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Summary			
The	 ISSI	 Forum	“The	 Impact	of	Big	Data	 in	Astronomy”	 took	place	on	 July	 4	 and	5	 at	 ISSI	
Bern.	The	rationale	behind	this	topic	 is	 the	fact	that	the	explosion	of	astronomical	data	 in	
volume	and	complexity	is	changing	the	way	we	do	science.	Space-based	and	ground-based	
observatories	 like	 Gaia,	 Euclid,	 LSST	 or	 SKA,	 as	 well	 as	 state-of-the-art	 astrophysical	
simulations	 require	 new	 tools,	means	 and	methodologies	 for	 doing	 research.	 Among	 the	
new	 techniques	 range	 data	 mining,	 artificial	 intelligence,	 machine	 learning,	 pattern	
recognition	and	other	data-driven	methods.	
		
At	the	ISSI	Forum,	26	international	experts	met	in	order	to	discuss	these	new	developments.	
Underlying	 questions	 were,	 e.g.:	 How	 do	 large	 surveys	 and	 Big	 Data	 science	 change	
astronomy?	What	 additional	 training/skills	will	 future	 astronomers	 require?	What	 are	 the	
challenges	 for	 data	 storage,	 data	 curation,	 data	 quality,	 data	 provenance?	 Four	 keynote	
talks	on	“Big	Data	Challenges	 in	Observations”	 (by	Wil	O’Mullane),	on	“Data	Challenges	 in	
Archiving”	(by	Françoise	Genova	and	Bruno	Merín),	on	“Big	Data	Challenges	in	Simulations”	
(by	Volker	Springel)	and	on	“Big	Data	Challenges	–	Now	and	in	the	Future”	(by	Alex	Szalay)	
formed	 the	 backbone	 of	 the	 Forum.	 Nine	 short	 contributions	 were	 presented	 by	
participants.	The	most	important	and	interesting	part	of	the	Forum	were	the	very	lively	and	
interesting	discussions,	they	gave	a	very	broad	and	comprehensive	view	on	the	benefits	and	



2	

challenges	of	“Big	Data	in	Astronomy”.		In	addition	to	the	demanding	technical	aspects,	also	
“social”	 and	 “sociological”	 topics	were	 addressed:	How	 can	 young	 as	well	 as	 experienced	
scientists	be	taught	about	these	new	techniques?	Will	the	future	successful	scientist	have	to	
be	an	astrophysicist,	AND	a	computer	scientist,	AND	a	software	engineer?	Or	can	future	Big	
Data	science	only	be	done	in	teams	with	experts	from	all	these	fields?	How	much	knowledge	
in	data	science	is	necessary	for	an	astronomer?	Can	young	scientists	knowledgeable	in	data	
science	share	this	with	“classical”	older	astronomers	and	teach	them	the	new	tools?	What	
are	the	career	perspectives	and	paths	for	young	scientists	who	specialize	in	“data	science”?	
At	 the	 end	 of	 the	 Forum,	 it	was	 felt	 that	 this	 successful	 “kick-off”	 should	 be	 followed	 by	
suitable	further	activities,	e.g.	within	IAU	or	EAS	or	COSPAR,	or	maybe	with	a	further	event	
at	ISSI.	

Introduction	
The	explosion	of	digital	data	in	volume	and	complexity	available	through	internet	has	driven	
a	revolution	in	handling	large	flows	of	 information.	This	challenge	has	developed	into	new	
opportunities	in	many	domains	like	health,	transport,	security,	tourism,	or	e-business,	with	
the	blooming	of	new	applications.	Computers	changed	the	way	to	manage	data	few	decades	
ago	and	the	new	challenge	is	to	exploit	larger	and	more	diverse	amounts.	In	fact,	we	refer	to	
Big	Data	when	the	volume	itself,	as	well	as	complexity	and	heterogeneity,	becomes	part	of	
the	 problem,	 when	 available	 techniques	 are	 not	 good	 enough.	 Scientific	 research,	 and	
astronomy	in	particular,	should	of	course	benefit	of	the	new	data	handling	tools,	like	it	did	
with	computers	and	the	world	wide	web	before,	and	deep	learning,	an	active	research	area	
in	machine	learning	and	pattern	recognition,	offers	excellent	opportunities.		

Astronomy	is	indeed	a	paradigm	case	for	Big	Data	science.	The	continuing	development	of	
ground	and	space-based	observatories,	including	large	sky	surveys,	is	bringing	astronomy	to	
the	Big	Data	era.	Gaia	or	Euclid	are	examples	in	space	but	new	ground-based	projects,	like	
LSST	or	SKA,	will	need	the	new	tools	even	more.	Means	and	methodologies	to	do	research	
with	these	facilities	will,	no	doubt,	be	needed.	

Young	astronomers	are	more	and	more	 involved	 in	 the	use	and	development	of	Big	Data	
science	 for	 their	 research,	 not	 only	mining	 databases	 to	 get	 answers,	 but	 also	 producing	
complex	 simulations	 or	 finding	 new	 questions	 by	 recognizing	 unexpected	 patterns	 in	 the	
data,	in	other	words,	moving	from	a	model-driven	to	a	data-driven	approach.	Moreover,	the	
traditional	 way	 of	 asking	 for	 observing	 time	 to	 investigate	 specific	 targets	 is	 also	 being	
drastically	modified	by	increasingly	complete	surveys.			

