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Ice desorption at cloud and disk edges

*Excess H0 at cloud edges

*(Observed delayed freeze-
out of H>0 and CO, at outer
few Ay of clouds

*Cold HCO,™ in clouds and
towards a protostar

*Cold CO gas in proto-
planetary disks

* Cold H>0 observations
possible in disks with
Herschel

Bergin et al. 2005



Previous photodesorption estimates

*(C0 .

. ¢
* Estimates based on theory and AN /
experiments on noble gases

* 107 - 10~ photon-"!
*H,0

* Estimates inferred from experiments
and observations of cloud edges

* 10 - 10 photon"’
* (0,

*No estimates

Hartquist & Williams 1990, Melnick et al. 2005, Westley et al. 1995



Photodesorption in the laboratory

Mass
spectrometry

Infrared
spectroscopy
of ice




Photodesorption in the laboratory
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CO photodesorption: Gerg e o200

Ice destruction = 5 e
ice desorption
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CO + N, photodesorption
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* (O desorption is
efficient: 2.7x10-3

*Pure N, desorption is
slow: <2x104

* (0 desorption only

from surface layer
* Explains thickness
independence
* Explains mixed
experiments
*Explains T dependence




Deriving H>0 photodesorption:

Oth vs. 15t order reactions
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Have to separate
photo-chemistry
and photo-
desorption

Use different
kinetics of
surface and bulk
reactions

Oberg et al. submitted to Ap!



Deriving H>0 photodesorption:
The total yield
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% Total photodesorption rate at 100 K: ~4 x 10-3 photon"’
% 8 x 1073 photon-" in Westley et al.

% No dependence on tlux, time or photon fluence
% lotal yield is thickness and temperature dependent

Oberg et al. submitted to Ap!



Deriving H>0 photodesorption:

Photodesorption products

' ' Temperature
dependence of
1 photo-
Lof | 1o} {  desorption

' A | products: Hz0,
OH and O;
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Oberg et al. submitted to Ap!
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Deriving CO;

photodesorption:
Mass balance calculations

Have to separate photo-
chemistry and photo-

desorption

Compare lost CO, with major
formation product - CO

Oberg et al. submitted to A&GA



Deriving CO, photodesorption:

Mass balance calculations

% Similar to H,0 dependencies

% Can separate CO and CO;
desorption products

Lowule,d * For both H,0 and CO, increased

lee thickness / ML temperature increases ice
S LA I diffusion, which increases the
desorption yield

% Sub-monolayer desorption
interred from model of multi-layer
desorption

A_ll ML ]

T
=
(@)

e )
(@)
o=
(=9
"
2
b |
3]
2
(@)
g
N
i
2
=

Oberg et al. submitted to A&GA



Surface photodesorption of CO ice

Oberg et al. 2007, Takahashi & van Hemert in prep.



Co-photodesorption of N; ice

Oberg et al. submitted to A&A, Takanashi & van Hemert in prep.



Dissociation and desorption of
HzO and COZ

Andersson et al. 2008, (")berg et al. submitted to Ap]



Photodesorption in astrochemical models

* 15tys, O order vs. in between
*dependent on ice coverage

ud edges vs cloud cores

in the lab always start with multilayer

in clouds build up ice from sub-monolayers
*good estimates of desorption products for




Photodesorption rate equations

* (loud edges:

Rco = 1077 (2.7 — (T — 15) x 0.17) X 04 fecoluv X @
Rco, = (().6 X 10_3) X Ogr fco,lUuv X @

Ru,0 = (1.2 x 107%) X 0 fi,oluv X @




Photodesorption rate equations

*Build-up of ices 1<x<3 at 10 K, 1<x<10 at I>30 K:
Rco = 1072 (2.7 — (T — 15) x 0.17) X oy focoluv
Rco, = 1073 (1.2(1 — e /29 1 1.1(1 — e—w/4-6)) X Ogr foo, TUv

Ri,o = 1073 ((1.3 0.032 x T)(1 — e—x/“T))) % 0 fit.0 Uy

* (Cloud cores:
RC()2 — (23 X 10_3) X UgrfCOQIUV




Consequences for cloud cores: CO




Consequences for disks: Hz0

Model of H0 gas to
gas-+ice ratio in pre-
main sequence star and
disk without and with
photo-desorption
turned on.
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Photodesorption has a
large impact on the gas
chemistry, which should
be easily detectable
with Herschel




Uncertainties and ways to reduce them

*Quanti

*UV s

*|ce loss rate - requ

*Quantifiab

*Pure vs.
* UV spect

nectra, flux in

ied uncertai

nties - factor of ~2
ab - can be improved with current set-up

ires new set-up to be improved

e uncertainties
mixed vs. layered ices
ra, UV flux and temperature structure in space

*Uncertainties that are difficult to quantity

*|ce structure in space vs the lab

*extrapolation to cloud and disk conditions - grain material and
structure, UV flux (linear over 2 orders ot magnitude)

*total

grain surface




Importance of uncertainties in models

Experimental uncertainties Astrophysical
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Photodesorption experiments to come

*(0:H,0, CO2:H,0 and CO:CO; mixtures at 15 K
*Monolayer of CO on gold, Nz and H0 at 15 K
*Monolayer of H,0 on gold, Nz and CO at 15 K
*(CH30H, CH4 and NH3 estimates




