼ 0 at x ¼ �xc.
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4. Conclusions

In this paper we have studied the wave attenuation in a system
representing a quiescent solar prominence embedded in the coro-
nal medium. The prominence has been modelled as a homoge-
neous plasma slab surrounded by a homogeneous medium with
coronal conditions. Magnetic field lines have been assumed trans-
verse to the prominence slab axis and the whole system has been
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bounded in the field direction by two photospheric rigid walls, in
order to establish a realistic length for the field lines. The attenua-
tion of the normal modes of such equilibrium has been investi-
gated by considering parallel thermal conduction, radiative losses
and plasma heating as non-adiabatic mechanisms, and focusing
our study on the fundamental oscillatory modes. The main conclu-
sions of this work are summarised next.

(1) Slow modes are strongly attenuated by non-adiabatic mech-
anisms, their damping times being of the order of the corre-
sponding periods. Fast modes are less affected and present
greater damping times.

(2) The most relevant damping mechanisms are prominence
radiation and coronal thermal conduction. The first one
dominates the damping of internal modes, while the second
one is responsible for the attenuation of external modes. The
combined effect of both mechanisms governs the damping
of hybrid modes. Neither prominence conduction nor coro-
nal radiation become of importance for realistic values of
the length of magnetic field lines and the prominence width.

(3) The attenuation of slow modes is not affected by the value of
the free component of the wavenumber, kz. On the contrary,
the behaviour of fast modes is strongly dependent on kz.

(4) Thermal conduction allows energy transfer between the
prominence slab and the coronal medium. Prominence radi-
ation has an essential role in dissipating the extra heat
injected from the corona and stabilises the oscillations. Ther-
mal instabilities appear if the radiative losses from the
prominence plasma are omitted or significantly reduced
(e.g. caused by an increase of the optical thickness) since
the plasma cannot dissipate the extra injected heat in an
efficient way.

(5) The damping time of fast modes is strongly sensitive to the
equilibrium physical parameters while slow waves are less
affected by the variation of the equilibrium conditions.

(6) The presence of the corona produces a decrement of the
damping time of internal modes with respect to the solu-
tions supported by an isolated prominence slab. Neverthe-
less, this effect is not enough to obtain damping times of
the order of the period in the case of fast modes.

Considering the equilibrium parameters of Paper I, the effi-
ciency of non-adiabatic mechanisms on the damping of fast modes
is smaller in the present case. This fact suggests that the orienta-
tion of magnetic field lines with respect to the slab axis has a rel-
evant influence on the attenuation of fast modes, the configuration
of Paper I and the present one being limit cases. Moreover, fast
modes are strongly sensitive to the equilibrium physical condi-
tions, and it is possible to obtain small values of the damping time
by considering extreme equilibrium parameters, such as very weak
magnetic fields and very large prominence densities. In this way,
fast modes show a wide range of theoretical damping times. On
the other hand slow modes are always efficiently attenuated, with
damping times of the order of their periods. This result suggests
that the attenuation of prominence fast waves may be caused by
other damping mechanisms not considered here. Some candidates
could be resonant absorption (Arregui et al., 2008) and ion–neutral
collisions (Forteza et al., 2007). Among these mechanisms, reso-
nant absorption may be a very efficient damping mechanism if
non-uniform equilibria are considered, e.g. models with a transi-
tion region between the prominence and the corona. Other effects,
as wave leakage, might only play a minor role in the damping of
disturbances. Finally, future studies should take into account the
prominence fine structure on the basis that small-amplitude oscil-
lations are of local nature. Therefore, the investigation of the
damping of fibril oscillations should be the next step.
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