The	 purpose	 of	 this	 Forum	 was	 to	 convene	 a	 number	 of	 experts	 in	 the	 use	 of	 Big	 Data	
science	 for	 astronomy	 with	 the	 aim	 of	 reflecting	 on	 the	 benefits	 and	 challenges	 of	 this	
research	 tool,	 now	 and	 in	 the	 coming	 years,	what	 is	 its	 current	 status	 and	 if	we	 need	 to	
worry	about	it.		
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Big	Data	Challenges	in	Observations	
The	 Gaia	 mission	 when	 it	 was	 being	 conceived	 was	 thought	 of	 as	 Big	 Data.	 As	 time	
progressed	the	data	volume	became	relatively	small,	it	was	and	is	still	considered	Big	Data	in	
terms	of	complexity.	Gaia	is	changing	astronomy	today	and	beginning	to	rival	HST	in	terms	
of	 number	 of	 publications,	 this	 is	 especially	 so	 in	 the	 areas	 of	 Galactic	 structure	 and	
formation	but	also	in	smaller	area	studies	or	using	a	few	objects	-	this	Big	Data	is	assisting	
both	big	and	small	science.	As	a	technologist/astronomer	deeply	involved	in	Gaia	one	asks	
“What	next?”.	For	many	of	us	LSST	 is	the	 logical	extension	of	Gaia,	underpinned	by	Gaia’s	
reference	 frame	LSST	will	 extend	 the	 survey	out	 several	more	magnitudes.	 The	 combined	
surveys	 allow	 probing	 of	 theories	 across	 astronomy	 with	 LSST	 really	 opening	 up	 dark	
matter/energy	possibilities.		
LSST	 and	 Gaia	 both	 had	 simple	 plumbing	 problems	 -	 large	 amounts	 of	 data	 have	 to	 be	
shipped	around	substantial	distances	-	both	embraced	the	network	requiring	investment	in	
higher	speed	interconnects	at	various	locations.	Euclid	will	challenge	the	ESA	infrastructure	
even	more.	We	shall	have	to	continue	improving	infrastructure.		
As	 we	 move	 to	 deeper	 observing	 with	 LSST	 new	 problems	 arise,	 not	 only	 do	 the	 data	
volumes	increase	but	the	complexity	also	increases.	As	we	stack	images	to	gain	access	to	the	
27th	magnitude	practically	all	objects	are	blended,	the	photometry	becomes	very	difficult	to	
pin	down,	there	are	unknown	statistical	distributions,	truncated,	censored	and	missing	data	
and	unreliable	quantities.	
Neither	Gaia	nor	 LSST	have	observing	proposals	 -	 all	 data	 access	 is	 via	 the	 archive,	 and	a	
great	deal	of	effort	is	put	into	making	the	archive	useful	for	doing	science.	Indeed,	the	trend	
across	the	board	is	an	 increase	 in	the	number	of	papers	based	on	archival	data	(now	over	
50%	 for	 the	Hubble	Space	Telescope).	 The	paradigm	 is	 shifting	 -	 astronomers	are	actually	
looking	 to	 see	 if	 the	observation	 they	want	has	already	been	made.	As	our	data	 volumes	
increase	 this	 shift	 will	 intensify,	 data	 will	 be	 looking	 for	 astronomers	 not	 vice	 versa.	 As	
pointed	out	later	-	everyone	says	they	want	more	data	while	meaning	they	want	data	more	
relevant	to	their	science	case.	We	shall	have	to	work	ever	harder	on	making	our	data	access	
more	relevant	to	the	science	cases	while	removing	the	barriers	to	access.	This	would	include	
removing	or	significantly	reducing	proprietary	periods	for	data	rights.	Though	we	may	not	all	
need	to	become	data	scientists	there	is	a	clear	shift	in	this	direction	seen	by	the	popularity	
of	data	science	courses	in	educational	institutions.	We	must	be	ready	for	a	more	savvy	user	
base	with	new	demands.		
As	 volumes	 grow	 and	more	 significant	 fractions	 of	mission	money	 is	 put	 in	 software	 our	
constant	 reinventing	 of	 the	 wheel	 will	 no	 longer	 be	 tolerable.	 Some	 missions	 have	
understood	processing	software	as	essential.	About	10%	of	Gaia	budget	was	for	processing	
software	(20%	or	more	 if	you	 include	the	substantial	community	contributions)	and	about	
20%	 for	 LSST	 -	 not	 all	missions	 do	 this.	 Astronomy	 should	 agree	on	 the	 components	 of	 a	
Cyber	Infrastructure	such	that	we	can	have	one	or	two	implementations	of	each	component	
instead	of	one	per	 institution	or	mission.	A	potential	reference	architecture	for	astronomy	



4	

using	 LSST	as	 a	basis	 is	 presented	 in	dmtn-115	 (see	 footnote),	 the	diagram	 from	which	 is	
reproduced	below.		

