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ABSTRACT

Pickup ions (PUIs) in the outer heliosphere and the local interstellar medium are created by charge exchange
between protons and hydrogen (H) atoms, forming a thermodynamically dominant component. In the supersonic
solar wind beyond >10 AU, in the inner heliosheath (IHS), and in the very local interstellar medium (VLISM),
PUIs do not equilibrate collisionally with the background plasma. Using a collisionless form of Chapman–Enskog
expansion, we derive a closed system of multi-fluid equations for a plasma comprised of thermal protons and
electrons, and suprathermal PUIs. The PUIs contribute an isotropic scalar pressure to leading order, a collisionless
heat flux at the next order, and a collisionless stress tensor at the second-order. The collisionless heat conduction and
viscosity in the multi-fluid description results from a non-isotropic PUI distribution. A simpler one-fluid MHD-like
system of equations with distinct equations of state for both the background plasma and the PUIs is derived. We
investigate linear wave properties in a PUI-mediated three-fluid plasma model for parameters appropriate to the
VLISM, the IHS, and the solar wind in the outer heliosphere. Five distinct wave modes are possible: Alfvén waves,
thermal fast and slow magnetoacoustic waves, PUI fast and slow magnetoacoustic waves, and an entropy mode.
The thermal and PUI acoustic modes propagate at approximately the combined thermal magnetoacoustic speed
and the PUI sound speed respectively. All wave modes experience damping by the PUIs through the collisionless
PUI heat flux. The PUI-mediated plasma model yields wave properties, including Alfvén waves, distinctly different
from those of the standard two-fluid model.
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1. INTRODUCTION

Most of the heliosphere by volume is partially ionized with the
number density of neutral hydrogen (H) greater beyond ∼10 AU
than that of the solar wind plasma (Zank 1999; Zank et al. 2013;
Heerikhuisen et al. 2014). The collisional charge exchange mean
free path in the outer heliosphere ensures that we do not have to
directly couple neutral H and the solar wind plasma. However,
neutral H in the outer heliosphere is responsible for the creation
of pickup ions (PUIs) that eventually form a thermodynamically
dominant component of the plasma despite being relatively
tenuous. When PUIs are present, they typically play a critical
role in almost all facets of the underlying plasma physics.

Several efforts have been made to incorporate PUIs in a self-
consistent manner into models that describe the solar wind. A
number of models, summarized in Zank (1999), from the 1970s
(see especially Holzer 1972; Wallis 1971 for example) assumed
a single component background plasma into which pickup pro-
tons were added via source terms in the continuity (assuming
photoionization), momentum, and energy equations. A more
formal derivation of the one-fluid model for the supersonic so-
lar wind mediated by PUIs was provided by Khabibrakhmanov
et al. (1996) based on a guiding center kinetic equation deriva-
tion. An important extension to the one-fluid models of the
supersonic solar wind was introduced by Isenberg (1986). The
one-fluid models assume essentially that wave–particle interac-
tions (and particle collisions) proceed sufficiently quickly that
PUIs are almost immediately assimilated into the thermal so-
lar wind, becoming indistinguishable from thermal solar wind
protons. The one-fluid model of the solar wind predicts a sub-

stantial increase in the plasma temperature or pressure (see, e.g.,
Figure 4.2 of Zank 1999) with increasing heliocentric distance.
Such an increase in the temperature of solar wind protons is not
observed in the outer heliosphere (Gazis et al. 1994; Richardson
et al. 1995) since the Voyager plasma instrument cannot mea-
sure PUIs, but a modest increase in the thermal proton plasma
temperature is found beyond about 20 AU. The modest tem-
perature increase is due to the dissipation of PUI-generated
turbulence (Williams et al. 1995; Matthaeus et al. 1999; Smith
et al. 2001; Isenberg et al. 2003; Isenberg 2005; Smith et al.
2006, see also the three-dimensional (3D) models by Kryukov
et al. 2012; Usmanov et al. 2014). Instead, as noted by Vasyli-
unas & Siscoe (1976) and Isenberg (1986), PUIs are unlikely
to be assimilated into the supersonic solar wind. Pre-existing
and PUI-excited waves will isotropize and stabilize the new-
born PUI distribution to produce two approximately co-moving
proton populations.

Coulomb collisions are necessary to equilibrate a background
thermal plasma, such as the solar wind, and the PUI protons.
Let us consider the general case of a background Maxwellian
plasma comprised of thermal protons (denoted by the subscript
s) and electrons (denoted by the subscript e). PUIs (denoted by
the subscript p) then satisfy the ordering

vts � vp < vte,

where vts/e denotes the background proton/electron thermal
speed respectively and vp the PUI speed. Denoting quantities
derived from the background Maxwellian proton or electron dis-
tribution with the subscript “b = s/e,” the collisional frequency
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for PUIs is given by (e.g., Zank 2013)

νpb
s = 2ν̄pb

Tp
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mb

mp

)
G(xb)

xp
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4 ln Λ

4πε2
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where xb ≡ v/vtb, xp ≡ v/vtp, and vta = √
2kTa/ma is the

thermal speed, Tp/b is the PUI/background electron or proton
temperature, nb the background electron or proton number
density, ε0 the permittivity of free space, e the electron charge,
ln Λ the Coulomb logarithm (∼20), and mp/b the PUI/proton or
electron mass. The function G(x) is the Chandrasekhar function
for which
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For PUIs scattering collisionally off a Maxwellian distribution of
background protons, the collision frequency becomes (using the
large argument approximation of the Chandrasekhar function)

νps
s = nse

4 ln Λ
2πε2

0m
2
pv3

s−1, (2)

illustrating the well-known v−3 dependence with PUI speed.
By contrast, PUI collisional scattering off a Maxwellian elec-
tron background yields a larger collision frequency, which is
given by

νpe
s = nee

4 ln Λm
1/2
e

2(2π )3/2ε2
0(kTe)3/2mp

(3)

after using the small argument approximation to the Chan-
drasekhar function. If the collisional timescale exceeds the char-
acteristic flow time of the plasma region of interest, τf � L/U ,
where L is the size of the region and U the characteristic ve-
locity, then the PUI distribution will not equilibrate with the
background plasma. Expressions (2) and (3) are necessary to
determine whether one needs to introduce a model that distin-
guishes the PUIs from the background plasma protons. In the
case of the supersonic solar wind, Isenberg (1986) used related
arguments to justify the introduction of a form of multi-fluid
model to describe a coupled solar wind–PUI plasma. Isenberg
(1986) assumed that PUIs and the solar wind plasma are per-
fectly co-moving, i.e., Up = Us , where Up is the PUI bulk ve-
locity and Us the thermal solar wind proton bulk velocity. This
assumption corresponds to assuming instantaneous isotropiza-
tion of the PUI distribution at the time of creation. While a
reasonable approximation when considering the effects of PUIs
on a large-scale flow such as the supersonic solar wind, to un-
derstand the impact of PUIs on the basic plasma physical system
requires that the PUI-scattering timescale not be neglected. As
we discuss below, in the distant outer heliosphere, PUI scatter-
ing yields a dissipative collisionless heat flux and viscosity in a
collisionless coupled thermal plasma–PUI system. In the inner
heliosheath (IHS) regions, the electron heat flux is expected to
dominate.

Here, we consider three specific environments in which PUIs
mediate the plasma properties: the supersonic solar wind in the
outer heliosphere beyond ∼10 AU, the subsonic solar wind, i.e.,
the plasma in the IHS, and the plasma in the very local interstellar
medium (VLISM). Each of these regions is mediated by PUIs,
but the origin of the PUI population in each region is different
in important ways. We discuss each in turn.

Supersonic solar wind beyond 10 AU. Interstellar neutral
gas flows relatively unimpeded into the heliosphere, possibly

experiencing some “filtration” at the heliospheric boundaries.
Neutral interstellar hydrogen is especially susceptible to the
effects of filtration, being decelerated and heated in passing from
the VLISM into the heliosphere. The velocity of the neutral H
drifting into the supersonic solar wind across the heliospheric
termination shock is ∼23 km s−1 or less after filtration in
the heliospheric boundaries (Zank et al. 1996b, 2013). The
interstellar neutral gas flowing into the supersonic solar wind
can be ionized by either solar photons (photoionization) or
solar particles (charge exchange, electron-impact ionization,
etc.) and the new ions are accelerated almost instantaneously
by the motional electric field of the solar wind, E = −U × B,
where U is the solar wind flow velocity and B the ambient
interplanetary magnetic field (IMF). In a Cartesian frame co-
moving with the solar wind, the velocity of a pickup ion is
simply v(t) = (−U⊥ cos Ωi t, U⊥ sin Ωi t, U‖), where the IMF
is oriented along ẑ, U‖ is parallel to ẑ, U⊥ is perpendicular
to ẑ, and Ωi ≡ qB/m is the local pickup ion gyrofrequency
(q denotes charge and m ion mass). The pickup ions therefore
form a ring-beam distribution on the timescale Ω−1

i that streams
sunward along the magnetic field. Newly created pickup ions
can therefore drive a host of plasma instabilities (e.g., Lee & Ip
1987; see Zank 1999 for a summary). Since the variation in both
U and B in the outer solar wind can be substantial, the ring beam
should be broad, although this is not assumed typically when
investigating related instabilities. PUIs experience scattering
and gradual isotropization by either ambient or self-generated
low-frequency electromagnetic fluctuations in the solar wind
plasma. Since the newly born ions are eventually isotropized,
their bulk velocity is now essentially that of the solar wind,
i.e., they advect with the solar wind flow, and are then said to
be “picked up” by the supersonic solar wind. The isotropized
pickup ions form a distinct suprathermal population of energetic
ions (∼1 keV energies) in the solar wind whose origin is
the interstellar medium (ISM; e.g., Holzer 1972; Lee & Ip
1987; Williams & Zank 1994; see Zank 1999 for an extensive
review).

At 10 AU, the number density of PUIs is about 5% of
the background thermal solar wind ions, with the fraction
increasing to perhaps as much as 20% in the vicinity of the
termination shock at ∼90 AU. For the supersonic solar wind
at 10 AU, we take the background proton and electron number
density to be approximately ns/e ∼ 0.08 cm−1 and the PUI
speed to be ∼400 km s−1. This yields a PUI–proton collision
time τ

ps
s = (νps

s )−1 ∼ 8.34 × 1010 s. Although the proton
number density decreases as r−2 with increasing heliocentric
radius r, we may nevertheless compare this collisional time
with the convection time of a solar wind parcel from 10 AU to
90 AU, which is τf ∼ 3.38 × 107 s. Clearly, in the supersonic
solar wind PUI–proton collisions cannot equilibrate the two
proton populations. For PUI–electron collisions at 10 AU, we
assume an electron and proton temperature, Ts ∼ Te ∼
20,000 K. Consequently, τ

pe
s ∼ 8.9 × 108, which is ∼30 times

greater than the characteristic supersonic flow time τf . These
estimates neglect the decreasing solar wind number density with
increasing heliocentric distance and the possibility that electrons
are hotter than solar wind protons, both of which will increase
τ

pe
s . Thus, neither proton nor electron collisions can equilibrate

a PUI-thermal solar wind plasma in the supersonic solar wind
before the heliospheric termination shock.

The inner heliosheath—the subsonic solar wind. The situation
in the IHS, i.e., the region between the heliospheric termination
shock (HTS) and the heliopause (HP), is more complicated.
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The supersonic solar wind is decelerated on crossing the quasi-
perpendicular HTS. The flow velocity is directed away from the
radial direction and is ∼100 km s−1. The interplanetary mag-
netic field remains approximately perpendicular to the plasma
flow. Voyager 2 measured the downstream solar wind temper-
ature to be in the range of ∼120,000–180,000 K (Richardson
2008; Richardson et al. 2008), which was much less than pre-
dicted by simple MHD models. Instead, the thermal energy in
the IHS is dominated by pickup ions. There are two primary
sources of PUIs in the IHS. The first is interstellar neutrals
that drift across the HP and charge exchange with hot solar
wind plasma. These newly created ions experience pickup in
the IHS plasma in the same way that ions are picked up in
the supersonic solar wind. The characteristic energy for PUIs
created in this manner is ∼52 eV or ∼6.03 × 105 K, which is
about five times hotter than the IHS solar wind protons. The
second primary source is the PUIs created in the supersonic so-
lar wind and then convected across the HTS into the IHS. The
PUIs convected into the HTS are either transmitted immediately
across the HTS or are reflected before transmission (Zank et al.
1996a). PUI reflection was identified by Zank et al. (1996a) as
the primary dissipation mechanism at the quasi-perpendicular
HTS, with the thermal solar wind protons experiencing com-
paratively little heating across the HTS. This was confirmed
by the Voyager 2 crossing of the HTS (Richardson 2008;
Richardson et al. 2008). The transmitted PUIs downstream of
the HTS have temperatures ∼9.75×106 K (∼0.84 keV) and the
reflected protons have a temperature of ∼7.7×107 K (∼6.6 keV)
(Zank et al. 2010). Clearly, PUIs, those transmitted, reflected,
and injected, dominate the thermal energy of the heliosheath,
just as PUIs do upstream of the HTS despite being only some
20% of the thermal subsonic solar wind number density. The
IHS proton distribution function can be approximated by a three-
(Zank et al. 2010; Burrows et al. 2010) or four-component
distribution function (Zirnstein et al. 2014), with a relatively
cool thermal solar wind Maxwellian distribution and two or
three superimposed PUI distributions. In two important papers,
Zirnstein et al. (2014) and Desai et al. (2014) have exploited
this decomposition of the IHS proton distribution function to
great effect in modeling energetic neutral atom (ENA) spectra
observed by the IBEX spacecraft at 1 AU (see also Desai et al.
2012, who used the slightly simpler three-distribution model of
Zank et al. 2010) to identify multiple proton distribution func-
tions in the IHS and the VLISM. These multiple proton popu-
lations are identified as the various PUI populations described
above and the thermal solar wind proton population.

For the subsonic solar wind plasma in the IHS, we take the
background proton and electron number density to be approx-
imately ns/e ∼ 0.005 cm−1 and the PUI speed to range from
∼1000 (reflected and transmitted PUIs) to 400 (transmitted-
only PUIs) to ∼100 km s−1 (PUIs created in the IHS). This
yields a lower limit on the PUI–proton collisional time of τ

ps
s =

(νps
s )−1 ∼ 2.1 × 1010 s. For an IHS length scale of 100 AU,

the characteristic flow time is τf ∼ 1.5 × 108 s. Clearly, in the
IHS PUI–proton collisions cannot equilibrate the two proton
populations in the upwind region. For PUI–electron collisions,
we assume an electron temperature, Te ∼ 200,000 K. Conse-
quently, τ

pe
s ∼ 2.8 × 1010, which far exceeds the characteristic

flow time τf on a scale of 100 AU. Thus, neither proton nor elec-
tron collisions can equilibrate a PUI-thermal solar wind plasma
in the subsonic solar wind or IHS on scales smaller than at least
10,000 AU. For the IHS, a multi-component plasma description
that discriminates between PUIs and the subsonic solar wind

plasma is therefore necessary. First attempts to write down such
a model were presented by Avinash & Zank (2007) and Avinash
et al. (2009). Fisk & Gloeckler (2014) have argued similarly
that both PUIs and anomalous cosmic rays should be regarded
as partially decoupled from the background thermal plasma.

