Oscillatory Processes in Solar and Stellar Coronae

Volume 76 in the Space Science Series of ISSI 

The volume presents a broad and in-depth overview of recent achievements and the current state of research in magnetohydrodynamic (MHD) oscillatory and wave phenomena in the coronae of the Sun and stars. Major progress in coronal wave studies has been achieved thanks to the combination of high-precision multi-wavelength observations with spaceborne and ground-based facilities, elaborated theory of the interaction of MHD waves with plasma non-uniformities, state-of-the-art numerical simulations, and novel data analysis techniques. It has allowed the research community to reach a new look at the role played by MHD wave processes in the enigmatic phenomena of coronal plasma heating and wind acceleration as well as powerful energy releases such as flares and coronal mass ejections. In addition, the waves are intensively used as natural probes in the remote diagnostics of the coronal plasma parameters and physical processes operating in solar and stellar coronae via the method of MHD seismology. Individual chapters cover recent cutting-edge results obtained on the analysis and theoretical modelling of several most intensively studied coronal MHD wave phenomena, namely, kink and sausage oscillations of coronal loops and other field-aligned plasma structures, plus running and standing slow magnetoacoustic waves. A dedicated chapter assesses the reliability of proposed theoretical mechanisms for heating of the coronal plasma by MHD waves. Another chapter summarizes the current state of our understanding of the physical mechanisms and observational properties of quasi-periodic pulsations in solar flares, considers their analogy with similar processes detected in stellar flares, and thus establishes solid ground for the further exploitation of the solar-stellar analogy. An important discussion of novel data analysis techniques designed recently for MHD seismology applications is presented in a devoted chapter. The direction of future advances in the designated research areas are discussed.

This volume presents results from a workshop held at the International Space Science Institute in Beijing (ISSI-BJ) on 14–19 October 2019.

This volume is edited by V.M. Nakariakov, D. Banerjee, B. Li, T. Wang, I. Zimovets, M. Falanga and co-published as Topical Collection in Space Science Reviews (partial Open Access) >>
 

Probing Earth’s Deep Interior using Space Observations Synergistically

New special issue in Surveys in Geophysics (all papers open access)

During the last two decades, the GRACE and SWARM space missions have provided a wealth of groundbreaking results about the spatio-temporally variable gravity and geomagnetic fields of the Earth. However, more can be learned about the deep Earth’s structure by combining data of the Earth’s gravity and magnetic fields together with Earth’s rotation data routinely measured using space geodesy techniques, such as Very Long Baseline Interferometry (VLBI). The synergistic use of these three observables represents a unique way to investigate the physics of the deep Earth’s interior. In addition to the well-known correlation between the Earth’s rotation and magnetic field observed at the decadal time scale, recent studies have reported an unexpected correlation between spatio-temporal changes of the gravity field and of the magnetic field, also at the decadal time scale. Processes occurring in the liquid core and at the core–mantle boundary (CMB) are potentially responsible for this observation. The Workshop “Probing the Deep Earth Interior by using in synergy observations of the Earth’s gravity and magnetic fields, and of the Earth’s rotation” held at the International Space Science Institute (ISSI, Bern) on 1–4 September 2020, gathered about 40 scientists from different horizons and expertise to discuss this novel research topic. The different sessions successively addressed the capability of the gravity and magnetic fields, and Earth rotation observations to detect deep Earth signals on interannual time scales, the current knowledge of processes occurring in the fluid outer core, at the CMB and within the lower mantle, as well as the present-day status of theoretical models describing the deep Earth structure.

This Special Issue gathers together overview articles that provide state-of-the-art knowledge on the various aspects of this emergent research area. It addresses different timescales associated with these deep Earth observed signals as well as associated modeling aspects.

This special issue will be reprinted as as the Volume 85 in the Space Science Series of ISSI and is edited by Veronique Dehant, Mioara Mandea, Anny Cazenave and Lorena Moreira.

Oscillatory Processes in Solar and Stellar Coronae

New Topical Collection published in Space Science Reviews (partial open access)

In 2019, the solar physics research community celebrated the 50th anniversary of the first detection of oscillatory processes in the solar corona as a quasi-periodic pulsation (QPP) of an X-ray and radio emission produced by a solar flare.