	
Also	as	data	volumes	grow	the	filesystem	becomes	a	real	bottleneck	-	we	need	to	move	to	
industry	 standard	 object	 store	 such	 as	 used	 by	 Amazon,	 Facebook,	 Google	 etc.1	 Our	
traditional	approaches	to	data	processing	such	as	shared	nothing	batch	processing	may	not	
scale	 well	 to	 new	 problems	 where	 data	 is	 more	 connected.	 To	 get	 the	 Gaia	 astrometric	
solution	a	significant	fraction	of	the	data	must	be	processed	as	a	single	data	set,	on	LSST	the	
Forward	Global	Calibration	Model	will	have	a	similar	requirement.	Machine	learning	on	the	
user	end	will	challenge	our	current	approaches	to	data	access	for	users.	It	is	clear	we	need	
standards	 here	 but	 not	 clear	we	 can	wait	 for	 a	 long	 standardisation	 process,	we	 need	 to	
accelerate	the	process	somehow.		
We	need	to	consider	long	term	support	of	software.	Open	sourcing	is	one	way	to	increase	
engagement	and	allow	public	scrutiny	-	from	a	science	perspective	it	matters	not	who	does	
the	science,	more	eyes	means	more	science.	This	also	 implies	a	better	support	system	for	
cross	 disciplinary	 individuals	 in	 astronomy	 and	 better	 education	 for	 everyone	 (especially	
managers)	 on	 handling	 open	 source	 and	 cross	 disciplinary	 issues.	 This	 education	 must	
extend	and	continue	to	 inclusion	in	general	-	we	still	have	dismal	gender	balance	issues	 in	
astronomy.	

Big	Data	Challenges	in	Archiving	
According	to	 the	Wikipedia,	“Big	data	 is	a	 field	 that	 treats	ways	 to	analyze,	systematically	
extract	information	from,	or	otherwise	deal	with	data	sets	that	are	too	large	or	complex	to	
be	 dealt	 with	 by	 traditional	 data-processing	 application	 software.”	 While	 most	 current	
astronomy	datasets	are	typically	of	the	TeraByte	scale,	it	is	definitively	their	complexity	and	
																																																								
1	https://dmtn-115.lsst.io/	
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heterogeneity	that	make	them	candidates	for	the	application	of	Big	Data	techniques.	More	
specifically	this	will	become	a	necessity	as	catalogues	and	hence	query	results	grow	in	size.	
For	example,	analysis	of	the	queries	against	the	Gaia	Data	Release	#2	(DR2)	catalogue	from	
most	papers	published	during	2018	show	result	 tables	with	typical	sizes	of	a	 few	hundred	
MegaBytes.	 In	 the	course	of	 the	next	 few	years,	several	new	surveys	will	 start	 to	produce	
PetaBytes	of	data,	which	will	result	in	TeraByte	query	results.	This	will	force	data	centres	to	
support	users	in	applying	Big	Data	techniques.	
Possibly,	the	largest	Big	Data	challenge	for	archiving	might	be	the	development	of	a	set	of	
systems	 that	will	 allow	 the	AI-supported	exploration	and	exploitation	of	 the	ever-growing	
datasets	 with	 user	 friendly	 interfaces.	 These	 systems	 should	 allow	 users	 to	 move	 from	
querying	 for	 data	 to	 having	 conversations	 with	 their	 AI-supported	 research	 assistants	 to	
refine	 and	 enrich	 the	 exploration	 patterns	 of	 the	 existing	 data	 and	 of	 the	 associated	
literature.	Astronomy	can	take	advantage	of	the	quick	evolution	in	industry	of	these	types	of	
applications.	 Many	 astronomy	 datasets	 are	 today	 fulfilling	 the	 FAIR	 principle	 (Findable,	
Accessible,	 Interoperable	and	Reusable)	on	scientific	data	preservation	making	 it	easier	 to	
apply	 non-astronomy	 applications.	 This	 important	 foundational	 work	 has	 been	 made	
possible	 by	 fruitful	 collaboration	 in	 the	 context	 of	 the	 International	 Virtual	 Observatory	
Alliance2	over	more	than	15	years	that	has	now	matured	and	is	ready	to	move	into	higher-
level	 user	 services.	 In	 order	 for	 this	 future	 vision	 to	 be	 realized,	 astronomy	 data	 centres	
should	learn	about	and	deploy	AI	systems	to	automate	the	complex	domain-specific	tasks	of	
data	curation	and	preservation	(by	e.g.	optimizing	global	cost	functions).	Data	centres	need	
to	move	away	from	current	very	human-intensive	processes	by	implementing	AI-supported	
data	sampling	and	dimensionality	reduction	routines	in	data	processing	chains.	This	should	
be	underpinned	by	developing	code-to-the-data	platforms	that	commoditize	the	computing	
resources	for	users,	breaking	barriers	between	data	silos	and	embracing	contemporary	data	
science.	
Preliminary	exploration	of	the	impact	of	Big	Data	techniques	in	astronomical	archives	shows	
big	potential	for	uncovering	new	patterns	in	data	in	a	relatively	fast	way,	potentially	linkable	
to	 new	 astrophysical	 phenomenology,	 impossible	 to	 detect	 with	 traditional	 data	 analysis	
workflows,	 restricted	 in	most	 cases	 to	 small	 samples	of	 the	 full	 data	 collections.	A	 recent	
example	of	this	paradigm	shift	is	the	discovery	with	the	full	Gaia	DR2	catalogue	of	traces	of	
the	 stellar	population	 from	another	 galaxy	 that	merged	with	 the	Milky	Way	many	million	
years	ago.	
The	second	realization	from	early	work	with	Big	Data	techniques	in	astronomy	identifies	the	
urgent	need	to	expand	and/or	re-prioritize	work	at	the	data	centres	to	support	the	higher	
demand	in	data	preservation	and	computing	infrastructures	as	well	as	to	train	internal	staff	
and	the	user	community	 into	the	new	techniques.	 In	particular,	one	technical	challenge	to	
overcome	is	the	connection	of	various	data	silos	with	volumes	in	the	TeraByte	or	Petabyte	
scales,	which	are	not	easily	shareable	with	current	network	performance.	