VLISM. the interstellar plasma upwind of the heliopause
is also mediated by energetic PUIs. It was noted already by
Zank et al. (1996b) that energetic neutral H created via charge
exchange in the IHS and fast solar wind could “splash” back into
the VLISM where they would experience a secondary charge
exchange. The secondary charge exchange of hot and/or fast
neutral H with cold (∼6300 K; McComas et al. 2012) VLISM
protons leads to the creation of a hot or suprathermal PUI
population in the VLISM. The heating of the VLISM has been
discussed in detail by Zank et al. (2013), who pointed out that the
heating of the VLISM plasma would result in an increase of the
sound speed with a concomitant weakening or even elimination
of the bow shock (yielding instead a bow wave). Zirnstein et al.
(2014) have extended the Zank et al. (2010) model by including
the multiple PUI populations that contribute to the heating of
the VLISM (Zank et al. 2013). For the purposes of this work,
we are concerned primarily with neutrals created in both the
IHS and supersonic solar wind, i.e., with typical speeds of
∼100 km s−1 or ∼400 km s−1, experiencing secondary charge
exchange in the VLISM. The fast/hot neutrals determine the
pickup speed in the VLISM. The PUIs therefore form a tenuous
(np � 5 × 10−5 cm−3; Zirnstein et al. 2014) suprathermal
component in the VLISM.

For the VLISM plasma, we take the background proton and
electron number density to be approximately ns/e ∼ 0.08 cm−1

and the PUI speed to be ∼100 km s−1 (i.e., H created in the
IHS). This yields a lower limit on the PUI–proton collision
time of τ

ps
s = (νps

s )−1 ∼ 1.3 × 109 s. For a length scale of
75 AU, and typical flow speed of 15 km s−1, the characteristic
flow time is τf ∼ 7.5 × 108 s. For PUI–electron collisions, we
assume an electron temperature, Te ∼ 10,000 K. Consequently,
τ

pe
s ∼ 3.2 × 108, which is comparable to the characteristic flow

time τf on a scale of 75 AU. Thus, neither proton nor electron
collisions can equilibrate a PUI–thermal plasma in the VLISM
on scales smaller than at least 75 AU.

Besides the outer heliosphere and the boundaries with the
ISM, the interaction of PUIs with the solar wind is of interest
in several planetary environments, both unmagnetized (Venus,
Mars, and possibly Pluto), and magnetized (Mercury, Earth
(with respect to the AMPTE experiment), Saturn, Jupiter), and
at comets (see the review by Coates 2012). For example, PUIs at
Venus are created by charge exchange or photoionization from
cold neutral ionospheric atoms (e.g., Luhmann 1986). Lu et al.
(2013) used Venus Express (VEX) observations to show that
the strength of the Venusian bow shock is weaker when PUI
production is high. In particular, investigating the interaction of
comets with the solar wind has been extraordinarily fruitful in
furthering our understanding of PUIs in the solar wind—this
includes the missions to Comet Halley and Giacobini–Zinner,
and later missions to Grigg–Skjellerup and Borrelly (e.g.,
Coates 2012). With impending encounters of New Horizons
with the Pluto–Charon system (2015) and Rosetta with comet
Churumov–Gerasimenko (2014–15), active Venus (VEX) and
Mars (Mars Express) missions, and of course Voyager 1 and
2 and IBEX, understanding in more detail the nature of PUI
mediated plasmas is of far reaching importance.

The paper is organized as follows. In Section 2, we derive
the basic equations describing a PUI mediated plasma. At the
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first-order, we find that the scattering of PUIs in a turbulent
magnetofluid introduces a term analogous to that of heat con-
duction. The second-order correct set of equations describing
PUIs in a multi-fluid context leads to the introduction of the
viscous terms that define the PUI stress tensor. We systemati-
cally derive the system of multi-fluid equations that describe a
background Maxwellian proton and electron plasma plus a non-
Maxwellian PUI population. Because we assume Maxwellian
distributions for the background protons and electrons, the
background plasma contributes no heat flux or stress tensor
terms. For completeness, we derive a “single-fluid” description
analogous to the equations of magnetohydrodynamics (MHD)
that describes a PUI mediated plasma. The “single-fluid” model
possesses collisionless heat flux and viscous stress terms, un-
like the MHD equations. In Section 3, we derive the dispersion
relation for linear waves in a PUI mediated plasma and dis-
cuss the general properties of waves in a multi-fluid PUI me-
diated plasma. In Section 4, we present numerical solutions to
the dispersion relation for the supersonic solar wind, the IHS
plasma, and the plasma in the VLISM. The multi-fluid waves are
also compared to the more familiar two-fluid plasma modes. In
Section 5, we present an analysis and numerical solutions of the
linearized single-fluid model, presenting results for the VLISM
only. In the final section, we discuss and summarize our results.

2. DERIVATION OF THE MULTI-FLUID MODEL

2.1. First-order Correct Multi-fluid Model: Heat Conduction

In deriving a multi-fluid model that includes PUIs self-
consistently, we shall assume that the distribution function for
the background protons and electrons are each Maxwellian,
which ensures the absence of any heat flux or stress tensor
terms for the background plasma. The exact form of the
continuity, momentum, and energy equations governing the
thermal electrons and protons are therefore given by

∂ne

∂t
+ ∇ · (neue) = 0; (4)

mene

(
∂ue

∂t
+ ue · ∇ue

)
= −∇Pe − ene (E + ue × B) ; (5)

∂Pe

∂t
+ ue · ∇Pe + γePe∇ · ue = 0, (6)

for the electrons, and

∂ns

∂t
+ ∇ · (nsus) = 0; (7)

mpns

(
∂us

∂t
+ us · ∇us

)
= −∇Ps + ens (E + us × B) ; (8)

∂Ps

∂t
+ us · ∇Ps + γsPs∇ · us = 0, (9)

for the protons. Here ne/s , ue/s , and Pe/s are the usual macro-
scopic fluid variables for the electron/proton number density,
velocity, and pressure respectively, γe/s the electron/proton adi-
abatic index, E the electric field, B the magnetic field, and e the
charge of an electron.

Pickup ions initially form an unstable distribution that ex-
cites Alfvénic fluctuations. The self-generated fluctuations and
in situ turbulence serve to scatter PUIs in pitch angle. The
Alfvén waves and magnetic field fluctuations both propa-
gate and convect with the bulk velocity of the system U =
U(ue, us , up, ne, ns, np,me,mp), where np and up refer to PUI
variables. The PUIs are governed by the Fokker–Planck trans-
port equation with a (for now unspecified) collisional term
δf/δt |c,

∂f

∂t
+ v · ∇f +

e

mp

(E + v × B) · ∇vf = δf

δt

∣∣∣∣
c

, (10)

for average electric and magnetic fields E and B. We assume
that the velocity v of PUIs is always non-relativistic. The
transport Equation (10) has to be transformed into a frame that
ensures there is no change in PUI momentum and energy due
to scattering. For the present, assume that the cross-helicity σ
is nonzero and let

v = c + U + σVA ⇐⇒ c = v − U − σVA, (11)

where VA is the Alfvén velocity and c is the random velocity.
The transport equation is therefore

∂f

∂t
+ (Ui + σVAi + ci)

∂f

∂xi

+

[
e

mp

(E + U × B)i

+
e

mp

(c × B)i − ∂Ui

∂t
− (Uj + σVAj + cj )

∂Ui

∂xj

− σ

(
∂VAi

∂t
− σ (Uj + σVAj + cj )

∂VAi

∂xj

)]
∂f

∂ci

= δf

δt

∣∣∣∣
c

.

(12)

The velocity U is still unspecified, so we choose U such that
E′ ≡ E + U × B = 0. This assumption corresponds to choosing

U⊥ = U − U‖ = E × B
B2

≡ U, (13)

since we choose U‖ = 0 (U‖ is parallel to B and therefore
arbitrary). This corresponds to expressing (10) in the guiding
center frame. The transformation to the velocity U then yields

∂f

∂t
+ (Ui + ci)

∂f

∂xi

+

[
e

mp

(c × B)i − ∂Ui

∂t

− (Uj + cj )
∂Ui

∂xj

]
∂f

∂ci

= δf

δt

∣∣∣∣
c

, (14)

after setting the cross-helicity σ = 0. By taking moments
of (14), we can derive the evolution equations for the macro-
scopic PUI variables, such as the number density np = ∫

f d3c,
velocity npupi

= ∫
cif d3c, and so on. Although unspecified

for now, we shall assume that moments of the collisional term
δf/δt |c are zero. This can be checked against the particular
scattering model that we use below. The zeroth moment of (14)
yields the continuity equation for PUIs,

∂np

∂t
+

∂

∂xi

(np(Ui + upi
)) = 0, (15)
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where up is the PUI bulk velocity in the guiding center frame.
For the first moment, we multiply (14) by cj and integrate over
velocity space. This yields, after a little algebra,

∂

∂t
(np(Uj + upj

)) + ∇ · [npU(Uj + upj
) + npupUj ]

+
∂

∂xi

∫
cicjf d3c = e

mp

npεjklupk
Bl, (16)

where εijk is the Levi–Civeta tensor.
To close Equation (16), we need to evaluate the PUI distribu-

tion function f, which requires that we solve (14). In solving (14),
we assume (1) that the PUI distribution is gyrotropic, and (2)
that scattering of PUIs is sufficiently rapid to ensure that the PUI
distribution is nearly isotropic. We can therefore average (14)
over gyrophase, obtaining the so-called focused transport equa-
tion for non-relativistic particles (Isenberg 1997). Details of
the derivation can be found in Chapter 5 of Zank (2013), and
the explicit expression is given in Appendix A. To solve the
gyrophase-averaged transport equation requires that we spec-
ify the scattering or collisional operator. We make the simplest
possible choice, which is the isotropic pitch-angle diffusion
operator,

∂

∂μ

(
νs(1 − μ2)

∂f

∂μ

)
, (17)

where μ = cos θ is the cosine of the particle pitch-angle θ
and νs = τ−1

s is the scattering frequency. The form of the
scattering operator (17) allows us to solve the focused transport
equation (A1) using a Legendre polynomial expansion of the
distribution function f. This is summarized in Appendix A
and details can be found in Chapter 5 of Zank (2013). The
first-order correct solution to the gyrophase-averaged form of
Equation (14), i.e., (A1), is

f � f0 + μf1; (18)

f0 = f0(x, c, t); (19)

f1 = −cτs

3
bi

∂f0

∂xi

+
DUi

Dt

τs

3
bi

∂f0

∂c
, (20)

where c = |c| is the particle random speed, b ≡ B/B is
a directional unit vector defined by the magnetic field, and
D/Dt ≡ ∂/∂t + Ui∂/∂xi is the convective derivative. Both f0
and f1 are functions of position, time, and particle random speed
c, i.e., independent of pitch-angle μ (and of course gyrophase
φ). Of particular importance is the retention of the large-scale
velocity U acceleration and shear terms. These terms are often
neglected in the derivation of the transport equation describing
f0 (for relativistic particles, the transport equation is the familiar
cosmic ray transport equation). Thus, the second term in (20)
is typically neglected, although it is known as the relativistic
heat inertia term in the relativistic transport theory of cosmic
rays (Webb 1985, 1987, 1989). As will be seen below, retaining
these terms is absolutely essential to derive the correct multi-
fluid formulation for PUIs. By introducing∫

cicjf d3c =
∫

(ci − upi
)(cj − upj

)f d3c + npupi
upj

≡
∫

c′
ic

′
j f d3c + npupi

upj

�
∫

c′
ic

′
j (f0 + μf1)d3c + npupi

upj
,

we can show that

∂

∂xi

∫
c′
ic

′
j f0d

3c = 1

mp

∂

∂xi

(δijPp), and

∫
c′
ic

′
jμf1d

3c = 0, (21)

where

Pp ≡ mp

4π

3

∫
c′2f0c

′2dc. (22)

Consequently, the PUI stress tensor is identically zero at first-
order and there exists only an isotropic pressure tensor δijPp.
We show in the following section that retaining the second-
order terms in the Legendre polynomial expansion of the
gyrophase-averaged equation (A2) does in fact yield a non-
zero collisionless stress tensor. The PUI momentum equation to
first-order can therefore be expressed as

∂

∂t
(np(Uj + upj

)) +
∂

∂xi

[
np(U + up)(Uj + upj

) +
1

mp

δijPp

]

= e

mp

npεjklupk
Bl. (23)

To derive the transport equation for Pp, we multiply (14) by
(1/2)c2 and integrate over d3c. We then use (18)–(20) to evaluate
the various integrals. Introducing c′ ≡ c − up as before, we find

∫
1

2
c2f0d

3c = 3

2

1

mp

Pp +
1

2
npu2

p,

for example. Similarly, we find that the heat flux q(x, t) can be
expressed as

qi(x, t) ≡
∫

1

2
c′2c′

if d3c′ = 1

2

∫
c2cif d3c

− 5

2

1

mp

upi
Pp − 1

2
npu2

pupi
. (24)

It then follows that∫
1

2
c′2c′

if0d
3c = π

∫
c′3μbif0c

′2dc′ = 0,

and ∫
1

2
c′2c′

iμf1d
3c′ = −2π

3

∫
c′2κij

∂f0

∂xj

c′2dc′

= −1

2
Kij

∂Pp

∂xj

= qi(x, t). (25)

In (25), we introduced the spatial diffusion coefficient

κij ≡ bi

c2τs

3
bj , (26)

together with PUI speed-averaged form Kij. The collisionless
heat flux for PUIs is therefore described in terms of the
PUI pressure gradient and consequently the averaged spatial
diffusion introduces a PUI diffusion time and length scale
into the multi-fluid system. The diffusion coefficient, i.e., the
coefficient for the PUI heat flux, is proportional to the particle
scattering time τs , and therefore a function of the background
turbulent intensity. A separate calculation, possibly based on
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quasi-linear theory for the parallel diffusion coefficient or the
nonlinear guiding center theory for the perpendicular diffusion
coefficient, is necessary to obtain reasonable estimates of the
scattering time (Matthaeus et al. 2003; Zank et al. 2004).

The remaining terms are straightforwardly evaluated. We find

e

mp

εijkBk

∫
1

2
c2cj

∂f

∂ci

d3c = − e

mp

εijknpupi
Bkupj

;

− DUi

Dt

∫
1

2
c2 ∂f

∂ci

d3c = npupi

DUi

Dt
;

∂Ui

∂xj

∫
1

2
c2cj

∂f

∂ci

d3c = 5

2
Pp

∂Ui

∂xi

+
1

2
npu2

p

∂Ui

∂xi

+ npupi
upj

∂Ui

∂xj

.

On combining these results, we obtain, after some algebra, the
transport equation for the PUI pressure

∂Pp

∂t
+ (up + U) · ∇Pp +

5

3
Pp∇ · (up + U) = 1

3
∇ · (K · ∇Pp),

(27)

illustrating that the PUI heat flux yields a spatial diffusion term
in the PUI equation of state. The PUI system of equations is
properly closed and correct to the first-order. The second-order
correct PUI equations, which includes the PUI stress tensor, is
given in the following subsection. For completeness, the PUI
total energy equation has the form

∂

∂t

(
3

2
Pp +

1

2
np(up + U )2

)
+

∂

∂xi

[
1

2
np(up + U )2(upi

+ Ui)

+
5

2
Pp(upi

+ Ui) − 1

2
Kij

∂Pp

∂xj

]
= e

mp

εijknpupj
Bk(upi

+ Ui).

(28)

The full system of PUI equations is given by (15), (23), and (27)
or (28). It is not particularly illuminating to work in the guiding
center frame, and we may simplify (15), (23), and (27), (28), by
letting

Up = up + U.

