A new generation of databases for
interstellar chemical modeling in
preparation for HSO and ALMA

Goal of the team:Address the difficult question of uncertainties in reaction rate coefficient in
order to improve chemical databases for astrochemistry modeling.

Meeting |: General consideration about uncertainties
Meeting 2:Work on specific reactions

Publication of a review paper on this topic




Program

Monday afternoon: Session |

Introduction to astrochemistry and gaz-phase databases
Tuesday morning: Session 2

Estimated uncertainties in rate coefficients and how they are used
Tuesday afternoon: Session 3

Theory and temperature extrapolation

Wednesday morning: Session 4

Gas-phase experiments and uncertainties in rate coefficients
Wednesday afternoon: Session 5

Surface chemistry and uncertainties

Thursday morning: General discussion







Abundance Uncertainties and
Sensitivity Analyses in
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Uncertainties in rate
coefficients in osu

v osu network: created and used by the Ohio

State University Astrochemistry team (leaded by
Prof. Eric Herbst)

v Mainly for low temperature objects

v Uncertainties recently added similarly to
UMIST




Model used: OD pure gas-phase model, single fixed gas
temperature and density, time dependent chemistry

OSU and Srates database

Two types of sources:
- dark clouds (T=10K, n(H2)=10%cm3,Av=10)

- “hot corinos” (T=100K, n(H2)~107cm3, Av=10)




Uncertainty Method

Recommended rate coefficients

Standard species abundances
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SO abundance Distribution of k assuming the uncertainty in
the rate coefficients is lognormal




Uncertainty Method
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uncertainty range




Uncertainty Method
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Uncertainty Method
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SO abundance: each line is
the result of one run
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Defining uncertainties in
abundance species
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Typical results:
H>CS in hot cores

20 error bar
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Some quantitative results
Uncertainties in molecular clouds
C 2 5
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Values of the uncertainties in the abundance species
as a function of time and complexity of the molecule

Alog(X)=0.1 means X/1.25 < X £ X*1.25
Alog(X)=1 means X/10 £ X < X*|0
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Finding hypersensitivity and bistability

High metal elemental abundances - varying all rate
coefficients at the same time

Density of probability Histogram at 10%yr

|

1

0, molecule [

log(Abundance)

100 200 300 400 500
Number of curves

'

3 4 5 6
log(time [years])

Cosmic ray ionization:
He + cosmic ray = He* + e
Hz + cosmic ray = Hy" + e

O3 abundance as a function of Che/Tha

F Variation of all the
I rate coefficients
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Wakelam et al. (2006)




Le Bourlot et al. (1993)
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Uncertainties in physical conditions in
molecular clouds

Variation of 50% of T and n(H2) around typical values (10K and 10%cm-3)
Increase the uncertainty for some species especially N-bearing species

Nitrogen chemistry starts with
N*+ Hy; =& NH* + H k=10%xp(-85/T)
Not efficient a low T

Number of runs

Model 1 i

Number of runs
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What can we do with the uncertainties in
abundance species?

Compare the theoretical and observed abundances taking
into account the both error bars in order to:

v define the most problematic species (really not
reproduced by models)

v define the need for including other processes (gas-grain
interactions for instance)

v laboratory needs

Problem: how do we compare?




Proposed method to compare observed
and modeled abundances

OH abundance
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D [log(X)]

(min(D)/D)*F

Fraction of reproduced molecules

Distance of disagreement

log(t[yr])

F(t) = fraction of reproduced species as a function of time

= Constrain non reproduced species

D(t) = 2 d; for non-reproduced species as a function of time

[min(D)/D(t)]*F(t)
Takes into account both agreement and disagreement

= Constrain the chemical age




Reproduce around 80% of observed molecules in L134N and
TMC-1 assuming a factor of 3 uncertainty in observed
abundances.




Dating low mass protostars

OD gas-phase chemical model for low mass protostar.
Comparison with observations in IRAS16293-2422

Without uncertainties With uncertainties
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Reducing uncertainties on a list
of 5 selected reactions
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Sensitivity Methods

|dentification of important reactions that may be wrong or

can be improved
Linear correlations:
- varying rate coefficients one after an other (method |)

- linear correlation coefficients (method 2)

Non-linear correlations (to be done in ISM chemistry)




Method |

Varying rate coefficients one after an other

Recommended rate coefficients Abundances of reference
krecl, krecz, 000y, Krec" Xrefl, Xref > ._.’Xrefm

Modifying one rate coefficient

, Modified abundances
(by a certain factor)

kmodl, krec2, eeey kl"eCn Xm0d| XmOdZ, ---,Xm0d3

Compute at each time step, how much each reaction influences the abundance of each species:

EaSin s G)

R3 A= e ()

If Rij(t) = 0.1, it means that the modification of reaction i rate coefficient by a certain factor induces
an increase of 10% in the species j abundance at a time t.




Method 2

Pearson correlation coefficients

Random modification of all rate coefficients at the same

time in their uncertainty range — results of the
uncertainty calculations
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X abundance species, X mean abundance
k rate coefficient, k mean rate coefficient
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Example: Reaction C + C3 = C4

Previous value of k: 1019 s-'em™3 smith et al. (2004)
Proposed new value: ~10-'2 s''cm?3

CO abundance as a function of time
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Example: Reaction C + C3 = C4

Previous value of k: 1019 s-'em™3 smith et al. (2004) k|
Proposed new value: ~10-'2 s''cm?3 k2

CO abundance as a function of time

Species modified by more than 200%

log(Abundance)
(9)]
Number of species




The main problem: the definition of the
rate coefficient uncertainties