																																																								
2	ivoa.net	
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Big	Data	Challenges	in	Simulations	
Numerical	 simulations	 on	 high-performance	 supercomputers	 have	 become	 a	 backbone	 in	
theoretical	astrophysical	research.	Such	simulations	provide	solutions	for	complex	systems	
of	 partial	 differential	 equations	 which	 cannot	 be	 solved	 analytically,	 thereby	 allowing	
precision	tests	of	physical	hypotheses	and	the	conduction	of	virtual	experiments	that	would	
otherwise	 be	 impossible.	 The	 relentless	 growth	 of	 the	 peak	 performance	 and	 storage	
capacity	of	large	computers	over	recent	decades	has	enabled	rapid	progress	in	the	physical	
fidelity	 of	 modern	 simulations,	 causing	 an	 overall	 steady	 expansion	 of	 their	 share	 in	 the	
astronomical	 research	 literature.	 In	 addition,	 the	 data	 volume	 of	 simulations	 has	
exponentially	 grown,	 too,	 and	now	creates	both	new	problems	and	opportunities	 in	 their	
own	right.	
A	 number	 of	 successful	 public	 data	 releases	 of	 simulations	 of	 cosmic	 structure	 formation	
over	the	past	decade	highlight	the	huge	benefit	of	making	simulation	data	widely	available	
and	usable	beyond	the	researchers	originally	carrying	out	the	calculation.	For	example,	the	
Millennium	 Simulation	 of	 2005	 released	 its	 galaxy	 catalogues	 through	 an	 SQL-queryable	
database	 infrastructure,	which	was	widely	 picked	 up	 by	 the	 community.	More	 than	 1000	
research	 papers	 have	 been	written	with	 this	 data	 thus	 far,	 and	 it	 keeps	 being	 used	 even	
today.	 More	 recently,	 hydrodynamic	 simulations	 of	 galaxy	 formation	 like	 the	 Illustris,	
IllustrisTNG,	and	Eagle	simulations	have	provided	even	richer,	and	much	larger,	datasets	to	
the	astronomical	community,	which	are	on	track	to	reach	comparable	or	even	larger	impact.	
The	data	volumes	concerned	here	already	reach	several	hundred	TB,	making	 it	 technically	
very	challenging	 to	provide	the	data	 in	a	usable	 form	to	 the	 full	astronomical	community.	
Currently,	this	is	addressed	by	allowing	downloads	of	parts	of	the	raw	data	(in	HDF5	format),	
and	through	a	custom-made	API	 that	allows	filtering	of	 the	data	through	powerful	server-
side	queries.	
The	problem	of	data	volume	 is	much	more	acute	 for	 the	 largest	 cosmological	 simulations	
that	 are	 presently	 carried	 out.	 These	 are	 simulation	 of	 cosmic	 structure	 formation	 with	
several	trillion	particles	in	volumes	several	Gpc	across,	and	which	are	needed	in	support	of	
current	and	future	missions	to	study	dark	energy,	such	as	Euclid.	The	simulation	data	in	this	
case	exceeds	several	PetaByte.	Yet,	first	attempts	to	make	this	data	publicly	available	have	
been	made,	like	in	the	recent	release	of	the	Outer	Rim	simulations,	which	amount	to	nearly	
5	PB	in	total.	The	enormous	size	of	this	data	requires	kludges	like	the	restriction	to	release	
only	 heavily	 downsampled	data.	 This	 in	 part	 defeats	 a	 central	 objective	of	 these	 types	of	
simulations,	namely	to	provide	such	exquisite	statistical	accuracy	that	even	small	deviations	
of	dark	energy	from	a	cosmological	constant	become	measurable	with	confidence.	
It	is	a	largely	unsolved	problem	how	simulation	groups	should	cope	with	the	rapidly	growing	
data	volume	of	HPC-based	simulation	models,	and	how	this	data	should	be	made	available	
to	 the	astronomical	community	 to	gain	 the	enormous	amplification	of	 its	 scientific	 impact	
this	 could	 entail.	 An	 expensive	 astronomical	 telescope	 is	 useless	 without	 a	 scientific	
instrument	put	onto	it.	In	numerical	astrophysics,	one	can	likewise	view	a	supercomputer	as	
a	useless	machine	without	a	scientific	simulation	code	that	can	run	on	it	efficiently.	But	the	



7	

analogy	 ends	 when	 one	 considers	 the	 funding	 structures	 traditionally	 associated	 with	
instrument	 development	 and	 code	 development.	While	 the	 former	 is	 typically	 supported	
with	dedicated	positions	and	often	large	budgets,	the	latter	is	commonly	expected	to	arise	
as	 a	 side	 product	 of	 the	 ordinary	 research	 of	 theoretical	 astrophysicists.	 It	 appears	
questionable	whether	this	unsystematic	approach	is	still	adequate	today,	given	the	high	cost	
of	supercomputers	on	one	hand,	and	the	need	to	exploit	them	to	their	full	capacity	on	the	
other	 hand.	 The	 Big	 Data	 explosion	 seen	 in	 simulations	 makes	 this	 problem	 even	 more	
acute,	as	we	are	also	 falling	 short	of	 the	 required	development	effort	 for	parallel	analysis	
tools	that	are	needed	to	process	simulation	data	at	the	leading	edge.	