The right-hand side (RHS) of Equations (23) and (28) is
proportional to up × B, which becomes(

Up − U
) × B = E + Up × B,

since E was perpendicular to B by construction initially. Hence
the PUI fluid equations can be written in the more familiar form

∂np

∂t
+ ∇ · (npUp) = 0; (29)

∂

∂t
(npUp) + ∇ · [npUpUp + IPp] = e

mp

np(E + Up × B);
(30)

∂

∂t

(
3

2
Pp +

1

2
npU 2

p

)
+ ∇ ·

[
1

2
npU 2

pUp +
5

2
PpUp

− 1

2
K · ∇Pp

]
= e

mp

npUp · (E + Up × B), (31)

which is the form we use below. Similarly, we have

∂Pp

∂t
+ Up · ∇Pp +

5

3
Pp∇ · Up = 1

3
(∇ · K · ∇Pp). (32)

The full thermal electron-thermal proton–PUI multi-fluid
system is therefore given by Equations (4)–(9) and (29)–(31)
or (32), together with Maxwell’s equations

∂B
∂t

= −∇ × E; (33)

∇ × B = μ0J; (34)

∇ · B = 0; (35)

J = e(nsus + npUp − neue), (36)

where J is the current and μ0 the permeability of free space.

2.2. Second-order Correct Multi-fluid Model: the Stress Tensor

As shown above, the zeroth- and first-order solutions for the
pressure tensor yields an isotropic scalar pressure Pij = Ppδij

only. Consider now the second-order Legendre polynomial
expansion of f,

f � f0 + μf1 +
1

2
(3μ2 − 1)f2. (37)

As before, we need to evaluate
∫

cicjf d3c =
∫

c′
ic

′
j

(
f0 + μf1 +

1

2
(3μ2 − 1)f2

)

× d3c′ + npupi
upj

,

from which we find∫
c′
ic

′
j f0d

3c′ = 1

mp

Ppδij ;
∫

c′
ic

′
jμf1d

3c′ = 0.

Although not discussed explicitly above, since the PUI pressure
is defined in the frame of the bulk PUI velocity up, the
distribution function over which the integral is taken needs to
evaluated in this frame. Since the expression (A7) for f2 is a
function of the guiding center velocity U, we need to transform
to the frame U′ = U + up. On using the solution (A7) for f2, we
obtain∫

c′
x

2 1

2
(3μ2 − 1)f2d

3c′ =
∫

c′
y

2 1

2
(3μ2 − 1)f2d

3c′

= η

15

(
bibj

∂U ′
j

∂xi

− 1

3

∂U ′
i

∂xi

)
; (38)

∫
c′
z

2 1

2
(3μ2 − 1)f2d

3c′ = −2η

15

(
bibj

∂U ′
j

∂xi

− 1

3

∂U ′
i

∂xi

)
; (39)

6
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∫
c′
ic

′
j

1

2
(3μ2 − 1)f2d

3c′ = 0, (i �= j ), (40)

where the coefficient of viscosity η is defined as

η ≡ 4π

15

∫
∂

∂c′ (c
′4cτs)f0dc′ (41)

� 4π

3

∫
c′2τsf0c

′2dc′ (42)

� Ppτs

mp

. (43)

Equation (41) is the formal definition of the coefficient of
viscosity for the PUI gas. If we assume (probably reasonably)
that |c| � |up|, then we obtain (42), which may be regarded as
a PUI pressure moment weighted by the PUI scattering time.
Finally, if we assume that τs is independent of c, we then
obtain the “classical” form (43) of the viscosity coefficient.
The pressure tensor may therefore be expressed as

(Pij ) = Pp(δij ) +

(
1 0 0
0 1 0
0 0 −2

)
η

15

(
bkb�

∂U ′
k

∂x�

− 1

3

∂U ′
m

∂xm

)
.

(44)
The pressure tensor may be written in a more revealing form

if we introduce a “viscosity matrix,”

(Mk�) ≡ (ηk�) =
( η

15
bkb�

)
�

(
1

15

Ppτsbkb�

mp

)
, (45)

and note that ηij = ηji and η/15 = η11 + η22 + η33 = ηij δij

(since b2 = 1). Then

η

15

(
bkb�

∂U ′
k

∂x�

− 1

3

∂U ′
m

∂xm

)
= ηk�

2

(
∂U ′

k

∂x�

+
∂U ′

�

∂xk

)

− 1

3
ηk�δk�

∂U ′
m

∂xm

= ηk�

2

(
∂U ′

k

∂x�

+
∂U ′

�

∂xk

− 2

3
δk�

∂U ′
m

∂xm

)
, (46)

which yields the pressure tensor as the sum of an isotropic scalar
pressure Pp and the stress tensor, i.e.,

(Pij ) = Pp(δij ) +

(
1 0 0
0 1 0
0 0 −2

)
ηk�

2

×
(

∂U ′
k

∂x�

+
∂U ′

�

∂xk

− 2

3
δk�

∂U ′
m

∂xm

)
≡ PpI + Πp. (47)

The stress tensor is a generalization of the “classical” form
in that several coefficients of viscosity are present, and of
course the derivation here is for a collisionless charged gas
of PUIs experiencing only pitch-angle scattering by turbulent
magnetic fluctuations. Use of the pressure tensor (47) yields
a “Navier–Stokes”-like modification of the PUI momentum
equation,

∂

∂t
(npUp) + ∇ ·

[
npUpUp +

1

mp

IPp

]
= e

mp

np(E + Up × B)

− 1

mp

∇ ·
(

1 0 0
0 1 0
0 0 −2

)
ηk�

2

(
∂Upk

∂x�

+
∂Up�

∂xk

− 2

3
δk�

∂Upm

∂xm

)
= e

mp

np(E + Up × B) − 1

mp

∇ · Πp, (48)

where we used Up = up+U ≡ U′ as before. The full momentum
equation with the second-order stress tensor correction is
included for completeness but in the linearized wave analysis
below, we use only the first-order correct equations, i.e., only
the heat conduction term is included.

2.3. Reduced “Single-fluid” Model

For some problems, such as the investigation of turbulence in
the outer heliosphere, IHS, or VLISM, the full multi-fluid model
is far too complicated to solve. By making the key assumption
that Up � us , we can reduce the multi-fluid system above to an
MHD-like set of model equations. The assumption that Up � us

is quite reasonable since (1) the bulk flow velocity of a plasma
is always dominated by the protons, and (2) the pick-up process
itself forces newly created PUIs to essentially co-move with the
background plasma flow. Accordingly, we let Up � us = Ui be
the overall proton (i.e., thermal background protons and PUIs)
velocity. The thermal proton and PUI continuity and momentum
equations are therefore trivially combined as

∂ni

∂t
+ ∇ · (niUi) = 0; (49)

mpni

(
∂Ui

∂t
+ Ui · ∇Ui

)
= − ∇(Ps + Pp) + eni (E + Ui × B)

− ∇ · Πp, (50)

where ni = ns+np. Since the PUIs are not thermally equilibrated
with the background plasma (Ts �= Tp), we need to deal
separately with the Ps and Pp equations. These become

∂Ps

∂t
+ Ui · ∇Ps + γsPs∇ · Ui = 0; (51)

∂Pp

∂t
+ Ui · ∇Pp + γpPp∇ · Ui = 1

3
∇ · (K · ∇Pp). (52)

By combining the proton Equations (49)–(52) with the electron
Equations (4)–(6), we can obtain an MHD-like system of
equations. On defining new macroscopic variables,

ρ ≡ mene + mpni;
q ≡ − e(ne − ni);

ρU ≡ meneue + mpniUi;
J ≡ − e (neue − niUi) , (53)

we can express

ne = ρ − (mp/e)q

mp(1 − ξ )
� ρ/mp;

ni = ρ + ξ (mp/e)q

mp(1 + ξ )
� ρ/mp;

ue = ρU − (mp/e)J
ρ − (mp/e)q

� U − mp

e

J
ρ

;

ui = ρU + ξ (mp/e)J
ρ + ξ (mp/e)q

� U, (54)

where the smallness of the mass ratio ξ ≡ me/mp � 1 has been
exploited. Use of the approximations (54) allows us to combine

7
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the continuity and momentum equations in the usual way and
to rewrite the thermal electron and proton pressure in terms of
the single-fluid macroscopic variables. Thus,

∂ρ

∂t
+ ∇ · (ρU) = 0; (55)

ρ

(
∂U
∂t

+ U · ∇U
)

= − ∇(Pe + Ps + Pp)

+ J × B − ∇ · Π; (56)

∂Ps

∂t
+ U · ∇Ps + γsPs∇ · U = 0; (57)

∂Pe

∂t
+ U · ∇Pe + γePe∇ · U = mp

eρ
J · ∇Pe

+
γemp

e
Pe∇ ·

(
J
ρ

)
, (58)

where

Πk� =
(

1 0 0
0 1 0
0 0 −2

)
ηk�

2

(
∂Uk

∂x�

+
∂U�

∂xk

− 2

3
δk�

∂Um

∂xm

)
.

Since we may assume that the current density is much less than
the momentum flux, i.e., |J| � |ρU|, we can simplify (58)
further by neglecting the RHS. By assuming that γe = γs = γ ,
we can combine the thermal proton and electron equations in a
single thermal plasma pressure equation with P ≡ Pe + Ps ,

∂P

∂t
+ U · ∇P + γP∇ · U = 0. (59)

Note that at this point, no assumptions about either the thermal
electron or proton pressures (or temperatures) have been made.

Finally, we need an equation for the electric field E. To do so,
we multiply the respective momentum equations by the electron
or proton charge, sum, and use the approximations (54) to obtain

ξ
(mp

e

)2 1

ρ

[
∂J
∂t

+ ∇ · (JU + UJ)

]
= mp

eρ
(∇Pe − J × B

− ξ∇(Ps + Pp) − ξ∇ · Π) + E + U × B.

The generalized Ohm’s law is therefore

E = −U × B − mp

eρ
(∇Pe − J × B − ξ∇Pp), (60)

where we have retained the PUI pressure since in principle it
can be a high temperature component of the plasma system and
ξPp may be comparable to the Pe term. For our cases of interest,
however, Tp ∼ 106 K, Te ∼ 104 K in the supersonic solar wind,
Tp ∼ 107 − 108 K, Te ∼ 105 K in the IHS, and Tp ∼ 106 K,
Te ∼ 104 K in the VLISM, and np < 0.2ne. Thus, we find that
the Pp term can be neglected in Ohm’s law (60). Neglect of the
electron pressure and Hall current term then yields the usual
form of Ohm’s law.

The reduced single-fluid model equations may therefore be
summarized as

∂ρ

∂t
+ ∇ · (ρU) = 0; (61)

ρ

(
∂U
∂t

+ U · ∇U
)

= −∇(P + Pp) + J × B − ∇ · Π; (62)

∂P

∂t
+ U · ∇P + γP∇ · U = 0; (63)

∂Pp

∂t
+ U · ∇Pp + γpPp∇ · U = 1

3
∇ · (K · ∇Pp); (64)

E = −U × B; (65)

∂B
∂t

= −∇ × E; (66)

μ0J = ∇ × B; (67)

∇ · B = 0. (68)

The single-fluid description (61)–(68) differs from the standard
MHD model in that a separate description for the PUI pres-
sure (64) is required. The PUIs introduce both a collisionless
heat conduction and viscosity into the system. Notice that the
derived electric field (65) is consistent with that used in the
transformation of the PUI Fokker–Planck equation (10) i.e.,
the bulk velocity U derived for the reduced system corresponds
to that used in the velocity transformation to eliminate the elec-
tric field in (10).

The model Equations (61)–(68), despite being appropriate to
non-relativistic PUIs, are interestingly related to the so-called
two-fluid MHD system of equations used to describe cosmic
ray mediated plasmas (Webb 1983). However, the derivation of
the two models is substantially different in that the cosmic ray
number density is explicitly neglected in the two-fluid cosmic
ray model and a Chapman–Enskog derivation is not used in
deriving the cosmic ray hydrodynamic equations. Nonetheless,
the sets of equations that emerge are the same suggesting that
a more careful analysis of the cosmic ray two-fluid equations
would show that the system can in fact include the cosmic ray
number density explicitly and therefore be capable of describing
the full plasma system.

3. LINEAR WAVE ANALYSIS

The PUI mediated plasma model derived above lends itself to
a variety of applications. Here, we analyze linear waves in the
three regions discussed in the Introduction, viz., the supersonic
solar wind in the outer heliosphere, the subsonic solar wind
in the IHS, and the VLISM. As we discuss below, the wave
properties in these three regions are significantly different from

8
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those in the inner heliosphere, which is essentially unmediated
by PUI physics. The closest correspondence is to multi-fluid
models that include heavy ions as a minority component (Mann
et al. 1997; Verscharen et al. 2013), but the heavy ions do not
typically dominate the thermal energy budget of the plasma
system.

The linearization of the PUI multi-fluid equations proceeds
in the standard way and we assume

ne/s/p = ne0/s0/p0 + δne/s/p; ue/s = δue/s;
Up = δUp; Pe/s/p = Pe0/s0/p0 + δPe/s/p;

B = B0 + δB = B0ẑ + δB; E = δE.

We seek plane wave solutions ∝ exp[i(ωt − k · x)], where ω
is the frequency, and k = (kx, 0, kz) the wave number. Some
algebra allows us to express the linearized system in terms of
the background protons, electrons, and PUI matrices Ms , Me,
and Mp through the electric field fluctuations and respective
velocity fluctuations,

δE = B0Msδus; (protons)

δE = B0Meδue; (electrons) (69)

δE = B0MpδUp, (PUIs)

where

Ms =

⎛
⎜⎜⎝

−i
C2

s k2
x

ωΩp
+ i ω

Ωp
, −1, −i

C2
s kxkz

ωΩp

+1, +i ω
Ωp

, 0

−i
C2

s kxkz

ωΩp
, 0, −i

C2
s k2

z

ωΩp
+ i ω

Ωp

⎞
⎟⎟⎠ ; (70)

Me =

⎛
⎜⎜⎝

+i
C2

e k2
x

ωΩp
− iξ ω

Ωp
, −1, +i

C2
e kxkz

ωΩp

+1, −iξ ω
Ωp

, 0

+i
C2

e kxkz

ωΩp
, 0, +i

C2
e k2

z

ωΩp
− iξ ω

Ωp

⎞
⎟⎟⎠ ; (71)

Mp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i
C2

p

Ωp

k2
x

ω − i

3
k · K · k

+ i
ω

Ωp

, −1, −i
C2

p

Ωp

kxkz

ω − i

3
k · K · k

+1, +i
ω

Ωp

, 0

−i
C2

p

Ωp

kxkz

ω − i

3
k · K · k

, 0, −i
C2

p

Ωp

k2
z

ω − i

3
k · K · k

+ i
ω

Ωp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(72)

The final relation needed to complete the derivation of the
dispersion relation follows from the definition of the current,

αδus + (1 − α)δUp − δue = 1

B0
MEδE, (73)

where

ME = iV 2
A

ωΩp

⎛
⎝ k2

z , 0, −kxkz

0, k2, 0
−kxkz, 0, k2

x

⎞
⎠ . (74)

In Equations (69)–(74), we have introduced the proton gyrofre-
quency Ωp = eB0/mp, the mass ratio ξ ≡ me/mp, the electron
number density n0, the density ratio or concentration α ≡ ns0/n0
and thus np0 = n0(1 − α). The square of the Alfvén speed is
defined with the electron number density n0 as

V 2
A = B2

0

μ0n0mp

, (75)

and the thermal proton, electron, and PUI sound speeds are
defined as

C2
s = γsPs0

ρs0
= γsPs0

ns0mp

;

C2
e = me

mp

γePe0

ρe0
= γePe0

n0mp

; (76)

C2
p = γpPp0

ρp0
= γpPp0

np0mp

,

and γe/s/p refers to the appropriate adiabatic index. Note that the
definition of the electron sound speed contains the ratio me/mp.
Finally, note that the scalar k · K · k is present in (72). The
diffusion tensor is assumed to be of a simple diagonal form (i.e.,
we do not include the off-diagonal terms associated with drift
and curvature—see the discussion in Zank 2013) and we specify

K =
(

κ⊥ 0 0
0 κ⊥ 0
0 0 κ‖

)
; (77)

k · K · k = k2(κ⊥ sin2 θ + κ‖ cos2 θ ). (78)

Recall that the formal definition of the heat conduction spatial
diffusion coefficient is (see the definitions (25) and (26))

Kij ≡
∫

c′2κim

∂f0

∂xm

c′2dc′/
∂

∂xj

∫
c′2f0c

′2dc′

≡ 〈c2τs〉
3

� 〈c2〉〈τs〉
3

,

where the ensemble average is taken over characteristic PUI
speeds. Accordingly, if we crudely approximate the scattering
time by the inverse gyrofrequency, we have κ‖ ≡ 〈c2〉/3Ωp,
where 〈c2〉 is an ensemble averaged characteristic speed of the
PUIs. We therefore introduce the definitions

κ⊥ = χ
1

3Ωp

〈c2〉, κ‖ = 1

3Ωp

〈c2〉, (79)

and χ = 0.01. In estimating the diffusion coefficients (79),
we need to choose a typical PUI speed for the system of
interest weighted appropriately according to the definition of
K, e.g., in the supersonic solar wind, one might choose 〈c2〉1/2

to be some fraction of 400 km s−1. Although we assume that
the scattering time can be approximated by the PUI inverse
gyrofrequency, the real scattering time may well be much
slower. Our choice of χ = 0.01 is motivated by models of
the perpendicular diffusion coefficient derived from nonlinear
guiding center theory (Matthaeus et al. 2003), which, when
evaluated for explicit turbulence models, yields a ratio of ∼0.01
between the perpendicular diffusion and parallel coefficients
(Zank et al. 2004).