The International Space Science Institute in Beijing (ISSI-BJ) hosted the Workshop “Oscillatory Processes in Solar and Stellar Coronae” on 14–19 October 2019. This event was attended by more than forty specialists from more than ten countries. Outcomes of the workshop resulted in this Topical Collection which consists of seven comprehensive review papers. The reviews cover cutting-edge recent results obtained on the analysis and theoretical modelling of several most intensively studied coronal MHD wave phenomena, namely, kink and sausage oscillations, and running and standing slow waves. A dedicated review assesses the consistency of proposed theoretical mechanisms for heating of the coronal plasma by various MHD waves. Another review summarises the current state of the physical mechanisms and observational properties of QPPs in solar flares and considers their analogy with QPPs in stellar flares. An important discussion of novel data analysis techniques designed recently for MHD seismology applications is subject to a special paper. 

This Topical Collection will be reprinted as the Volume 76 in the Space Science Series of ISSI and is edited by Valery M. Nakariakov, Dipankar Banerjee, Bo Li, Tongjiang Wang, Ivan Zimovets and Maurizio Falanga.

Complete Topical Collection: Oscillatory Processes in Solar and Stellar Coronae”, edited by Valery M. Nakariakov, Dipankar Banerjee, Bo Li, Tongjiang Wang, Ivan Zimovets and Maurizio Falanga

Introductory Article: Nakariakov, V.M., Banerjee, D., Li, B. et al. Editorial to the Topical Collection: Oscillatory Processes in Solar and Stellar Coronae. Space Sci Rev 218, 13 (2022). https://doi.org/10.1007/s11214-022-00888-1

The Tidal Disruption of Stars by Massive Black Holes

Volume 79 in the Space Sciences Series of ISSI

This volume provides an overview of the fast-developing field of tidal disruption events.

For several decades, astronomers have speculated that a hapless star could wander too close to a super massive black hole (SMBH) and be torn apart by tidal forces. It is only with the recent advent of numerous wide-field transient surveys that such events have been detected in the form of giant-amplitude, luminous flares of electromagnetic radiation from the centers of otherwise quiescent galaxies. These discoveries span the entire electromagnetic spectrum, from γ-rays through X-rays, ultra-violet, optical, infrared, and radio. A small number of events launch relativistic jets. These tidal disruption events (TDEs) have caused widespread excitement as they can be used to study the properties of quiescent, otherwise undetectable, SMBHs; the populations and dynamics of stars in galactic nuclei; the physics of black hole accretion including the potential to detect relativistic effects near the SMBH; and the physics of (radio) jet formation and evolution in a pristine environment. For scientific questions concerning quiescent SMBHs, TDEs are unique probes beyond the local universe. TDEs can also occur around active galactic nuclei (AGNs), although uniquely identifying such an event on top of a bright AGN is difficult.

Currently, the diverse emission properties of flares associated with TDEs is not fully understood. This challenge is being addressed by a sharp increase in observational work and theoretical modelling. Over the next few years, the largest growth areas will likely be in the greatly expanded surveys of the transient sky, and in new numerical modeling techniques. Together these will reveal how SMBHs shine by ripping apart orbiting stars and swallowing the stellar debris.

In light of this foreseen growth, many new researchers are expected to enter the field. Therefore, the time was deemed ripe to compose a comprehensive overview of the state of the art in this rapidly-evolving field. This volume results from a Workshop held at the International Space Science Institute (ISSI) in Bern on 8–12 October, 2018.

The book is edited by Peter G. Jonker, Iair Arcavi, E. Sterl Phinney, Elena M. Rossi, Nicholas C. Stone and Sjoert van Velzen

This Volume is co-published as Topical Collection in Space Science Reviews (partial Open Access) >>

Hard Cover Book >>

Geohazards and Risks Studied from Earth Observations

Volume 82 in the Space Sciences Series of ISSI

The Sentinel missions of the COPERNICUS Programme of the European Union, as well as other Earth Observation missions, provide new opportunities for systematic monitoring of natural and man-made hazards and disasters that can highly impact human societies.
The contributions collected in this book address a broad range of geohazards observable from space, including earthquakes, volcanic hazards, extreme events (e.g. storm surges, floods and droughts), fires, pollution, tipping points in physical and biological systems, etc. They provide information on how space observations can improve our understanding of the driving mechanisms at the origin of such geohazards, and of their mutual interactions. Focus is given on the expected added-value information obtained by combining different types of space-based and in situ observations as well as model results.

This volume results from the ISSI Workshop “Natural and Man-Made Hazards Monitoring by the Earth Observation Missions: Current Status and Scientific Gaps” held from 15 to 18 April 2019.

This volume is edited by T. Lopez, A. Cazenave, M. Mandea, J. Benveniste 

This volume is co-published in Surveys in Geophysics, 41, 6, November 2020 (partial Open Access) >>

Hard Cover Book >>

Auroral Physics

Volume 78 in the Space Sciences Series of ISSI

This volume surveys our current scientific understanding of the terrestrial aurora. It is organized into eleven reviews detailing theoretical and observational aspects of characteristic auroral morphologies, and how these in turn are organized according to local time, latitude, and activity level. 