Big	Data	Challenges:	NOW	and	in	the	FUTURE	
Big	Data	comes	with	various	challenges.	The	five	most	dramatic	challenges	appear	to	be:	(i)	
scalability	and	computability,	 (ii)	statistical	variance	vs	systematic	errors,	 (iii)	novel	uses	of	
simulations,	(iv)	sociological	changes,	and	(v)	disruptive	technologies.	

Scalability	
Data	volume	and	computing	power	double	about	every	year.	This	means	indirectly,	that	no	
polynomial	 algorithm	 can	 survive,	 only	 N	 log	 N	 algorithms	 are	 suitable.	 In	 order	 to	
implement	 non-polynomial	 algorithms,	 we	 will	 need	 incremental	 algorithms,	 where	
computing	is	part	of	the	cost	function,	so	that	we	can	decide	when	to	stop	computing	based	
on	the	question:	what	is	the	best	estimator	in	a	minute,	in	a	day,	in	a	week,	in	a	year?	

Systematic	Errors	
The	 role	 of	 systematic	 errors	 needs	 to	 be	better	 understood.	With	 billions	 of	 data	 points	
statistical	 errors	 are	no	 longer	 the	dominant	ones.	 Large	 known	 (and	obvious)	 systematic	
errors	are	dealt	through	calibration.	Hence,	systematic	errors	are	small	by	definition.	Often	
they	are	detected	only	years	after	the	data	was	taken,	and	often	they	show	up	only	at	the	
edges	of	the	distribution	(magnitude	limits).	With	using	massively	parallel	instrumentation,	
where	every	device	has	slightly	different	characteristics,	these	are	going	to	be	the	hardest	to	
tackle	now	and	in	the	future.	

Computer	Simulations	
High	performance	computing	has	developed	into	an	instrument	in	its	own	right.	The	largest	
numerical	simulations	approach	PetaBytes.	They	are	becoming	very	expensive	as	well.	We	
will	need	public	access	to	the	best	and	latest	astrophysical	simulations	through	interactive	
numerical	 laboratories.	This	creates	new	challenges	and	questions,	e.g.:	How	to	move	the	
PetaBytes	of	data,	how	to	 look	at	 it,	how	to	 interface	and	analyze	 them,	which	computer	
architectures	 to	use	 (supercomputers,	database	servers,	 Jupyter)?	An	example	of	 the	best	
practices	is	the	Millennium	Simulation	database	with	600	registered	users,	so	far	with	17.3	
million	queries!	The	Via	Lactea-II	simulation	shows	how	to	use	cosmology	simulations	as	an	
immersive	 laboratory	 for	 general	 users:	 Users	 can	 insert	 test	 particles	 (“Bring	 your	 own	
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dwarf	galaxies!”)	into	the	system	and	follow	trajectories	in	pre-computed	simulations,	that	
means	users	can	interact	remotely	with	a	PetaByte	in	‘real	time’!	

The	Challenge	of	Long-Term	Data	Preservation	
As	the	first	generation	of	these	large-scale	projects	are	getting	close	to	the	end	of	their	lives	
as	 far	 as	 data	 collection	 is	 concerned,	 as	 the	 original	 instruments	 are	 slowly	 becoming	
obsolete,	a	new	challenge	is	emerging:	what	happens	to	the	data	after	the	instruments	are	
shut	down?	This	is	a	much	harder	problem,	than	it	may	first	appear.	In	order	to	tackle	the	
problem,	 we	 need	 to	 establish	 a	 common	 “currency”	 on	 which	 one	 can	 make	 easier	
comparisons	and	try	to	formulate	a	rational	decision	making	process.	Let	us	try	to	establish	
the	three	different	aspects	of	the	business	model	for	these	surveys:	the	price,	value	and	cost	
of	the	data.	

The	Price	of	Data	

The	data	collection	created	by	a	Big	Science	project	represents	a	major	public	investment	of	
a	 few	 hundred	 million	 dollars.	 This	 includes	 the	 capital	 investment	 in	 the	 experimental	
facility,	the	data	infrastructure,	the	cost	of	operating	the	instrument,	reducing	the	data,	and	
building	and	operating	an	open	and	accessible	data	archive.	This	is	the	price	of	the	data,	this	
is	 how	much	 government	 funding	 (in	 some	 cases	 augmented	 by	 private	 foundations	 and	
individuals)	has	helped	 to	create	 this	 singularly	unique	 resource.	Generally,	 this	process	 is	
well	 understood,	 and	 all	 of	 the	 aspects	 of	 the	 projects	 are	 well	 under	 control	 while	 the	
experiment	is	running.	