From the expression for the current (73), and relations (69)
et seq., the determinant is

∣∣αM−1
s + (1 − α)M−1

p − M−1
e − ME

∣∣ = 0,

from which the dispersion relation can be expressed as
∣∣αMp + (1 − α)Ms − Mp · (M−1

e + ME

) · Ms

∣∣ = 0. (80)

9
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The dispersion relation (80) is formidably complicated, contain-
ing as a subset the full two-fluid model (Stringer 1963; Sahraoui
et al. 2012 and references therein). Nonetheless, neglecting elec-
tron inertia yields a somewhat “tractable” 11th-order polynomial
dispersion relation, whereas in the limit of small PUI abundance
α → 1, electron inertia effects can be retained. These various
limits are discussed below.

3.1. Dispersion Relation in the Absence of Electron Inertia

The neglect of electron inertia in (80) yields an 11th-order
polynomial dispersion relation,

11∑
n=0

An

(
ω

Ωp

)n

= 0, (81)

where the coefficients are given in Appendix B. The en-
tropy mode ω = 0 is already eliminated from the dispersion
relation (81). The dispersion relation is written in a form that
facilitates expression in dimensionless units, e.g., ω̃ = ω/Ωp,

k̃ = kdi = kVA/Ωp and ˜k · K · k = k · K · k/Ωp.

3.1.1. Parallel Propagation, θ = 0◦

On setting θ = 0◦, the dispersion relation (81) can be factored
into three separate dispersion relations. The first corresponds to
dispersive Alfvén waves, i.e., ion-cyclotron or whistler modes
satisfying

ω4 − (2k2V 2
A +

k4V 4
A

Ω2
p

)ω2 + k4V 4
A =

(
ω2 +

k2V 2
A

Ωp

ω − k2V 2
A

)

×
(

ω2 − k2V 2
A

Ωp

ω − k2V 2
A

)
= 0, (82)

with solutions

ω = ±k2V 2
A

2Ωp

+ kVA

√
1 +

(
kVA

2Ωp

)2

(yields ω > 0); (83)

ω = ±k2V 2
A

2Ωp

− kVA

√
1 +

(
kVA

2Ωp

)2

(yields ω < 0). (84)

The ion-cyclotron mode satisfies ω → ±Ωp in the limit that
k → ∞, whereas the whistler mode satisfies ω → ±∞ in the
same limit (since electron inertia is neglected).

The second factorization corresponds to a hybrid proton–
PUI mode

ω = ±Ωp. (85)

The remainder of the polynomial dispersion relation couples the
proton and PUI sound modes, and is given by

ω5 − i

3
k · K · kω4 − (

C2
e + C2

s + C2
p

)
k2ω3

+
i

3
k · K · k

(
C2

e + C2
s

)
k2ω2

+
(
(1 − α)C2

e C
2
s + C2

p

(
C2

s + αC2
e

))
k4ω

− i

3
k · K · k(1 − α)k4C2

e C
2
s = 0. (86)

For the cases that we consider, α is quite close to 1, typically
different by some 10%–20%. The dispersion relation is therefore
usefully rewritten as(

ω4 − i

3
k · K · kω3 − (

C2
e + C2

s + C2
p

)
k2ω2

+
i

3
k · K · k

(
C2

e + C2
s

)
k2ω + C2

p

(
C2

e + C2
s

)
k4

)
ω

= (1 − α)k4C2
e C

2
s

(
i

3
k · K · k − ω

)
. (87)

It is easily seen that setting α = 1 yields as solutions
to (87), the

entropy mode : ω = 0; (88)

two-fluid sound mode : ω = ±k

√
C2

s + C2
e ; (89)

PUI sound mode : ω = ±
√

k2C2
p −

(
k · K · k

6

)2

+
i

6
k · K · k. (90)

In the absence of spatial diffusion, (90) corresponds to a simple
PUI sound mode ω = ±Cpk. The second term in (90) is
imaginary with positive sign and therefore describes how PUIs
also damp the PUI sound mode. For α �= 1, the modes (88)–(90)
are coupled.

Further insight into (86) is obtained by introducing the phase
speed Vp ≡ ω/k. The diffusion term k · K · k can be expressed
as κ‖k2 for parallel wave propagation. For a characteristic phase
speed V0, we may exploit the length scale introduced by the
diffusion coefficient κ‖ to consider long wavelength and short
wavelength modes, using either

κ‖k
V0

� 1 or
κ‖k
V0

� 1, (91)

respectively. On using V̄p ≡ Vp/V0, C̄s,e,p ≡ Cs,e,p/V0, the
normalized form of (86) becomes

V̄ 5
p − i

3

κ‖k
V0

V̄ 4
p − (

C̄2
e + C̄2

s + C̄2
p

)
V̄ 3

p +
i

3

(
C̄2

e + C̄2
s

) κ‖k
V0

V̄ 2
p

+
(
(1 − α)C̄2

e C̄
2
s + C̄2

p

(
C̄2

s + αC2
e

))
V̄p

− i

3
(1 − α)C̄2

e C̄
2
s

κ‖k
V0

= 0. (92)

We can solve (92) in the long wavelength limit by setting
ε ≡ O(κ‖k/V0) � 1 and using V̄p = V̄p0 + εV̄p1. Similarly,
we can solve (92) in the short wavelength limit using ε ≡
O((κ‖k/V0)−1) � 1 and using V̄p = V̄p0 + εV̄p1. For the long
wavelength limit, we obtain five solutions, one of which is a
purely damped mode

ω � i

3
κ‖k2 (1 − α)C2

e C
2
s

(1 − α)C2
e C

2
s + C2

p(C2
s + αC2

e )

� i

3
κ‖k2 (1 − α)C2

e C
2
s

C2
p(C2

s + C2
e )

, (93)
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with damping rate proportional to the PUI concentration. An-
other solution is the PUI acoustic mode that is coupled weakly
to the thermal plasma and is diffusively damped,

ω � ± Cpk

(
1 + (1 − α)

C2
e (C2

p − C2
s )

2C2
p(C2

p − C2
s − C2

e )

)

+
i

6
κ‖k2

(
1 − (1 − α)

C2
e (C2

p − C2
s )2 + C2

s C
4
e

C2
p(C2

p − C2
s − C2

e )2

)
. (94)

The final long wavelength limit mode admitted by (92) is a two-
fluid acoustic mode that is coupled weakly to the PUIs and is
weakly diffusively damped, with

ω � ± (C2
s + C2

e )1/2k

(
1 − (1 − α)C2

e (C2
p − C2

s )

2(C2
s + C2

e )(C2
p − C2

s − C2
e )

)

+
i

6
κ‖k2

(1 − α)C2
pC4

e

(C2
s + C2

e )(C2
p − C2

s − C2
e )2

. (95)

The converse short wavelength limit shows that there is no
PUI mode. Only the two-fluid acoustic mode persists and it is
very weakly coupled to the PUIs via the concentration (1 − α)
and is damped by PUIs. Thus, we have

ω � ± (C2
s + C2

e )1/2k

(
1 − (1 − α)

C2
s C

2
e

2(C2
s + C2

e )2

)

+
3i

2κ‖
(1 − α)

C2
pC4

e

(C2
s + C2

e )2
. (96)

A second slowly propagating mixed thermal acoustic mode
exists, which is also damped by PUIs,

ω � ±√
1 − α

CsCe√
C2

s + C2
e

k+
3i

2κ‖
C2

p

(
1 − (1 − α)

C4
e

(C2
s + C2

e )2

)
.

(97)
Finally, in the short wavelength limit, (92) admits a purely
damped non-propagating mode

ω � 3i

2κ‖
C2

p

(
1 − (1 − α)

C2
e (C2

p − C2
s )

C2
p(C2

s + C2
e )

)
. (98)

3.1.2. Perpendicular Propagation, θ = 90◦

The reduced dispersion relation for perpendicularly propa-
gating waves is a fifth-order polynomial,

ω5 − i

3
k · K · kω4 − ω3

[
k2
(
C2

e + C2
s + C2

p

)

+ Ω2
p

]
+

i

3
k · K · kω2

[
k2
(
C2

e + C2
s + V 2

A

)
+ Ω2

p

]
+ ω

{
k4
[
(1 − α)C2

s

(
C2

e + V 2
A

)
+ C2

p

(
C2

s + αC2
e + αV 2

A

)]
+ k2Ω2

p

[
(1 − α)C2

p + αC2
s + C2

e + V 2
A

]}
− i

3
k · K · k

[
k4(1 − α)C2

s

(
C2

e + V 2
A

)
+ k2Ω2

p

(
αC2

s + C2
e + V 2

A

)] = 0. (99)

It is instructive to consider the limit α = 1. In this case, we
recover the two-fluid fast mode

ω = ±
√

V 2
A + C2

s + C2
e k, (100)

together with a third-order polynomial describing the separate
propagation of PUI modes,

ω3 − i

3
k · K · kω2 − ω

(
C2

pk2 + Ω2
p

)
+

i

3
k · K · kΩ2

p = 0. (101)

In this case, the term k · K · k = κ⊥k2. To analyze (101), we
again introduce the phase velocity Vp ≡ ω/k and normalize
with a characteristic speed V0, and consider the κ⊥k/V0 � 1
and κ⊥k/V0 � 1 limits. The long wavelength limit yields a
purely damped PUI mode with

ω � i

3
κ⊥k2

Ω2
p

C2
pk2 + Ω2

p

, (102)

and a damped PUI-cyclotron wave

ω � ±
√

C2
pk2 + Ω2

p +
i

6
κ⊥k4

C2
p

C2
pk2 + Ω2

p

. (103)

The short wavelength limit possesses two purely damped modes,
one of which is

ω � i

3
κ⊥k2

Ω2
p

C2
pk2 + Ω2

p

, (104)

together with

ω � ± k

√
C2

p −
(

κ⊥k

6

)2

+
i

6
κ⊥k2

= ± i

6
κ⊥k2

√
1 −

(
6Cp

κ⊥k

)2

+
i

6
κ⊥k2. (105)

In the short wavelength limit, we may expand the last expression
to obtain the two limiting purely imaginary cases,

ω � +
i

3
κ⊥k2; ω � +

3i

κ⊥
C2

p. (106)

Although algebraically tedious, the fifth-order dispersion
relation (99) is similarly amenable to an analysis in the long
and short wavelength regimes. This has the virtue of identifying
the basic couplings of the thermal plasma and PUI components,
but is no more revealing of the basic modes than the above
analysis. We do not therefore reproduce the analysis for (99).

3.1.3. Oblique Propagation, θ �= 0◦, 90◦

The only limit of the full dispersion equation that is analyti-
cally tractable is α → 1. In this case, in the absence of electron
inertia, the dispersion relation (81) factors into the standard two-
fluid dispersion relation without electron inertia (Stringer 1963;
Sahraoui et al. 2012),

ω6

Ω6
p

− ω4

Ω4
p

[
k4 V 4

A

Ω4
p

cos2 θ + k2 V 2
A

Ω2
p

(
1 + cos2 θ +

C2
e

V 2
A

+
C2

s

V 2
A

)]

+
ω2

Ω2
p

cos2 θ

[
k6 V 6

A

Ω6
p

(
C2

e

V 2
A

+
C2

s

V 2
A

)
+ k4 V 4

A

Ω4
p

(
1 + 2

C2
e

V 2
A

+ 2
C2

s

V 2
A

)]

− k6 V 6
A

Ω6
p

cos4 θ

(
C2

e

V 2
A

+
C2

s

V 2
A

)
= 0, (107)
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and a PUI-only dispersion relation,

ω4 − i

3
k · K · kω3 − (

C2
pk2 + Ω2

p

)
ω2 +

i

3
k · K · kΩ2

pω

+ C2
pΩ2

pk2 cos2 θ = 0. (108)

The solutions to (107) are the usual dispersive two-fluid modes,
viz., slow, fast, and Alfvén modes with the standard properties.
The PUI dispersion relation can be solved in the long and
short wavelength limits. In the long wavelength regime (using
κ ≡ κ‖ cos2 θ +κ⊥ sin2 θ ), we find two solutions for the arbitrary
angle θ that yield positive real frequency,

ω �
√

1

2

(
C2

pk2 + Ω2
p

) ± 1

2

√(
C2

pk2 + Ω2
p

)2 − 4C2
pΩ2

pk2 cos2 θ

+
i

12
κk2

⎛
⎝1 ± C2

pk2 − Ω2
p√(

C2
pk2 + Ω2

p

)2 − 4C2
pΩ2

pk2 cos2 θ

⎞
⎠ .