Popular descriptions often attribute the aurora to the interaction of charged particles from the solar wind with atoms in the upper atmosphere. In fact, most auroras are not the result of direct entry of solar wind particles. Rather, as detailed in this volume, auroral particle acceleration and generation of auroral forms occur primarily within the magnetosphere. Importantly, many key aspects of the aurora – most notably, the physical mechanisms responsible for the generation of discrete arcs – are still unexplained, and auroral physics continues to be an active area of scientific research. Each review chapter therefore includes a summary of open questions for further investigation. 

This volume results from the ISSI Workshop Auroral Physics held from 6 to 10 August 2018.

This volume is edited by D.J. Knudsen, J.E. Borovsky, T. Karlsson, R. Kataoka, N. Partamies

This volume is co-published in Space Science Reviews in the Topical Collection “Auroral Physics” (Partial Open Access) >>

Hard Cover Book >>

 

Understanding the Diversity of Planetary Atmospheres

Volume 81 in the Space Sciences Series of ISSI

Thanks to the observation of a growing number of planetary atmospheres, we are at the dawn of a major scientific revolution in atmospheric and climate sciences. But are we ready to understand what will be discovered around other stars? 

This book brings together 15 review chapters that study and provide up-to-date information on the physical and chemical processes that control the nature of atmospheres. It identifies commonalities between various solar system atmospheres, analyzes the dynamic processes behind different atmospheric circulation regimes, and outlines key questions remaining in solar system science.

This volume results from a Workshop organized at ISSI, on November 12-16, 2018, with the support of the Europlanet Research Infrastructure of the EU.

This volume is dedicated to the memory of Adam P. Showman, a creative thinker, brilliant scientist, pioneer and leader in the study of the diversity and dynamics of planetary atmospheres.

This book is edited by F. Forget, O. Korablev, J. Venturini, T. Imamura, H. Lammer, M. Blanc

This volume is co-published in Space Science Reviews in the Topical Collection “Understanding the Diversity of Planetary Atmospheres” (Partial Open Access) >>

Hard Cover Book >>

Reading Terrestrial Planet Evolution in Isotopes and Element Measurements

Volume 80 in the Space Sciences Series of ISSI

This volume takes an interdisciplinary approach to the evolution of terrestrial planets, addressing the topic from the perspectives of planetary sciences, geochemistry, geophysics and biology, and solar and astrophysics.
The review papers analyze the chemical, isotopic and elemental evolution of the early Solar System, with specific emphasis on Venus, Earth, and Mars. They discuss how these factors contribute to our understanding of accretion timescales, volatile delivery, the origin of the Moon and the evolution of atmospheres and water inventories of terrestrial planets. Also explored are plate tectonic formation, the origin of nitrogen atmospheres and the prospects for exoplanet habitability.The papers are forward-looking as well, considering the importance of future space missions for understanding terrestrial planet evolution in the Solar System and beyond. Overall, this volume shall be useful for academic and professional audiences across a range of scientific disciplines.

This volume is based on an interdisciplinary international Workshop organised by Europlanet and ISSI, which took place at ISSI, in Bern (Switzerland) during October 22 and 26, 2018 where about 48 leading scientists discussed the issues presented here.

The papers are edited by H. Lammer, B. Marty, A. Zerkle, M. Blanc, H. O’Neill, T. Kleine

This volume is co-published in Space Science Reviews in the Topical Collection “Reading Terrestrial Planet Evolution in Isotopes and Element Measurements” (Partial Open Access) >>

Hard Cover Book >>

 

The Tidal Disruption of Stars by Massive Black Holes

New Topical Collection published in Space Science Reviews (partial Open Access)

A new collection of 14 review articles has been completed and is available online in Space Science Reviews, a printed book version will be published as volume 79 of the Space Sciences Series of ISSI.

For several decades, astronomers have speculated that a hapless star could wander too close to a super massive black hole (SMBH) and be torn apart by tidal forces. It is only with the recent advent of numerous wide-field transient surveys that such events have been detected in the form of giant-amplitude, luminous flares of electromagnetic radiation from the centers of otherwise quiescent galaxies. These discoveries span the entire electromagnetic spectrum, from γ-rays through X-rays, ultra-violet, optical, infrared, and radio. A small number of events launch relativistic jets. These tidal disruption events (TDEs) have caused widespread excitement as they can be used to study the properties of quiescent, otherwise undetectable, SMBHs; the populations and dynamics of stars in galactic nuclei; the physics of black hole accretion including the potential to detect relativistic effects near the SMBH; and the physics of (radio) jet formation and evolution in a pristine environment. For scientific questions concerning quiescent SMBHs, TDEs are unique probes beyond the local universe. TDEs can also occur around active galactic nuclei (AGNs), although uniquely identifying such an event on top of a bright AGN is difficult.