The	Value	of	Data	

We	can	also	ask	how	we	could	estimate	the	value	of	the	data.	It	is	clearly	reflected	in	how	
much	 science	 it	 generates.	While	 it	 is	 difficult	 to	 put	 a	monetary	 value	 on	 the	 results	 of	
scientific	research	in	an	algorithmic	fashion,	we	can	use	another	approximate	metric.	Each	
scientific	 paper	 published	 in	 a	 refereed	 journal	 represents	 a	 research	 effort	 that	 costs	
approximately	$100k	(an	estimate,	but	certainly	more	than	$10k,	and	less	than	$1M).	This	is	
the	amount	of	research	funds	spent	on	paying	for	staff,	students,	postdocs,	research	tools,	
computer	time,	to	be	able	to	write	a	credible	scientific	publication.	The	number	of	papers	
based	upon	the	analysis	of	a	given	data	set	are	then	measuring	how	much	the	members	of	
the	research	community	are	willing	to	spend	from	their	own	research	funds	to	work	on	this	
particular	data	set,	they	vote	on	the	value	of	the	data	with	their	research	dollars.	

The	Cost	of	Data	

This	is	the	third	component	of	the	problem.	This	is	measuring	how	much	it	costs	annually	to	
curate,	preserve	and	keep	serving	the	data	to	the	community	in	an	open	and	accessible	way,	
after	 the	original	 instrument	has	been	 turned	off,	 and	 there	 is	no	new	data	added	 to	 the	
archive	 any	 more.	 	 This	 is	 more	 than	 archiving,	 as	 the	 data	 use	 is	 through	 intelligent	
software	 interfaces,	 often	based	on	a	 large	database,	 combined	with	 a	 collaborative	data	



9	

analysis	 platform.	 This	 requires	 a	 lot	 more	 than	 just	 copying	 data	 on	 disks.	 Operating	
systems	 change,	 database	 systems	 change,	 web	 browsers	 change,	 computing	 hardware	
changes,	and	the	user’s	expectation	is	also	increasing	with	time.	A	few	years	ago	they	were	
happy	 to	 download	 a	 few	 flat	 files	 and	 analyze	 them	at	 their	workstations	 at	 their	 home	
institution,	today	they	are	expecting	access	to	iPython	notebooks,	and	GPUs,	but	soon	they	
will	 want	 to	 reprocess	 PetaBytes	 of	 data	 on	 hundreds	 of	 computer	 nodes	 interactively.	
Much	of	the	cost	 is	not	so	much	in	saving	the	bytes,	but	rather	keeping	the	services	alive,	
and	 up-to-date.	 As	 the	 cost	 of	 storage	 and	 even	 computing	 cycles	 keep	 decreasing	 every	
year,	the	dominant	part	of	the	costs	are	mostly	in	people.	

Comparison	of	Price,	Value	and	Cost	

From	our	20	years	of	experience	with	the	Sloan	Digital	Sky	Survey,	the	price	of	the	data	to	
date	has	been	about	$200M.	The	project’s	data	has	generated	to	date	about	9,000	refereed	
publications,	 i.e.	attracting	about	$900M	of	 research	over	 this	period.	After	operating	 the	
archive	 for	 20	 years,	 we	 estimate	 the	 cost	 of	 maintaining	 the	 necessary	 technological	
advances	 into	 the	 future	 is	 approximately	 $500K/year.	 Let	 us	 express	 this	 annual	 cost	 in	
terms	 of	 the	 price:	 $500K/$200M	 =	 0.25%/year.	 We	 can	 see	 that	 a	 5%	 addition	 to	 the	
project’s	budget	would	secure	the	archive	for	20	more	years.	Or,	if	the	continued	operation	
of	the	archive	results	in	just	5	refereed	papers	in	a	year,	it	is	still	a	reasonable	investment	to	
keep	the	archive	alive.	
The	 same	numbers	 for	 the	 Large	 Synoptic	 Survey	Telescope,	 the	 current	national	 flagship	
project	for	astronomy,	are	similar.	The	price	is	expected	to	be	around	$1.2B	by	the	end	of	
the	 project,	 and	 the	 cost	 to	 be	 about	 $6M/year,	 i.e.	 $6M/$1.2B	 =	 0.5%,	 still	 in	 the	 same	
ballpark.	
These	 costs	 are	quite	 trivial	 compared	 to	 the	price	of	 the	data,	 yet	we	have	no	 coherent	
plans	or	long-term	funding	mechanisms	in	place	to	address	this	problem.	A	potential	loss	of	
one	 of	 these	 data	 sets	 would	 create	 an	 enormous	 damage	 to	 science	 and	 endanger	 the	
national	willingness	 to	 continue	more	 future	 experiments,	 if	we	 cannot	demonstrate	 that	
past	investments	are	adequately	protected,	preserved	and	cared	for.	
Issues	for	the	future	are:	

● Data	 Lifecycle:	 New	 data	 standards	 emerge;	 metadata	 standards	 change;	
usage	patterns	change.	

● Service	 Lifecycle:	Survey	data	presented	 in	Smart	Services;	browsers	 change	
(HTML5);	 operating	 systems	 change;	 databases	 change;	 servers	 become	
obsolete,	disks	die;	new	software	technologies	(iPython)	emerging.	