(109)

Note that the two plus signs and the two minus signs act in
concert. The two quasi-parallel propagating modes in expres-
sion (109) are expressed in a more revealing form as

ω � ± Cpk

(
C2

pk2 − Ω2
p cos2 θ

C2
pk2 − Ω2

p

)1/2

+
i

6
κk2

C4
pk4 − C2

pΩ2
pk2(2 − sin2 θ ) + Ω4

p

C4
pk4 − 2C2

pΩ2
pk2 cos2 θ + Ω4

p

;

ω � ± Ωp

(
C2

pk2 cos2 θ − Ω2
p

C2
pk2 − Ω2

p

)1/2

+
i

6
κk2

C2
pΩ2

pk2 sin2 θ

C4
pk4 − 2C2

pΩ2
pk2 cos2 θ + Ω4

p

, (110)

and the two quasi-perpendicular propagating modes as

ω � ± (
C2

pk2 + Ω2
p

)1/2

(
1 − C2

pΩ2
pk2 cos2 θ

(C2
pk2 + Ω2

p)2

)1/2

+
i

6
κC2

pk4
C2

pk2 + Ω2
p sin2 θ

C4
pk4 + 2C2

pΩ2
pk2 sin2 θ + Ω4

p

;

ω � ± CpΩpk cos θ

(C2
pk2 + Ω2

p)1/2
+

i

6
κk2Ω2

p

× C2
pk2 sin2 θ + Ω2

p

C4
pk4 + 2C2

pΩ2
pk2 sin2 θ + Ω4

p

. (111)

Finally, the short wavelength limit yields four damped
modes, with

ω � ± k

√
C2

p −
(

κk

6

)2

+
i

6
κk2

= ± i

6
κk2

√
1 −

(
6Cp

κk

)2

+
i

6
κk2; (112)

ω � 3i

κ
C2

p cos2 θ. (113)

At sufficiently small scales (112) is purely damped and becomes

ω � +
i

3
κk2; ω � +

3i

κ
C2

p. (114)

3.1.4. Inclusion of Electron Inertia

The inclusion of electron inertial terms renders the dispersion
relation unreasonably large to express as a polynomial, and so
we directly solve the linearized system of equations numerically.
However, it is illuminating to consider, as before, the limit
α → 1. In this case, the entire dispersion relation separates into
a two-fluid dispersion relation (Stringer 1963; Sahraoui et al.
2012) and a separate PUI dispersion relation. The two-fluid
dispersion relation is the well-known sixth-order polynomial,4

given by

A6
ω6

Ω6
p

− A4
ω4

Ω4
p

+ A2
ω2

Ω2
p

− A0 = 0, (115)

where the coefficients are

A6 = (1 + ξ )

(
1 + ξ + ξ

k2V 2
A

Ω2
p

)2

;

A4 = ξ 2 k6V 4
AV 2

S

Ω6
p

+
k4V 4

A

Ω4
p

×
[

cos2 θ (1 + ξ 3) + ξ (1 + ξ )

(
1 +

2V 2
S

V 2
A

)]

+
k2V 2

A

Ω2
p

(1 + ξ )2

[
1 + cos2 θ +

V 2
S

V 2
A

]
;

A2 = cos2 θ

[
k4V 4

A

Ω4
p

(1 + ξ )

(
1 +

2V 2
S

V 2
A

)
+

k6V 4
AV 2

S

Ω6
p

(1 + ξ 2)

]
;

A0 = k6V 4
AV 2

S

Ω6
p

cos4 θ. (116)

In (116), we have introduced the combined thermal plasma
sound speed V 2

S = C2
s + C2

e .
The PUI dispersion relation may be expressed as

ω4 − i

3
k · K · kω3 − (

C2
pk2 + Ω2

p

)
ω2 +

i

3
k · K · kΩ2

pω

+ C2
pΩ2

pk2 cos2 θ = 0, (117)

which, not surprisingly, is identical to (108). In the limit that
α = 1, electron inertia therefore modifies only the two-fluid

4 We note that the classical two fluid dispersion (Stringer 1963; Formisano &
Kennel 1969; Braginskii 1957)—sometimes called the low-frequency
dispersion relation since the displacement current is neglected and
high-frequency modes are eliminated—employs a slightly simplified
derivation that combines the proton and electron momentum equations and
neglects some terms proportional to ξ (see, e.g., Appendix I in Stringer 1963).
These classical forms of the dispersion relation are therefore not completely
equivalent to (115)–(116), which is the exact two-fluid dispersion relation with
no displacement current. For numerical solutions the differences are however
negligible. We also note that the otherwise exact two-fluid dispersion of
Sahraoui et al. (2012; their Equation (13)) contains a small typo in the first
term in front of ω6 (our A6 term), which in our case expands as
(1 + ξ )[(1 + ξ )2 + 2ξ (1 + ξ )(k2V 2

A/Ω2
p) + ξ2(k4V 4

A/Ω4
p)]. Instead of the correct

(1 + ξ )2 Sahraoui et al. have 1 + ξ2 (however, for their numerical solutions F.
Sahraoui et al. 2014, private communication, used the correct dispersion
relation).

12



The Astrophysical Journal, 797:87 (30pp), 2014 December 20 Zank et al.

modes. For a non-vanishing pickup ion abundance, all modes
are of course coupled and electron inertia modifies all waves.

For parallel wave propagation, solutions of the two-fluid
dispersion relation (115)–(116) can be obtained readily. The
dispersive Alfvén wave solutions (the ion-cyclotron and whistler
modes) are given by

ω =
± k2V 2

A

2Ωp
(1 − ξ ) + kVA

√
1 + ξ +

(
kVA

2Ωp

)2
(1 + ξ )2

1 + ξ
(

1 + k2V 2
A

Ω2
p

) ,

(yields ω > 0) (118)

ω =
± k2V 2

A

2Ωp
(1 − ξ ) − kVA

√
1 + ξ +

(
kVA

2Ωp

)2
(1 + ξ )2

1 + ξ
(

1 + k2V 2
A

Ω2
p

)
(yields ω < 0). (119)

Now, because of the inclusion of electron inertia, the whistler
mode frequency is bounded by the electron cyclotron frequency
in the limit k → ∞ and ω → ±(Ωp/ξ ) = ±Ωe. For the ion-
cyclotron mode, the limit k → ∞ yields the same result when
electron inertia terms are neglected, i.e., ω → ±Ωp.

Similarly, the two-fluid sound mode is a solution
of (115)–(116) with

ω = ± kVS√
1 + ξ

. (120)

As in the case with no electron inertia, the hybrid proton-
pickup ion mode ω = ±Ωp and the ion-cyclotron and whistler
modes (118) and (119) are also solutions of the full linearized
coupled system (i.e., without taking the limit α → 1). The limit
α → 1 is useful primarily to distinguish the two-fluid sound
mode (120) and the pickup ion sound mode (90), which are
otherwise coupled.

For perpendicular wave propagation, the fast two-fluid mag-
netosonic mode is modified by electron inertial effects to read

ω = ±k

√√√√√V 2
A + V 2

S + ξ

1+ξ

k2V 2
AV 2

S

Ω2
p

1 + ξ + ξ
k2V 2

A

Ω2
p

. (121)

In the limit k → ∞, the frequency is ω = ±kVS/
√

1 + ξ .
Finally, for obliquely propagating modes, an additional hori-

zontal “resonant” frequency asymptote is introduced, given by
ω = Ωe cos θ , as is clearly seen in numerical solutions (it
is harder to see analytically). It is interesting to note that for
purely parallel propagation, it is the fast (whistler) mode that
has this limit. However, for oblique propagation (in which case
the modes never intersect), the fast mode frequency continues to
increase and it is the Alfvén mode that has this limit. For normal
propagation angles, this is relevant only at very small scales, but
for highly oblique angles (see, for example, our later Figure 1
for θ = 88◦), this effect becomes more apparent at larger scales.

4. SPECIFIC EXAMPLES OF LINEARIZED
WAVES IN PUI MEDIATED PLASMAS

4.1. Identification of Modes in the Numerical Solutions

To properly investigate the dispersion relation in full general-
ity appropriate to the three PUI mediated regions of interest (the

outer heliosphere, the IHS, and the VLISM), we need to obtain
numerical solutions. The previous estimated solutions provide
useful guidance to identify modes at the largest and smallest
scales and weak concentrations. Considering only positive fre-
quencies at long wavelengths (conveniently defined as in the
vicinity of kVA/Ωp = 0.01), we introduce the following col-
ors to correspond to the following (approximate) designation
of wave modes. (1) The slow (red) and fast (blue) two-fluid
magnetosonic modes:

ωs,f = k

√
1

2

(
V 2

S + V 2
A

) ± 1

2

√(
V 2

S + V 2
A

)2 − 4V 2
S V 2

A cos2 θ;
(122)

(2) the Alfvén mode (green):

ωA = kVA cos θ; (123)

(3) the slow pickup ion mode (cyan):

ωsp = kCp cos θ; (124)

and the fast pickup ion mode (black):

ωfp = Ωp. (125)

For the cases of interest here, the PUI sound speed Cp is larger
than both the Alfvén speed VA and combined thermal plasma
sound speed VS = √

C2
s + C2

e . Thus, for small propagation
angles, the order of the modes will always be ωs < ωA < ωf <
ωsp < ωfp, i.e., red, green, blue, cyan, and black. However,
as θ increases, the frequency of the fast proton (blue) mode
increases too with ωf → k

√
V 2

S + V 2
A and the frequency of

the slow pickup ion (cyan) mode decreases with ωsp → 0.
Therefore, beyond some critical angle θc, the fast proton mode
will be faster than the slow pickup ion mode (i.e., the blue mode
will find itself above the cyan mode). This will happen at the
critical angle

cos2 θc = V 2
A

C2
p

(
1 +

V 2
S

V 2
A

− V 2
S

C2
p

)
. (126)

Furthermore, because ωA < ωsp for all angles θ beyond
the critical angle θc the order of the modes will always be
ωs < ωA < ωsp < ωf < ωfp, i.e., red, green, cyan, blue,
and black. Of course, this is only approximate since we are
discussing the strict limits α → 1 and k · K · k → 0.
Nevertheless, for our parameters at 10 AU, for example, the
critical angle corresponds to θc = 76.71◦, which is why it is
difficult to correctly identify the cyan and blue modes at 70◦ in
this case. The corresponding angles for the VLISM and the IHS
are θc = 71.86◦ and θc = 79.14◦, respectively.

In all three of the particular cases that we consider below,
we solve numerically the full dispersion relation including the
electron inertial terms with ξ = me/mp = 1/1836.

The parallel and perpendicular diffusion coefficients are
specified in (79) and are taken to be proportional to the square of
the weighted characteristic PUI speed and inversely proportional
to the gyrofrequency. The scattering time is almost certainly
slower than this, but it is a simple initial estimate and the
magnitude of the diffusion coefficients can be adjusted as
necessary. The magnitude of the diffusion coefficients therefore
depends on the PUI speed and the strength of the magnetic
field. As we illustrate below, the PUI diffusion coefficient is
smallest in the VLISM, somewhat larger in the IHS, and largest
in the supersonic solar wind of the outer heliosphere. For the
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Figure 1. Dispersion and damping curves for parameters appropriate to the VLISM, assuming α = 0.999375 and 〈c2〉1/2 = 200 km s−1. In the left and right panels, the
horizontal dotted lines correspond to the asymptotes ω = Ωp cos θ and ω = Ωe cos θ . Note that our linear analysis uses exp[i(ωt − k · x)] so that damping corresponds
to the positive value of the imaginary part of the frequency. Top panel: θ = 0◦, two-fluid wave modes (left); three-fluid with diffusion wave modes showing the
real frequency (middle), and the damping rate (right). The slow PUI mode is fully damped for wave numbers k � Ωp/VA. Second panel: θ = 30◦, two-fluid (left);
three-fluid real frequency (middle), and damping rate (right). Note that the fast PUI mode (black) is evanescent at wave numbers greater than about k � Ωp/VA.
Third panel: θ = 70◦, two-fluid (left); three-fluid real frequency (middle), and damping rate (right). Fourth panel: θ = 88◦, two-fluid (left); three-fluid real frequency
(middle), and damping rate (right). Bottom panel: θ = 90◦, two-fluid (left); three-fluid real frequency (middle), and damping rate (right). For the VLISM parameters
used here, all modes intersect. Despite the damping of all modes by PUIs in the three-fluid model, for real frequencies the three-fluid model essentially separates into
a two-fluid (protons and electrons) and a PUI-fluid model, i.e., the two-fluid solutions (red, green, and blue) are almost identical in the left and middle columns.

(A color version of this figure is available in the online journal.)
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purpose of ordering the discussion, we begin with the VLISM
and conclude with the outer heliosphere.

4.2. The PUI-mediated VLISM

As discussed in the Introduction, we assume a PUI density
np = 5 × 10−5 cm−3 and an electron density n0 = 0.08 cm−3,
so that np/n0 = 6.25 × 10−4. Thus, the parameter α =
1 − np/n0 = 0.999375. We assume a VLISM magnetic
field B0 = 3 μG = 0.3 nT, which yields an Alfvén speed
VA = B0/

√
μ0n0mp = 23.14 km s−1. For the reasons discussed

in Zank et al. (2013), we take the proton temperature to be
Ts = 15,000 K, the electron temperature Te = Ts and the
polytropic indices γs = γe = γp = 5/3. The proton and electron
sound speeds are C2

s = γskBTs/mp and C2
e = γekBTe/mp,

which yields Cs = Ce = 14.37 km s−1. To estimate the sound
speed for the VLISM PUI gas, we assume that fast neutrals
from the supersonic solar wind and hot neutrals from the IHS
are the primary origin of PUIs in the VLISM. The speed
of the fast and hot neutrals relative to the VLISM plasma
ranges from some 700–350 km s−1 or 200–100 km s−1. The PUI
distribution may be approximated crudely as a shell distribution
(fp = npδ(c − U0)/4πc2 in the plasma frame) with some
form of weighted particle speed U0, a nested shell with a set
of different values of U0, or possibly even a partially filled
shell distribution (fp = 3npc−3/2/8πU

3/2
0 in the plasma frame),

with a weighted U0, related to the radius of the shell and the
maximum particle speed relative to the background flow. The
pressure for either a shell or filled-shell (Vasyliunus–Siscoe)
distribution is Pp = ρpU 2

0 /3 or Pp = ρpU 2
0 /7. The PUI sound

speed may be estimated from Cp = U0
√

γp/a, where a varies
from 3–7. Below, we use Cp = 97.59 km s−1, which for a
shell corresponds to U0 ∼ 130 km s−1 or for a filled-shell to
U0 ∼ 200 km s−1. Precisely what the correct weighted value
of U0 should be is uncertain but this provides a reasonable
estimate for the PUI sound speed that is clearly distinguished
from the values of Cs and Ce. We therefore do not expect the
basic dispersion curves to be very much different for other
values of Cp.

To illustrate the sensitivity of the plasma wave properties to
the assumed PUI spatial diffusion coefficient in the VLISM,
we consider in detail two cases. (1) Assume that 〈c2〉1/2 =
200 km s−1, and (2) that 〈c2〉1/2 = 50 km s−1. Both values
appear to be quite reasonable. Since Ωp = eB0/mp = 2.87 ×
10−2 s−1, we may estimate the diffusion tensor as κ‖ =
〈c2〉/(3Ωp) = 4.64 × 1011 m2/s or κ‖ = 2.9 × 1010 m2/s.
The perpendicular diffusion is suppressed relative to the parallel
diffusion coefficient, and is given by κ⊥ = χκ‖ with parameter
χ = 0.01.

Numerical solutions of the dispersion relation, including elec-
tron inertia, for the parameters above with 〈c2〉1/2 = 200 km s−1

are shown in Figure 1. Three columns of panels are shown in
Figure 1. The leftmost column shows numerical solutions of
the standard two-fluid plasma model (Stringer 1963; Sahraoui
et al. 2012), i.e., thermal electrons and protons only. The middle
column shows plots of the real frequency as a function of wave
number for the PUI-mediated three-fluid plasma. The right-
most column shows the corresponding imaginary part of the
frequency as a function of wave number of the PUI-mediated
VLISM. The rows correspond to specific wave propagation di-
rections, from parallel (top row) to perpendicular (bottom), as
listed in the figure caption.

The two-fluid dispersion relation is included for reference, so
that the similarities (and differences) in the PUI-mediated model
are apparent. The two-fluid model for wave propagation angles
θ < 90◦ shows that three waves exist in the system: the fast
(blue) and slow (red) magnetosonic modes and the Alfvén mode
(green). These are clearly distinguishable for 0 < θ < 90◦.
For large k, the parallel Alfvén mode tends to the asymptote
ω = Ωp. The parallel fast mode tends to Ωe. For oblique angles,
the Alfvén mode (green) eventually resonates at the electron
frequency Ωe cos θ , and the slow mode (red) resonates at the
proton gyrofrequency Ωp cos θ . The two-fluid perpendicular
case is degenerate with only the fast mode remaining.