Currently, the diverse emission properties of flares associated with TDEs is not fully understood. This challenge is being addressed by a sharp increase in observational work and theoretical modelling. Over the next few years, the largest growth areas will likely be in the greatly expanded surveys of the transient sky, and in new numerical modeling techniques. Together these will reveal how SMBHs shine by ripping apart orbiting stars and swallowing the stellar debris.

In light of this foreseen growth, many new researchers are expected to enter the field. Therefore, the time was deemed ripe to compose a comprehensive overview of the state of the art in this rapidly-evolving field. This topical collection was planned and launched at a workshop held at the International Space Science Institute (ISSI) in Bern on 8–12 October, 2018.

The editors would like to thank all authors and coordinators for their hard work in creating this collection, the staff at ISSI for their friendly and generous support, and the future readers of this topical collection who will no doubt answer many of the TDE puzzles that so far remain unresolved.

Peter G. Jonker, Iair Arcavi, E. Sterl Phinney, Elena M. Rossi, Nicholas C. Stone & Sjoert van Velzen (Guest Editors)

 

Introductory Article: 
Peter G. Jonker, Iair Arcavi, E. Sterl Phinney, Elena M. Rossi, Nicholas C. Stone & Sjoert van Velzen. Editorial to the Topical Collection: The Tidal Disruption of Stars by Massive Black Holes. Space Sci Rev 217, 62 (2021). https://doi.org/10.1007/s11214-021-00837-4

Complete Topical Collection in Space Science Reviews >>

Auroral Physics

New Topical Collection in Space Science Reviews (partial Open Access)

The new article collection on “Auroral Physics” is designed to provide a comprehensive review of our current scientific understanding of the terrestrial aurora, both observational and theoretical, with an emphasis on developments since a previous collection devoted to the terrestrial aurora, “Auroral Plasma Physics” (Space Science Reviews volume 103, 2002, by G. Paschmann, S. Haaland, and R. Treumann). That collection emphasizes introductory and background material which is not repeated in the current set. 

The term “aurora borealis”, or “northern dawn” dates back centuries and refers to emissions of light from the otherwise-dark nighttime atmosphere, usually occurring in the polar regions except during highly disturbed periods. Aurora is distinct from airglow, which is a weak and relatively unstructured emission in the thermosphere caused by chemical reactions and ionization driven primarily by solar UV illumination during the day. In contrast, auroral emissions are the result of excitation of neutral atoms and molecules in the upper atmosphere by collisions with charged particles, typically which originate in the magnetosphere and precipitate along geomagnetic field lines with energies of hundreds of eV to tens of keV.

Popular descriptions of the aurora including in the media, dictionaries, encyclopedias and even textbooks often claim that the aurora is caused by “particles from the sun striking the upper atmosphere”. It is well established in auroral science that such a description is not accurate except in very limited cases. While it is certainly true that particles from the sun – the solar wind – provide the energy that drives the aurora, the widely varying morphologies and behaviors of the aurora are the result of a complex chain of events that take place within Earth’s magnetosphere or at its boundary, the magnetopause. The end result of this chain – excitation of neutrals by charged particles – is also well-established fact, as are many other aspects described in this collection. However, due to the vast region of the magnetosphere that is magnetically conjugate to the auroral ionosphere, and the difficulty in sampling it with a single or even multiple spacecraft, the nature of the magnetospheric generator responsible for driving individual auroral forms still remains one of the most elusive aspects of the aurora.

Planning for this Topical Collection took place during a workshop hosted in August 2018 by the International Space Science Institute (ISSI), in Bern (Switzerland), and attended by more than 40 members of the international scientific community.

This Topical Collection will be reprinted as the Volume 78 in the Space Sciences Series of ISSI and is edited by David Knudsen, Joe Borovsky, Tomas Karlsson, Ryuho Kataoka and Noora Partmies.

Introductory article: 
David Knudsen, Joe Borovsky, Tomas Karlsson, Ryuho Kataoka and Noora Partmies. Editorial: Topical Collection on Auroral Physics, Space Sci Rev 217, 19 (2021). https://doi.org/10.1007/s11214-021-00798-8

Complete Topical Collection in Space Science Reviews >>