● Long	 Term	 Data	 Publishing/Preservation	 Models:	 Traditionally	 we	 included	
the	data	in	the	printed	publications	(“we	threw	it	over	the	wall	for	someone	
to	catch	 it”);	publishers	and	 journals	were	 there	 to	do	 so	 (for	a	profit);	 this	
model	 is	 cracking.	 Formal	 (FAIR)	 requirements	 have	 emerged:	 Findable,	
Accessible,	 Interoperable,	 Reproducible.	 Open	 scientific	 data	 is	 becoming	
increasingly	mandated	by	 funding	 agencies.	 The	 current	 for-profit	model	 of	
scientific	 publishing	 is	 under	 attack,	 transition	 is	 inevitable.	 But	 this	 is	 all	
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about	 publications,	 what	 about	 the	 data?	 A	 FAIR-approach	 needs	 more	
automation,	manual	approach	cannot	keep	up.	What	happens	to	large,	high-
value	data	sets	when	they	are	completed?	

Ideally,	data	should	be	open/free,	accessible	and	self-sustaining!	 In	practice:	Pick	any	two,	
and	 the	 third	 is	determined!	Relevant	questions	are:	How	can	one	ensure	a	 steady,	 long-
term	support?	Who	do	we	trust	with	all	this	irreplaceable	data?	How	can	we	decide	what	to	
preserve?	

Suggestion:	Set	up	a	National	Endowment	/	Data	Trust	for	High-Value	Data!	
	

Disruptive	Technologies	–	what	happens	in	30	years?	

Major,	inevitable	changes	are	coming.	It	is	enough	to	look	at	the	music	publishing:	

					 																											LPs			=>		iTunes		=>		Pandora!	

In	 the	 old	 days,	 we	 bought	 and	 took	 home	 the	 physical	 copy	 of	 an	 LP	 or	 CD,	 this	 is	
equivalent	to	downloading	the	whole	data	set	to	our	own	computers.	With	iTunes,	we	can	
download	a	very	specific	song	form	a	 large	collection.	The	data	equivalent	 is	 to	perform	a	
database	 query	 that	 returns	 a	 small	 subset	 of	 the	 data	 precisely	 matching	 our	 criteria.	
Finally,	Spotify	and	Pandora	stream	music	to	us	according	to	some	broad	criteria,	and	we	do	
not	know	the	format	or	what	the	next	song	will	be,	everything	happens	in	the	cloud,	we	just	
see	 the	 results.	 This	 is	where	we	are	heading	with	modern	machine	 learning	 tools,	which	
will	find	various	potential	patterns	in	the	data	and	present	it	to	us	for	a	human	evaluation	
and	 visual	 inspection	 in	 a	 broader	 context,	 to	 turn	 automated	 detections	 into	 potential	
discoveries	–	the	future	we	are	looking	at.	
Today	we	spend	of	order	a	$1B	per	project	 to	acquire	valuable	data	 (typical	 cost	of	a	big	
project/telescope).	Much	of	these	will	not	be	superseded	in	the	foreseeable	future/decades.	
At	 the	 end	 of	 the	 projects	 the	 data	 sets	 will	 be	 handed	 off	 to	 someone.	 We	 need	 an	
organization(s)	which	

● has	a	long	track	record	with	a	predictable	future,	
● understands	data	preservation,	
● is	trusted	by	everyone,	
● is	technically	capable,	
● can	run	under	a	sustainable	model,	and	
● has	no	single	points	of	failure.	

Suggestion:	 Consortium	 of	 University	 Libraries	 or	 Data	 Centres	 +	 embedded	 domain	
scientists!	
	

How	 do	 we	 prioritize?	 The	 data	 explosion	means:	 science	 is	 becoming	 data	 driven.	 It	 is	
becoming	 “too	 easy”	 to	 collect	 even	 more	 data:	 e.g.	 with	 robotic	 telescopes,	 next	
generation	 sequencers,	 complex	 simulations.	How	 long	 can	 this	 go	 on?	 If	 asked:	 “Do	 you	
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have	enough	data	or	would	you	 like	 to	have	more?”,	no	scientist	ever	wanted	 less	data…		
But:	Big	Data	is	synonymous	with	Dirty	Data.	How	can	we	collect	data	that	is	more	relevant?	
We	 need	 to	 improve	 ideas	 on	 survey	 design…	 e.g.	 use	 artificial	 intelligence	 in	 large-scale	
experimental	 design.	 For	 example,	 observing	 spectra	 is	 1,000	 times	more	 expensive	 than	
imaging	 the	 same	 objects.	 We	 could	 use	 reinforcement	 learning	 to	 continuously	 refine	
information	from	observed	targets	to	improve	target	selection	algorithms	through	machine	
learning.	Active	 learning	will	help	pick	the	best	objects	 to	observe,	given	our	existing	data	
from	the	many	available	targets,	what	will	give	the	best	improvement	in	our	knowledge?	
Big	Data	is	at	the	forefront	of	astronomy	(and	science	in	general).	Major	disruptive	changes	
happen	rapidly.	Astronomy	is	embracing	machine	learning.	So	far	we	made	much	of	it	up	as	
it	happened,	there	was	no	grand	plan.	There	was/is	a	tremendous	impact	of	key	individuals	
(John	Gray,	Tony	Tyson,	Jim	Gunn	…).	The	community	at	large	by	now	is	convinced	that	this	
is	happening,	it	is	ready	for	transformation.	Funding	agencies	are	much	slower	to	adopt.	We	
are	now	spending	billions	on	surveys,	yet	there	is	no	coherent	plan	for	long	term	data	when	
we	need	 it,	we	have	to	 improvise	again.	 It	was/is	an	amazing	 journey	so	far,	 transforming	
people’s	lives	and	careers.	The	journey	continues	…	and	is	accelerated.	