The PUI-mediated model possesses a richer set of wave
modes than the two-fluid case. Shown in the middle panels,
the PUI-mediated dispersion relation now exhibits two further
modes, a fast PUI (black) and slow PUI (cyan) mode. The PUI
sound speed is larger than the thermal plasma sound speeds
and so these dispersion curves lie above their thermal counter-
parts. As illustrated in the middle column, the blue, red, and
green curves are virtually unchanged from their corresponding
two-fluid counterparts. Not surprisingly, since the abundance
parameter α � 1 for the VLISM, the thermal plasma modes
are essentially decoupled from the PUI population, at least for
this value of the diffusion coefficient. For parallel propagation,
the dispersive Alfvén waves (blue and green) (83), sometimes
called the ion-cyclotron and whistler modes, are unchanged
from the two-fluid case. The fast PUI mode (ω = ±Ωp) is
now present (black curve). Two acoustic modes, the slow PUI
mode (cyan; Equation (94)), and the acoustic thermal mode (red;
Equation (95)) exist at long wavelengths (small k). As illustrated
in the top panel of the right column, and supported analytically
by expressions (94) and (95), the parallel PUI sound mode is
damped more strongly than the parallel thermal acoustic mode.
The parallel propagating PUI acoustic mode exists only for
k � Ωp/VA, after which it is completely damped away and no
longer propagates. By contrast, at short wavelengths, the slow
thermal acoustic mode (Equation (96)) is coupled very weakly
to the PUIs, the propagation speed being ∼√

C2
s + C2

e , but is
damped by PUIs as illustrated by the red curve in the top panel
of the right column (see also Equation (96)).

With increasing propagation angles θ , the five wave modes
remain conceptually similar in terms of the classification but
now, as illustrated in the panels of the rightmost column, all
oblique modes are damped by PUIs, including the Alfvén mode.
Also, despite not being damped when propagating parallel to
B0, the fast thermal acoustic mode is much more strongly
damped than the slow thermal acoustic mode, despite the
latter experiencing damping at θ = 0◦. The fast PUI mode
(black) deviates from the ω = Ωp line with increasing k, but
becomes evanescent shortly after peaking in frequency. The
imaginary frequency of course becomes very large for this mode.
The frequencies of the slow thermal and PUI acoustic modes
(red and cyan) tend to the proton gyrofrequency asymptote
ω = Ωp cos θ . The fast PUI acoustic modes intersects the fast
thermal acoustic mode at certain propagation angles. This is
illustrated in the third panel down of Figure 1. For θ = 30◦,
the slow PUI acoustic mode (cyan) intersects both the thermal
fast mode (blue) and the Alfvén mode (green), and converges
to the same asymptote as the thermal slow mode. For greater
obliquities, the PUI slow mode (cyan) intersects only the Alfvén
mode (green). Finally, for perpendicular propagation (last panel
down), only the fast PUI and fast thermal acoustic modes remain,
both experiencing damping. Above a certain value of k, the short
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wavelength fast PUI mode becomes evanescent. The numerical
results presented here are consistent with the simpler analytic
derivations above.

Plotted in Figure 2 are the dispersion curves for the case of
〈c2〉1/2 = 50 km s−1. All other VLISM parameters identical,
including the PUI sound speed and the PUI abundance. The
figure format is identical to that of Figure 1 in terms of
the columns and relationship of the color of the curves to the
different wave modes. However, the dispersion relation curves
are now fundamentally different from the 〈c2〉1/2 = 200 km s−1

example. The smaller diffusion coefficient ensures a coupling
between the thermal VLISM plasma and the PUIs.

Figure 2 shows the full complement of the dispersion curves
but the level of detail makes it difficult to discern the dif-
ferences with those curves shown in Figure 1. Illustrated in
Figure 3 are the θ = 30◦ cases for the larger (top panel, 〈c2〉1/2 =
200 km s−1) and smaller (bottom panel, 〈c2〉1/2 = 50 km s−1)
diffusion coefficients. The upper panel for the large diffusion
example shows that the thermal fast (blue) and slow (red) mag-
netosonic modes and the Alfvén mode (green) are fundamentally
unchanged from the two-fluid waves, and the PUI slow curve
(cyan) intersects the thermal fast mode curve. Besides the ob-
vious difference in the PUI fast mode (black curve), the bottom
panel shows that (1) the PUI slow mode curve (cyan) no longer
intersects the thermal fast mode curve but is “hyperbolic” to
it; (2) the PUI slow mode curve completely changes character
beyond k ∼ Ωp/VA, and now resembles the thermal fast mode
curve in that ωr (and k) increase asymptotically to the elec-
tron gyrofrequency Ωe cos θ ; (3) the thermal fast mode and the
Alfvén wave curves approach one another hyperbolically and do
not intersect; and (4) the thermal fast mode frequency increases
with increasing k, tending asymptotically toward Ωe cos θ , but
the Alfvén wave (green) curve is now asymptotic to the proton
gyrofrequency Ωp cos θ . The behavior of the thermal and Alfvén
modes is fundamentally different from the two-fluid model when
the PUI heat conduction diffusion coefficient is small enough to
ensure coupling of the thermal and PUI plasmas.

The differences between the large and small heat conduc-
tion diffusion cases for different obliquities are now read-
ily determined from Figure 2. Observe for example that
the PUI slow mode is hyperbolic to the Alfvén mode
when θ = 88◦.

Consider the high-frequency short wavelength behavior of
the two examples shown in Figures 1 and 2. Using the same
parameters, we replot the θ = 30◦ and 88◦ cases in Figure 4,
extending kVA/Ωp to 104. The leftmost column shows the
two-fluid dispersion curves, the middle column the three-
fluid model where 〈c2〉1/2 = 200 km s−1 is used to estimate
the diffusion coefficient (i.e., the Figure 1 case), and the
rightmost column illustrates the three-fluid VLISM model using
〈c2〉1/2 = 50 km s−1 (i.e., the Figure 2 case). For the two-fluid
plasma model, θ = 30◦, notice that the Alfvén mode (green)
resonates at the electron cyclotron frequency asymptote Ωe cos θ
as k → ∞ i.e., at small spatial scales. By contrast, the fast/
whistler mode dispersion curve (blue) briefly tracks the electron
gyrofrequency Ωe cos θ asymptote for a range of wave numbers
before eventually continuing to increase with increasing wave
number. For highly oblique propagation angles (e.g., θ = 88◦),
the whistler mode no longer tracks the asymptote Ωe cos θ at all
and simply continues to increase monotonically.

As discussed above at length, for the large diffusion coef-
ficient case (〈c2〉1/2 = 200 km s−1), the middle panel shows
again that the thermal modes in the three-fluid model are not

influenced by the PUIs (except for damping) and the three-fluid
model behaves as a separate two-fluid and PUI gas. By contrast,
the three-fluid model with low PUI diffusion (right panels) ex-
hibits a strong coupling of the thermal and PUI gas, leading to
the distinctly different linear wave characteristics discussed in
the context of Figures 2 and 3. The small wavelength dispersion
curves are similarly different. For θ = 30◦, the slow PUI mode
curve (cyan) tracks the Ωe cos θ line for a range of k values be-
fore increasing again with increasing k. The fast thermal mode
curve (blue) increases more slowly than the slow PUI mode
curve until it approaches the electron gyrofrequency Ωe cos θ
asymptotically for propagation angles less than the critical an-
gle θc. By contrast, for highly oblique wave propagation angles
greater than θc, the slow PUI sound mode (cyan) approaches
the electron gyrofrequency Ωe cos θ asymptotically and the fast
thermal and fast PUI modes now continue to increase beyond the
electron gyrofrequency line. Finally, the Alfvén wave dispersion
curve, unlike the two-fluid and larger diffusion cases, now ap-
proaches the proton gyrofrequency line Ωp cos θ asymptotically
rather than the electron gyrofrequency.

Before concluding this section, we further clarify briefly
the nature of the interaction of several of the wave modes as
revealed in the dispersion relation plots Figures 1, 2, and 3 for
oblique propagation. In Figure 5, we consider again the 30◦
case. The top and bottom panels show the cases illustrated in
Figures 1, 2, and 3 for the fast thermal and slow PUI modes.
For the 〈c2〉1/2 = 200 km s−1 case, as discussed, the two modes
preserve their distinct identities and intersect, i.e., the modes
behave as an approximately non-interacting thermal two-fluid
and a PUI gas. Reducing the diffusion coefficient by assuming
〈c2〉1/2 = 50 km s−1 (bottom panel) shows that the wave modes
no longer preserve their distinct thermal or PUI character—at
larger values of wave number k, the thermal fast mode wave
behaves more like the PUI slow mode, and the PUI slow mode
assumes characteristics of the thermal fast mode. The two modes
no longer intersect, as discussed above, as they do in the case of
the larger diffusion coefficient. The panels in between illustrate
the effect of varying the abundance parameter α (second and
third panels down). This variation is somewhat academic since
e.g., a value of α = 0.97 requires a VLISM PUI number density
of 2.4×10−3 cm−3, which is unreasonably large for the VLISM,
but may be reasonable in other settings. The sensitivity of the
wave solutions to the abundance α is revealed in panels 2 and 3
of Figure 5, which show that for a value α = 0.98, the thermal
fast and PUI slow dispersion curves intersect, whereas for
α = 0.97 they do not. The fourth panel down further illustrates
the sensitivity of the dispersion curves to the assumed value
of 〈c2〉1/2—in this case 〈c2〉1/2 = 100 km s−1, and the curves
resemble the 〈c2〉1/2 = 200 km s−1 example. Figure 5 clarifies
that there are two prerequisites for the three-fluid PUI mediated
model to behave as a separate thermal two-fluid and PUI charged
gas: (1) the PUI number density must be sufficiently low (α must
be sufficiently close to (1), and (2) the PUI heat conduction
diffusive coefficient must be sufficiently large (large value of
〈c2〉1/2).

4.3. The PUI-mediated Subsonic Solar
Wind or the Inner Heliosheath

As discussed in the Introduction, the IHS plasma is mediated
in a complex way by PUIs whose origin is both the ISM directly
(through charge exchange of interstellar neutrals flowing into
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Figure 2. Dispersion and damping curves for parameters appropriate to the VLISM. All parameters are as in Figure 1, including U0 = 200 km s−1 (which ensures
that the PUI sound speed Cp is the same), α = 0.999375, but the diffusion is decreased by choosing 〈c2〉1/2 = 50 km s−1. In the left and right panels, the horizontal
dotted lines correspond to the asymptotes ω = Ωp cos θ and ω = Ωe cos θ . Note that our linear analysis uses exp[i(ωt − k · x)] so that damping corresponds to the
positive value of the imaginary part of the frequency. Top panel: θ = 0◦, two-fluid wave modes (left); three-fluid with diffusion wave modes showing the real frequency
(middle), and the damping rate (right). Second panel: θ = 30◦, two-fluid (left); three-fluid real frequency (middle), and damping rate (right). Third panel: θ = 70◦,
two-fluid (left); three-fluid real frequency (middle), and damping rate (right). Fourth panel: θ = 88◦, two-fluid (left); three-fluid real frequency (middle), and damping
rate (right). Bottom panel: θ = 90◦, two-fluid (left); three-fluid real frequency (middle), and damping rate (right). For the VLISM parameters used here, the modes do
not intersect.

(A color version of this figure is available in the online journal.)
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Figure 3. Detail of the VLISM θ = 30◦ cases. The upper panel corresponds
to the larger heat conduction diffusion coefficient derived from 〈c2〉1/2 =
200 km s−1, and the lower panel to that derived from 〈c2〉1/2 = 50 km s−1.

(A color version of this figure is available in the online journal.)

the IHS from the local interstellar medium) and PUIs created
in the supersonic solar wind and transmitted through the
heliospheric termination shock into the IHS. The transmission
process is complicated in that some PUIs are transmitted
directly and others only after experiencing specular reflection
at the shock. The PUI properties inferred theoretically for the
IHS as a consequence of these processes (Zank et al. 1996a,
2010; Burrows et al. 2010) have been confirmed and further
refined observationally (Richardson 2008; Richardson et al.
2008; Desai et al. 2012, 2014; Zirnstein et al. 2014). The
thermal proton density is taken to be ns = 5 × 10−3 cm−3

and the ratio of pickup ion to proton density np/ns = 0.2.
This yields the parameter α = 1/(1 + np/ns) = 0.833 and
the electron density n0 = ns(1 + np/ns) = 6 × 10−3 cm−3.
The magnetic field is taken to be B0 = 0.1 nT, which yields
an Alfvén speed VA = 28.16 km s−1. We assume a proton
temperature Ts = 150,000 K, an electron temperature Te = Ts

and polytropic indices γs = γe = γp = 5/3. The proton and
electron sound speeds are therefore Cs = Ce = 45.43 km s−1.
We assume a composite PUI temperature Tp ∼ 107 K, which
yields the PUI sound speed classically as C2

p = γpkBTp/mp, or
Cp = 370.91 km s−1. For the diffusion tensor κ‖ = 〈c2〉/(3Ωp),
we assume a characteristic PUI speed of 〈c2〉1/2 = 300 km s−1

and for the perpendicular diffusion coefficient, κ⊥ = χκ‖, we
assume χ = 0.01.

Despite the greater mobility of the PUIs in the IHS yielding
a larger diffusion coefficient than in the VLISM, the smaller
parameter α ensures a strong coupling of the thermal plasma
and PUIs. The plots of Figure 6 depicting the real frequency
as a function of k therefore resemble those of Figure 2 in
many respects. However, for parallel propagation, the two-
fluid curves and the thermal modes of the three-fluid model
are almost identical. For parallel propagation, the thermal and
PUI modes behave as though they are uncoupled (although
PUIs damp the thermal modes). The PUI slow mode (cyan) is
evanescent for a range of k values, existing for long wavelengths
satisfying approximately k � Ωp/VA and short wavelengths
k � 10Ωp/VA.

The dispersion curves change quite dramatically for obliquely
propagating modes, and the two-fluid and three-fluid dispersion
curves are now quite different. Whereas the parallel PUI
slow (cyan) and fast (black) modes intersected, the obliquely
propagating modes no longer do so. Instead, as illustrated for
θ = 30◦, the intersection point becomes “hyperbolic” and
the PUI slow and fast modes swap characteristics. Now it
is the obliquely propagating PUI fast mode (black) that is
evanescent in a range of k space. The PUI slow mode (cyan)
becomes quite complicated for oblique propagation, assuming
characteristics of not only the PUI fast mode but also the thermal
fast magnetoacoustic mode at shorter wavelengths. The PUI
slow mode no longer possesses a region that is evanescent.

As illustrated in the two-fluid column of dispersion curves,
the behavior of the oblique thermal fast (blue), slow (red) mag-
netoacoustic and Alfvén (green) modes changes significantly
in the presence of PUIs (middle column). For example, both
the thermal slow mode and the Alfvén wave tend to the proton
gyrofrequency at short wavelengths—the short wavelength be-
havior of the oblique Alfvén mode is quite different from that
exhibited in the two-fluid model.

Finally, the only perpendicularly propagating modes are the
PUI and thermal fast modes.

