VENUS ATMOSPHERIC DYNAMICS WITH THE LMD VENUS GCM

S. Lebonnois,

F. Hourdin, E. Marcq, A. Crespin, F. Forget, J-L Dufresne LMD, Paris

V. Eymet, R. Fournier LAPLACE, Toulouse

LMD VENUS GCM

- Three-dimensional: 48x32x50 (0~95 km)
- Vertical coordinates: hybrid (sigma/pressure)
- Dynamical core, transport of tracers
- Specific physics:
 - radiative transfer
 - parameterizations (sub-grid processes, boundary layer, convection, turbulence)
 - topography
 - no clouds microphysics
- No photochemistry

Radiation scheme

Full radiative transfer:

(diurnal cycle)

- Solar radiation : tabulated fluxes and heating rates from D. Crisp, 1986.
- Thermal radiation : Monte-Carlo computation of Net Exchange Rates.
 - Radiative properties of atmosphere (gas, clouds) are fixed
 - Surface pressure taken into account (topography)
 - Altitude of clouds variable with latitudes
 - Net Exchange Rates matrix, T dependent

Newtonian cooling:

• Simplified T forcing : similar to Oxford Venus GCM (Lee et al.)

distribution of heating rates peaking at equator around 70 km altitude no diurnal cycle

Specific heat Cp(T)

Taking into account T dependence of Cp :

- Impacts : adiabatic lapse rate; definition of potential temperature
- Formulation :
 - ◆ Cp(T) = Cp0 x (T/T0)^A, with Cp0 = 1000 J/kg/K, T0 = 460 K, A = 0.35
 - New definition of potential temperature used in dynamical core :

 $\theta^{A} = T^{A} - A \times T0^{A} \times (R/Cp0) \ln(p/pref)$

Options tested:

• Constant Cp : 900 and 1000 J/kg/K

Technical difficulties

Computation times :

- 24 to 40 h / 10 Venus days
- Time scales needed: 100 to 200 Vd...

Initial conditions :

- starting from rest means long simulations
- starting from previous simulation means possible influence of initial conditions (or long simulations...)
- Boundary conditions : sponge layer in upper levels
- Angular momentum conservation : it has been checked, and conservation is excellent

Simulations

- A (topography) / B (no topography)
 - started from rest
 - Cp(T) ; full radiative transfer
- C (topo, Cp=1000) / D (Cp=900) / E (no topo, Cp=900)
 - same as A/B, but with constant Cp

F (topography) / G (no topography)

- started from rest
- constant Cp (=900 J/kg/K) ; Newtonian cooling

In **summer 2007**, promising simulations using constant Cp=1000, full radiative transfer, started from rest. These simulations had several problems, including numerical instabilities in the clouds region.

During this **last year**, several bugs were causing troubles in the simulations. We hope they are all taken care of, now.

I will give here some comparisons, and where we are aiming now.

Temperature profiles

Last year Simulations

Current simulations

Influence of Cp

Stability

Instable layers

CONCLUSION

Simulations we hope to get at last, if no further problems...

- Newtonian cooling for comparison
- Full radiative transfer
- Cp constant vs Cp(T)
- With/without orography

 To be implemented: orographic and non-orographic gravity waves parameterization

KARINE Monte Carlo radiative transfer code

Monte Carlo computations optimized for absorbing and scattering thick media

Inputs:

- VIRA temperature profile
- Opacity distributions for 68 narrow bands, between 1.7 and 250 microns (40 to 5700 cm⁻¹)
- Gaseous absorption: correlated k coefficients
- Clouds and haze opacities
- Continuum absorption (collision-induced, CO₂ far wings)
- H₂O continuum, CO₂ and N₂ Rayleigh scattering

The Net Exchange Rate matrix NER (W/m²)

The Net Exchange Rate matrix

Angular momentum transport

Mean meridional circulation vs transients momentum transport

PNE analysis

PNE analysis

Cooling to space from within the clouds