Conclusion	
A	very	rewarding	Forum	was	held	by	ISSI	in	Bern,	there	was	a	high	level	of	engagement	and	
a	 lively	 exchange	 of	 ideas.	 This	 document	 has	 summarized	 the	 Forum	 discussions.	 The	
following	list	represents	a	distillation	of	the	most	salient	recommendations:		
	

● The	developments	and	provided	services	linked	to	Big	Data	should	be	driven	by	user	
needs,	taking	the	best	advantage	of	new	technological	capabilities	but	not	driven	by	
these	technological	capabilities.	

● The	usage	of	AI	technologies	to	automate	data	curation	and	preservation	should	be	
explored	and	implemented	if	relevant.	

● Researchers	should	be	provided	with	data	and	tools	relevant	to	their	science	using	
the	new	technologies.	

● The	efforts	to	release	simulation/numerical	model	data	should	be	pursued,	this	leads	
to	increased	data	volumes	on	top	of	the	instrument	generated	data.	

● Coping	 with	 increasing	 data	 volume	 requires	 investment	 and	 improvements	 in	 e-
infrastructure	 in	 particular	 networks	 and	 storage	 -	 this	 will	 be	 essential	 for	
connecting	data	silos	with	volumes	in	TeraByte	and	PetaByte	scales.	

● As,	 out	 of	 necessity,	 the	 percentage	 of	 budget	 for	 software	 increases	 we	 must	
become	 more	 efficient	 and	 have	 less	 duplicated	 systems	 for	 simulation	 and	
processing.		

● Long	term	maintenance	of	software	needs	to	become	a	project	priority.		
● Career	 paths	 for	 astro-cyber-infrastructure	 need	 to	 be	 laid	 out	 properly	 to	 show	

people	this	is	a	valid	and	useful	career.		
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Agenda	of	the	Meeting	
  
Thursday, July 4, 2019 
	

09:00															Welcome	
Tilman	Spohn/Joachim	Wambsganss	&	Alvaro	Giménez		

	
09:10																Introduction	of	the	participants	
	
09:30														Keynote	1:	Big	Data	Challenges	in	Observations	

Wil	O’Mullane	
10:00														Discussion	&	Contributed	Talks	to	Session	1:	
	 Contributed	 Talk	 1a:	 The	 Square	 Kilometer	 Array:	

Exploring	 the	Universe	with	an	Exascale	Telescope	Chiara	
Ferrari		

	 Contributed	Talk	1b:	From	MWA,	ASKAP	to	FAST	and	SKA1-
LOW		Andreas	Wicenec	

	 Contributed	Talk	1c:	Changing	the	way	we	do	science:	some	
notes	on	reproducibility		Johan	Knapen	

10:45														Coffee	Break	
11:15														Keynote	2:	Big	Data	Challenges	in	Archiving	

Bruno	Merín/Françoise	Genova	
	11:45														Discussion	&	Contributed	Talks	to	Session	2:		

Contributed	Talk	2a:	ESCAPE	–	European	Science	Cluster	of	
Astronomy	 and	 Particle	 Physics	 ESFRI	 research	
infrastructure		Simone	Campana	
Contributed	Talk	2b:	Big	data	 in	 exoplanets	 and	planetary	
sciences	-	Sone	very	brief	thoughts		Ingo	Waldmann	

	
12:30-14:00		Lunch	break	
	
14:00														Keynote	3:	Big	Data	Challenges	in	Simulations	

Volker	Springel	
14:30														Discussion	&	Contributed	Talks	to	Session	3:	

Contributed	Talk	3a:	Data	Science	 in	Astronomy	 	Michelle	
Ntampaka	
Contributed	Talk	3b:	Collaborative	models	and	software	in	
the	big	data	era		Arfon	Smith	
Contributed	Talk	3c:	Data	Observatory		Jorge	Ibsen	
Contributed	Talk	3d:	Google	Cloud		Ross	Thomson	

15:15														Coffee	Break	
15:45														Individual	Contributions	&	Structured	Discussions	
19:30														Dinner		
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Friday, July 5, 2019 
	
9:00																Keynote	4:	Big	Data	Challenges	NOW	and	in	the	FUTURE	

Alex	Szalay	
		
9:30																Discussion	&	Contributed	Talks	to	Session	4:					

Contributed	Talk	4a:	SDSS-IV		Anne-Marie	Weijmans	
Contributed	Talk	4b:	The	ESO	ELT		Michael	Sterizig	

10:15														Coffee	break	
		
10:45														Final	Discussions	and	Conclusion	
		
13:00														End	of	Forum	
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