4.4. The PUI-mediated Supersonic Solar Wind Beyond ∼10 AU

The thermal supersonic solar wind beyond the ionization
cavity (i.e., >∼10 AU) is dominated by the presence of a
suprathermal PUI population comprising primarily protons.
Besides protons (Gloeckler et al. 1993), heavier interstellar
PUIs are present but in much smaller quantities, first observed
in situ by Ulysses (Geiss et al. 1994; Gloeckler et al. 1994)
and since by New Horizons (McComas et al. 2008; Randol
et al. 2013). We consider solar wind parameters appropriate
to 10 AU, assuming that the magnetic field B0 = 0.5 nT,
density n0 = 0.08 cm−3, proton temperature Ts = 20,000 K and
estimate that the pickup proton abundance is np/ns = 0.05 (5%)
so that α = 1/(1 + np/ns) = 0.952. Heavy PUIs are neglected
since their number density is extremely small. At ∼10 AU, the
Alfvén speed VA = B0/

√
μ0n0mp = 38.56 km s−1. We further

assume that the polytropic indices γs = γp = γe = 5/3 and
that the electron temperature Te = Ts . The proton and electron
sound speeds can be estimated from C2

s = γskBTs/mp and C2
e =

γekBTe/mp, which yields Cs = Ce = 16.59 km s−1. We assume
a solar wind speed U0 = 400 km s−1, from which we estimate
the pickup ion sound speed Cp = U0

√
γp/7 = 195.18 km s−1

under the assumption that the PUI distribution function may be
approximated as a filled shell (Vasyliunas & Siscoe 1976; Zank
1999; Zank et al. 2010). The diffusion coefficient is estimated
using 〈c2〉1/2 = 400 km s−1.
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Figure 4. Plots of the real frequencies obtained by solving the three-fluid dispersion relation for the VLISM parameters used in Figures 1 and 2, but now extended to
smaller spatial scales (kVA/Ωp < 104). The dispersion relation curves are plotted for propagation angles of θ = 30◦ and θ = 88◦. Top panel: θ = 30◦, two-fluid (left),
three-fluid with diffusion 〈c2〉1/2 = 200 km s−1 (middle), three-fluid with diffusion 〈c2〉1/2 = 50 km s−1 (right). Bottom panel: θ = 88◦, two-fluid (left), three-fluid
with diffusion 〈c2〉1/2 = 200 km s−1 (middle), three-fluid with diffusion 〈c2〉1/2 = 50 km s−1 (right).

(A color version of this figure is available in the online journal.)

Plotted in Figure 7, using the same format, as before are
the dispersion curves for the two-fluid and three-fluid models
for the supersonic solar wind. Consider the top panels first
(parallel propagation). The dispersion relation for the three-
fluid model is of the 11th-order in ω and generally (at large
scales) admits five forward propagating modes, five backward
propagating modes and one mode which is purely imaginary.
Until now, we have plotted only the five forward modes. Here
we plot two additional modes. Starting at large scales (small k),
the cyan crosses identify the backward propagating PUI slow
sound mode. The real frequency of this mode is negative (and
therefore not plotted in the logarithmic scale), but its absolute
value is equal to the real frequency of the forward propagating
mode (cyan line). The damping rates for the forward (cyan) and
backward (cyan crosses) modes are naturally the same, as is
illustrated in Figure 7. At kVA/Ωp ∼ 0.7, both the forward and
backward PUI slow sound modes become so damped that they
lose their identity and become purely imaginary. After this point,
the damping rate of these modes is not equal. (Since the modes
lost their identity, the decision about which is cyan and which
has the cyan crosses is technically ad hoc.) The magenta curve
represents the mode that is purely imaginary at large scales. At
approximately kVA/Ωp ∼ 18 the damping rates for the magenta
mode and the cyan crosses mode become equal. At this point,
two new modes with ωr �= 0 are generated, one forward (cyan
crosses) and one backward (magenta).

As shown in the second set of panels (θ = 30◦), at approxi-
mately kVA/Ωp ∼ 0.9, the fast PUI mode (black) becomes so
damped that it loses its identity and becomes purely imaginary.
For this reason, we now plot the backward propagating PUI fast
mode, represented by black crosses at large scales. After both
modes lose their identity at kVA/Ωp ∼ 0.9, their damping rates
become unequal and identification of these modes is an ad hoc
choice. At approximately kVA/Ωp ∼ 20, the backward propa-
gating PUI (black-crosses) mode matches the frequency of the

purely imaginary (magenta) mode. At this point, a new forward
propagating PUI fast mode (black crosses) and a new back-
ward propagating mode (magenta line) is generated. The PUI
fast (black line) mode now becomes the only purely imaginary
mode existing in the system.

Like the θ = 30◦ case, at 70◦ the forward (black line) and
backward (black crosses) propagating PUI fast modes lose their
identities and become purely imaginary at about kVA/Ωp ∼ 6.
However, the backward propagating PUI (black crosses) mode
never reaches the purely imaginary magenta mode for the k
values considered here and no new modes with nonzero real
frequency are generated.

5. WAVE MODES IN THE REDUCED ONE-FLUID MODEL

For completeness, we discuss briefly the nature of wave
modes admitted by the reduced one-fluid model (61)–(68). The
correspondence between these modes and those obtained from
the multi-fluid description is noted. The linearization proceeds
in the usual way, where we use

ρ = ρ0 + δρ; U = δu; P = P0 + δP ;
Pp = Pp0 + δPp; B = B0ẑ + δB,

and suppose that the fluctuations are ∝ exp i[ωt − k · x] and
k = (kx, 0, kz). We neglect the higher order PUI viscosity terms
and retain only the effects of PUI heat conduction. We obtain
the dispersion relation in the form

(
ω2 − V 2

Ak2 cos2 θ
)[

ω4 −
(

V 2
S +

ω

ω − ik · K · k/3
C2

p + V 2
A

)

× k2ω2 +

(
V 2

S +
ω

ω − ik · K · k/3
C2

p

)
V 2

Ak4 cos2 θ

]
= 0,

(127)
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Figure 5. θ = 30◦, thermal fast mode (blue) and slow PUI (cyan) mode intersections for different PUI abundance and PUI diffusion parameters for the VLISM. The
left column of panels show the real frequency as a function of wave number k, and the right column shows the imaginary frequency as a function of k. Note that our
linear analysis uses exp[i(ωt − k · x)] so that damping corresponds to the positive value of the imaginary part of the frequency. Top panel: the same parameters as
in Figure 1, α = 0.999375 and 〈c2〉1/2 = 200 km s−1; Second panel: α = 0.98 and 〈c2〉1/2 = 200 km s−1; Third panel: α = 0.97 and 〈c2〉1/2 = 200 km s−1; Fourth
panel: α = 0.999375 and 〈c2〉1/2 = 100 km s−1; Bottom panel: α = 0.999375 and 〈c2〉1/2 = 50 km s−1.

(A color version of this figure is available in the online journal.)
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Figure 6. Dispersion and damping curves for parameters appropriate to the inner heliosheath or subsonic solar wind. In the left and right panels, the horizontal dotted
lines correspond to the asymptotes ω = Ωp cos θ and ω = Ωe cos θ . Top panel: θ = 0◦, two-fluid wave modes (left); three-fluid with diffusion wave modes showing
the real frequency (middle), and the damping rate (right). Only the PUI sound mode (cyan) and the thermal two-fluid sound mode (red) are damped. Over a range
of wave numbers, the pickup ion sound mode (cyan) becomes so damped that it loses its identity and disappears (its real frequency becomes zero). All other modes
are not damped. Second panel: θ = 30◦, two-fluid (left); three-fluid with diffusion, real frequency (middle), and damping rate (right). The PUI fast (black) and slow
(cyan) modes no longer cross at small k and both assume characteristics of the other. The PUI slow mode and the thermal fast mode also swap characteristics. Now,
the fast PUI mode (black) becomes so damped that it loses its identity and disappears (its real frequency becomes zero) for a range of k before reappearing. Third
panel: θ = 70◦, two-fluid (left); three-fluid with diffusion, real frequency (middle), and damping rate (right). The fast PUI mode (black) is still so highly damped
at small scales that it loses its identity. Fourth panel: θ = 88◦, two-fluid (left); three-fluid with diffusion, real frequency (middle), and damping rate (right). Bottom
panel: θ = 90◦, two-fluid (left); three-fluid with diffusion, real frequency (middle), and damping rate (right).

(A color version of this figure is available in the online journal.)
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Figure 7. Dispersion and damping curves for parameters appropriate to the supersonic solar wind beyond ∼10 AU. In the left and right panels, the horizontal dotted
lines correspond to the asymptotes ω = Ωp cos θ and ω = Ωe cos θ . Top panel: θ = 0◦, two-fluid wave modes (left); three-fluid with diffusion wave modes showing
the real frequency (middle), and the damping rate (right). Second panel: θ = 30◦, two-fluid wave modes (left); three-fluid with diffusion wave modes showing the real
frequency (middle), and the damping rate (right). Third panel: θ = 70◦, two-fluid wave modes (left); three-fluid with diffusion wave modes showing the real frequency
(middle), and the damping rate (right). Fourth panel: θ = 88◦, two-fluid wave modes (left); three-fluid with diffusion wave modes showing the real frequency (middle),
and the damping rate (right). Forward (black line) and backward (black crosses) propagating fast PUI modes lose their identities and become purely imaginary around
kVA/Ωp ∼ 60, but no new modes are created at small scales. Bottom panel: θ = 90◦, two-fluid wave modes (left); three-fluid with diffusion wave modes showing the
real frequency (middle), and the damping rate (right). The PUI fast mode loses its identity at approximately kVA/Ωp ∼ 80.

(A color version of this figure is available in the online journal.)
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using the definitions (75)–(76) and V 2
S ≡ γP0/ρ0, and θ is

the wave propagation angle. The form of (127) is used since
it expresses the correspondence with the standard dispersion
relation of MHD. By setting k · K · k = 0 (the strong
coupling limit) and identifying C2

m ≡ V 2
S + C2

p as the sound
speed, (127) is identical to the MHD dispersion relation. Alfvén
wave propagation is unaffected by PUIs. The expression inside
the square bracket of (127) is the dispersion relation for PUI
mediated fast and slow magnetosonic modes, by analogy with
the multi-fluid analysis.

For wave mode solutions, Equation (127) is usefully
expressed as(

ω − i

3
k · K · k

) (
ω4 − (

V 2
S + V 2

A

)
k2ω2 + V 2

S V 2
Ak4 cos2 θ

)

= ω
(
ω2 − V 2

Ak2 cos2 θ
)
C2

pk2. (128)

Before solving (127) numerically, it is useful to introduce
κ ≡ κ‖ cos2 θ + κ⊥ sin2 θ and derive long and short wavelength
approximate solutions. We provide the parallel and perpendicu-
lar cases first. In the long wavelength limit, we obtain for θ = 0
(parallel propagation)

ω = ±
√

V 2
S + C2

pk +
iκk2

6

C2
p

V 2
S + C2

p

; (129)

ω = ± VAk; (130)

ω = i

3
κ‖k2 V 2

S

V 2
S + C2

p

. (131)

Equation (129) corresponds to the parallel sound mode propa-
gating at the combined sound speed (i.e., the sum of the square
of the thermal plasma sound speed and the PUI sound speed),
which is damped by PUIs. Note that in the one-fluid model,
the thermal sound and PUI waves are no longer distinct as they
were in the multi-fluid model (Equations (94) and (95)). The
other parallel mode admitted by (130) is unaffected by PUIs,
and corresponds to the Alfvén wave solution obtained from the
first bracketed term of (127). Finally, Equation (131) describes
a purely imaginary non-propagating mode. For perpendicular
propagation, θ = π/2, the long wavelength limits become

ω = ±
√

V 2
S + C2

p + V 2
Ak +

iκk2

6

C2
p

V 2
S + C2

p + V 2
A

; (132)

ω = iκk2

3

V 2
S + V 2

A

V 2
S + C2

p + V 2
A

. (133)

The fast mode speed now includes the Alfvén speed, in ac-
cordance with MHD, as well as the PUI sound speed, and is
damped by PUIs. The slow mode is non-propagating and purely
damped. The comments regarding the comparison to the multi-
fluid modes above hold for perpendicular propagation as well.

The short wavelength limits of (128) for parallel
propagation are

ω = ± VSk +
3i

2κ
C2

p; (134)

ω = ± VAk, (135)

and for θ = π/2,

ω = ±
√

V 2
S + V 2

Ak +
3i

2κ
C2

p; (136)

ω = 0. (137)

The PUIs no longer contribute to the fast mode sound speed,
as they did in the long wavelength regime, but the PUIs do
damp the thermal plasma fast mode. The slow mode in the
short wavelength limit is completely unaffected by the presence
of PUIs.

Consider now the general case of oblique wave propagation.
For all angles of propagation, we always have the classical
Alfvén wave solution

ω = ±VAk cos θ, (138)

which is completely unaffected by the presence of a suprather-
mal PUI population. The obliquely propagating long wavelength
mode is somewhat complicated, with

ω � k

√
1

2

(
V 2

A + V 2
S + C2

p

)
(1 ± A) +

i

6
κk2C2

p

×
(
V 2

A + V 2
S + C2

p

)
(1 ± A) − 2V 2

A cos2 θ(
V 2

A + V 2
S + C2

p

)2
(1 ± A) − 4V 2

A

(
V 2

S + C2
p

)
cos2 θ

,

(139)

where

A =
√√√√1 − 4V 2

A

(
V 2

S + C2
p

)
cos2 θ(

V 2
A + V 2

S + C2
p

)2 .

The purely imaginary mode in the long wavelength limit is

ω � i

12
κk2

C2
p

V 2
S + C2

p

. (140)

For short wavelength modes propagating obliquely, we have
the general result

ω � k

√
1

2

(
V 2

A + V 2
S

) ± 1

2

√(
V 2

A + V 2
S

)2 − 4V 2
AV 2

S cos2 θ

+
3i

4κ
C2

p

⎛
⎝1 ± V 2

S + (1 − 2 cos2 θ )V 2
A√(

V 2
A + V 2

S

)2 − 4V 2
AV 2

S cos2 θ

⎞
⎠ . (141)

The real frequency is unaffected by PUIs and is identical to the
familiar MHD fast and slow magnetosonic speeds. Damping of
the short wavelength fast and slow modes is directly due to PUIs,
however. The parallel and perpendicular limits are consistent
with our previous results.

The purely imaginary non-propagating short wavelength
mode is given by

ω � 3i

2κ
C2

p

V 2
A cos2 θ

V 2
A + V 2

S

. (142)

For parallel and perpendicular propagation, we have

ω � 3i

2κ‖

(
V 2

S + C2
p

); (143)
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Figure 8. Dispersion and damping curves for the one-fluid model mediated by PUIs, for VLISM parameters and α = 0.999375 and 〈c2〉1/2 = 200 km s−1. The left
column shows plots of the real frequency as a function of wave number k, and the right column shows the corresponding imaginary frequency. The fast mode is shown
by the blue curve, the slow mode by red, and the Alfvén wave by green. Top panel: θ = 0◦. Second panel: θ = 30◦. Third panel: θ = 70◦. Fourth panel: θ = 88◦.
Bottom panel: θ = 90◦.

(A color version of this figure is available in the online journal.)
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ω � 3i

2κ⊥

(
V 2

A + V 2
S + C2

p

)
. (144)

Numerical solutions of the dispersion relation (127) are plot-
ted in Figure 8 for VLISM parameters. The heat conduc-
tion diffusion coefficient was estimated assuming 〈c2〉1/2 =
200 km s−1. The left column shows the real frequency plotted
as a function of k and the right column shows the correspond-
ing imaginary frequency. We do not plot the purely imaginary
mode. Only three real modes exist—the fast (blue) and slow
(red) magnetosonic modes modified by PUIs, and the Alfvén
wave (green). For parallel propagation, the slow mode coincides
with the Alfvén mode, and there is a region around k � Ωp/VA

for which the fast mode is evanescent. For quasi-parallel prop-
agation (e.g., θ � 30◦), the region of evanescence for the fast
mode is always present, but for quasi-perpendicular propaga-
tion (e.g., third panel of Figure 8), the fast mode exists for all
wave numbers k. For the VLISM parameters used here, the slow
mode and Alfvén wave are virtually indistinguishable, although
the former is damped by PUIs.

6. SUMMARY AND DISCUSSION

Pickup ions typically dominate the internal energy and do not
equilibrate collisionally in plasma systems such as the VLISM,
the IHS, and the supersonic solar wind beyond some 10 AU.
This requires that we treat PUIs as a distinct plasma component.
PUIs experience pitch-angle scattering from pre-existing and
self-excited magnetic field turbulence. We have developed
a collisionless form of Chapman–Enskog expansion that is
correct to second order to effect the closure of the moments
of the PUI transport equation. The first-order expansion of
the PUI distribution function introduces the collisionless PUI
heat flux through a heat conduction diffusion tensor. We show
that the collisionless PUI heat conduction term is proportional
to the gradient in the PUI pressure. The second-order expansion
of the PUI distribution function yields the collisionless stress
tensor for PUIs, whose structure generalizes the familiar form
from hydrodynamics (e.g., Zank 2013). By deriving expressions
for the PUI heat flux and stress tensor in terms of lower order
moments (PUI pressure and bulk velocity) we can derive a closed
form of multi-fluid equations for a plasma system comprised
of thermal protons and electrons and suprathermal PUIs. The
system of equations differs from the typical multi-fluid system
in that we have made no ad hoc assumptions about the PUI
distribution being isotropic but instead derived the heat flux
and stress tensor corrections subject to weak departures from
isotropy (i.e., assuming that the scattering of PUIs by turbulent
magnetic fluctuations proceeds rapidly).

Since many problems are too complicated to solve using an
elaborate multi-fluid model, we develop an analogue to the
MHD equations that resembles a single-fluid description but
possesses a separate equation of state for the PUIs, together with
a separate equation of state for the thermal background plasma.
In so doing, the single-fluid description now includes both
collisionless heat conduction and stress tensor (collisionless
viscosity) tensor terms associated with the PUIs. The derived
single-fluid model possesses an interesting structural similarity
with the so-called cosmic ray MHD model (Webb 1983). The
single-fluid PUI-mediated MHD equations presented here are
almost identical to the cosmic ray (CR) MHD equations but
the derivation is entirely different. The derivation of the CR

MHD equations explicitly neglects all the flow acceleration and
shear terms (which, as we have shown above, is essential in
the derivation of the closed fluid system describing the pitch-
angle scattered charged particles), does not derive the underlying
multi-fluid description from which an MHD description is
developed, explicitly assumes that the cosmic ray proton number
density is zero, and assumes an ad hoc decomposition of the
total isotropic scalar pressure into thermal and cosmic ray
components. Of particular interest is that the PUI number
density is included in the PUI-mediated single-fluid equations,
suggesting that a more careful corresponding derivation of the
CR MHD equations could also lead to the explicit inclusion of
the CR number density. The importance of this is that it allows
the “injection” problem for the acceleration of cosmic rays at
collisionless shocks to be addressed within the context of the
single-fluid CR MHD equations (e.g., Zank et al. 1993).

We have used our new PUI-mediated plasma model to inves-
tigate the nature of linear waves in the context of the VLISM,
the IHS or the subsonic solar wind, and the supersonic so-
lar wind beyond ∼10 AU using the full multi-fluid description.
The general dispersion relation in the presence of PUIs and a
background thermal plasma comprised of protons and electrons
was derived—this includes the effects of the collisionless heat
conduction (diffusive) term, but we neglect the effects of the
(viscous) stress tensor terms. The retention of the electron in-
ertia terms yields a formidably complicated dispersion relation
that does not lend itself to analytic representation. Consequently,
the fully general dispersion relation is solved numerically only.
Prior to solving the full dispersion relation (i.e., with electrons,
thermal protons, and PUIs retained), we derive an analytically
“tractable” dispersion relation under the assumption of mass-
less electrons. An 11th-order polynomial dispersion relation is
obtained in the low-frequency (ω � Ωe) limit, which we inves-
tigate analytically for a variety of cases. The class of admissible
wave solutions is of course richer than in the standard two-fluid
case, with as many as five distinct propagating (real frequency)
wave modes are possible: forward and backward propagating
Alfvén waves, thermal fast and slow magnetoacoustic waves,
and PUI fast and slow magnetoacoustic waves, as well as an en-
tropy mode. At least one purely damped, non-propagating mode
also exists. The thermal wave modes are characterized by their
real frequency being proportional to the thermal sound speed√

C2
s + C2

e to leading order, whereas the PUI modes are propor-
tional to the PUI sound speed Cp to leading order. However, all
the waves are damped by PUIs, whether thermal or PUI modes.
These results were obtained from an analytic expansion of the
11th-order dispersion relation in the short and long wavelength
limits for parallel, perpendicular, and oblique wave propagation.
The analysis shows that the damping of both the long and short
wavelength waves is a direct consequence of the collisionless
PUI heat conduction, i.e., diffusive damping. In the short wave-
length limit, we find that the PUI modes are absent, with only
the thermal modes and a mixed mode existing.

The analytic limits are interesting and provide useful insight
and guidance in understanding and classifying the numerical
solutions that are necessary to understand the full complexity of
the dispersion relations when electron inertial terms are retained.
In solving the linearized full multi-fluid system numerically,
we also examine the reduced two-fluid solutions that emerge
from the abundance limit α = 1. In the α = 1 limit, the full
dispersion relation separates into separate two-fluid and PUI
fluid dispersion relations. The two-fluid dispersion relation is
the familiar sixth-order polynomial relation first investigated by
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Stringer (1963; we have corrected a number of simplifications
and typos that were present in earlier derivations of the two-
fluid dispersion relation). Solutions of the two-fluid dispersion
relation are useful in clarifying the numerical solutions when
α < 1, and in showing explicitly the role that PUIs play in
mediating wave properties. We considered parameter regimes
for three distinct plasma environments that are mediated by PUIs
created in part by interstellar neutral H.

A major application of the linear wave theory was to the
plasma of the VLISM. As discussed, the IBEX observations
appear to confirm the notion that the VLISM is comprised of
a non-equilibrated admixture of thermal plasma and energetic
PUIs created by fast neutrals originating in the supersonic and
hot subsonic (IHS) solar wind (Zirnstein et al. 2014; Desai et al.
2014). The VLISM parameters can be reasonably estimated,
including the abundance parameter α (Zirnstein et al. 2014), but
the choice of value for the collisionless heat conduction term
is less well constrained in the context of the multi-fluid model.
Two estimates of the diffusion coefficient K were considered,
one corresponding to the weak coupling of PUIs to the thermal
plasma (i.e., a large value of the diffusion coefficient for the
collisionless PUI heat flux) and the other to a slightly stronger
coupling. Both values of the diffusion coefficient appear to
be reasonable but the results for the two cases differ quite
significantly. Both cases can yield as many as five distinct wave
modes (depending on the wave number k). We find the following.

1. For κ‖ large, the thermal and PUI modes are essentially
decoupled from one another in that the dispersion curves
(the real frequency as a function of k) of the thermal
modes (fast, slow, and Alfvén) very closely resemble those
obtained from the two-fluid model (i.e., in the absence of
PUIs). The fast and slow PUI modes are present and the
thermal and PUI dispersion curves can intersect but there is
no corresponding modification to either mode in the regions
of intersection in (ω, k) space.

2. Even when the diffusion coefficient is large and the thermal
and PUI fluid essentially decouple, the PUIs nevertheless
act to damp both the thermal and PUI modes, and the Alfvén
mode (illustrated in the plots of the imaginary frequency as
a function of k).

3. The interplay between the fast and slow PUI modes is
interesting for the larger choice of diffusion coefficient. For
parallel wave propagation, the slow PUI wave is evanescent
above a certain wave number and the fast PUI mode is
undamped and satisfies ω = Ωp. However, for oblique
wave propagation, the fast mode is evanescent at short
wavelength scales and the slow PUI wave is asymptotic
to Ωp cos θ at short wavelengths.

4. For κ‖ smaller, the PUI and the thermal modes are fully
coupled and the two-fluid results are no longer a useful
guide to the oblique wave properties in either the long or
short wavelength regimes, particularly for wave numbers
approximately >Ωp/VA. Only for parallel propagation do
the thermal wave mode dispersion curves resemble the two-
fluid dispersion relations.

5. For smaller κ‖, the various dispersion curves no longer in-
tersect as they do for a larger diffusion coefficient. Instead,
the dispersion curves in the vicinity of an apparent intersec-
tion point are modified in that they approach one another
in a “hyperbolic” sense but do not cross. Furthermore, the
properties of the converging dispersion curves “exchange
properties” in these regions. For example, the dispersion

curve for the slow PUI mode resembles what was the par-
allel thermal fast mode curve at short wavelengths.

6. Of possible particular importance is that the dispersion
curve for Alfvén waves completely changes character from
the large diffusion coefficient case to the smaller diffusion
case. In the former example, the Alfvén wave dispersion
curve is asymptotic to Ωe cos θ and in the latter to Ωp cos θ .

We do not summarize the detailed properties of the lin-
ear wave analysis applied to the IHS or subsonic solar wind.
The wave properties resemble the smaller diffusion coefficient
VLISM case despite the nominal diffusion coefficient being
larger in the IHS than in the VLISM. This is because the abun-
dance parameter α is smaller than it is in the VLISM, so ensuring
a stronger coupling of thermal and PUI plasma. Similarly, our
analysis of the linear wave modes in the supersonic solar wind
beyond ∼10 AU revealed that the wave properties were simi-
lar to those of the small diffusion coefficient VLISM example.
As part of the supersonic solar wind analysis, we considered
the backward propagating PUI modes as well, showing how
fast forward and backward propagating PUI modes could lose
their identity and become purely evanescent or imaginary. Cor-
respondingly, when a backward propagating PUI mode matches
the frequency of an imaginary PUI mode, then new forward and
backward propagating modes are generated.

For completeness, we considered linear wave solutions of
the reduced one-fluid PUI-mediated plasma model. Because
the reduction to a single plasma with equations of state for
both constituents (thermal plasma and PUIs) eliminates the
distinction between the plasma components, the distinction
between PUI and thermal wave modes is lost.

1. The single-fluid or one-fluid model only admits three
propagating waves—the fast mode, slow mode, Alfvén
mode, and a purely imaginary mode.

2. Long wavelength modes propagate at a mixed fast or slow
magnetoacoustic speed where the sound speed is now a
combination of the thermal sound speed and the PUI sound
speed, i.e.,

√
V 2

S + C2
p.

3. Short wavelength modes propagate at the fast or slow
magnetosonic speed where the sound speed is given by
the thermal sound speed only, i.e., PUIs do not contribute
to the phase velocity of short wavelength waves.

4. Both fast and slow mode, obliquely propagating modes are
damped by the heat flux term associated with PUIs. For
parallel propagation in both the long and short wavelength
limits, the slow mode wave is identical to the Alfvén wave,
and is undamped. This does not hold for oblique wave
propagation.

5. Unlike the multi-fluid model, Alfvén waves in the one-fluid
reduced model are unaffected by PUIs and the dispersion
curve continues to increase with increasing k, as in the case
of ideal MHD.

The compressibility and polarization of the various waves
was not discussed here. Furthermore, we note that the inclusion
of Landau damping can modify the multi-fluid description in
important ways, as described in Hunana et al. (2013).

One important implication to emerge from our three-fluid
analysis of linear waves is related to the contrasting behavior
of the two-fluid waves, particularly the Alfvén mode in the
case of strong PUI and thermal plasma coupling. Our results
suggest that turbulent fluctuations in the inner heliosphere may
be fundamentally different from those in regions such as the
supersonic solar wind beyond ∼10 AU, the IHS, or the VLISM.
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Precisely how this translates into e.g., observed magnetic field
fluctuation spectra is an open question, but we note that Burlaga
et al. (2006); Burlaga & Ness (2009) have observed “turbulence”
in the IHS that appears to possess characteristics (distribution,
compressibility) somewhat different from those observed in
the inner heliosphere (e.g., Bruno & Carbone 2005). Initial
observations of the VLISM by the Voyager 1 magnetometer
(Burlaga & Ness 2014) suggest a surprisingly low level of
magnetic field fluctuations. In the absence of significant external
driving, it is possible, based on the results presented here, that
PUIs act to damp waves in the VLISM significantly, leaving the
medium relatively quiescent.

A second important implication is related to heavy ions that
are minor components in the solar wind of the inner heliosphere
and in cometary environments. Mann et al. (1997) used a three-
fluid system of fluid equations to derive the dispersion relation
for a proton–electron-heavy ion plasma and investigated the
wave properties based on this model. However, the model is
closed by assuming Maxwellian distributions for all the species.
In both a cometary environment and in the inner heliosphere,
heavy ions experience pitch-angle scattering off ambient and
excited turbulent magnetic fluctuations and are not equilibrated
with the background thermal plasma. In view of the important
differences that we have identified in the dispersion curves as a

consequence of deriving and including the collisionless heat flux
associated with PUIs (and in principle the collisionless stress
tensor) into a multi-fluid model, we suspect that that similar
differences might well arise from extending our approach to
heavy ions.

In subsequent papers, we plan to examine further the damping
of waves in PUI mediated plasmas, including heavy ions,
explore nonlinear waves and structures admitted by this system,
and investigate the structure of shock waves in the presence of
PUIs.

Finally, we note that the PUI mediated plasma model pre-
sented here can find application to a wide variety of astrophys-
ical situations, ranging from the interaction of solar-like stars
with different interstellar conditions (e.g., Müller et al. 2006;
Florinski et al. 2004) to the propagation of shock waves in a
partially ionized ISM (e.g., Raymond et al. 2008).

This work was supported by IBEX NASA/SwRI award
NNG05EC85C, subcontract A99132BT and NASA grant
NNX10AC17G. G.P.Z. appreciates discussions at the team
meeting “Heliosheath Processes and Structure of the He-
liopause: Modeling Energetic Particles, Cosmic Rays, and Mag-
netic Fields” supported by the International Space Science In-
stitute in Bern, Switzerland.

APPENDIX A

TRANSPORT EQUATIONS FOR PUIS

The gyrophase-averaged equation for non-relativistic particles is given by
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where the direction vector b ≡ B/B. We use a Legendre polynomial expansion to solve the gyrophase-averaged equation (A1),
expanding the gyrophase-averaged particle distribution function f as
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Following the derivation in Zank (2013), we obtain an infinite set of partial differential equations in the coefficients fn of the Legendre
polynomials,
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For the f2 approximation (i.e., assume fn = 0 ∀ n � 3), we have, on setting m = 0,
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and on setting m = 1 and neglecting all terms with indices having i � 3, we obtain
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where the f0 Legendre coefficients are expressed as source terms in the evaluation of the next order Legendre coefficients f1. To solve
Equation (A4) for f1 in terms of the lower order Legendre coefficient f0, we assume that the zeroth-order coefficient f0 is almost
isotropic, implying that f1 � f0. We also assume that νs = τ−1

s is large, i.e., rapid scattering of the charged particles (which is
consistent with the assumption that the particle distribution is nearly isotropic), so that the term νsf1 ∼ O(f0). Subject to these
assumptions, Equation (A4) can then be solved, yielding
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Using (A5) in (A3) to rewrite f1 in terms of f0 yields the familiar transport equation in the presence of large-scale gradients and
accelerations (see Zank 2013) if the f2 terms are neglected,
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where K is the diffusion tensor.
The m = 2 expression can be written as
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from which we obtain the approximate solution for f2,
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APPENDIX B

THE DISPERSION RELATION WITHOUT ELECTRON INERTIA

The coefficients of the dispersion relation (81) are given by
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