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ABSTRACT

Context. Stochastically occurring flares provide a possible mechanism of coronal heating in magnetically active stars such as T Tauri objects
in star-forming regions.
Aims. We investigate the statistics of stellar X-ray light curves from theXMM-Newton Extended Survey of the Taurus Molecular Cloud
(XEST).
Methods. To this end, the light curve is modeled as superimposed flares occurringat random times and with random amplitudes. The flare
shape is estimated non-parametrically from the observations, while the flare amplitude distribution is modeled as a truncated power law,
and the flare times are assumed as uniformly distributed. From these model assumptions, predictions on the binned counts are derived and
compared with the observations.
Results. From a sample of 22 XEST observations matching the above model assumptions we find that the majority of cases have flare
amplitude distributions with slopes steeper than two. This favours the role of small flares in coronal heatingfor 5 targets, of which, however,
4 are foreground or background main-sequence stars.
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1. Introduction

Stellar flares are violent manifestations of structural instabili-
ties in stellar atmospheres, and often dwarf solar flares in terms
of energy output and variability (G̈udel 2004). Observationally,
they are most pronounced in soft X-rays, where the luminosity
may increase by many orders of magnitude during the flare.
Stellar flares are believed to be related to magnetic fields, and
are frequently observed in T Tauri stars and protostars (typical
flare decay times are hours, and there may be several – observ-
able – flares per day). Such objects have been the target of the
XMM-Newton Extended Survey of the Taurus Molecular Cloud
(XEST; Güdel et al. 2006) to which the present series of articles
is devoted.

Some stars produce sporadic large flares which are eas-
ily recognized as such, but others are apparently in a state
of continuous flaring activity, where most flares are too small
to be resolved by photon counting observations. In the latter
situation, numerous small flares are superimposed, resulting
in fluctuations that cannot be explained by a Poisson process
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of constant intensity. The suggestion that a large population
of randomly occurring small flares is producing much or all
of the observed high-energy radiation from a corona was ini-
tially made for the solar corona based on observations (e.g.,
Lin et al. 1984, Hudson 1991) and theoretical concepts (Parker
1988). Observationally, the distribution of the radiativeenergy
(or flare-peak power) released in (hard or soft) X-rays has been
found to obey a power law,

dN
dE
= kE−α (1)

wheredN is the number of flares per unit time with a total en-
ergy in the interval [E, E + dE], andk is a constant. Ifα ≥ 2,
then the energy integration (for a given time interval) diverges
for the lower integration limitEmin → 0, that is, by extrap-
olating the power law to sufficiently small flare energies,any
energy release power can be attained. This is not the case for
α < 2. Solar studies have repeatedly resulted inα values of
1.6−1.8 for ordinary solar flares (Crosby et al. 1993), but some
more recent studies of low-level flaring suggestα = 2.0 − 2.6
(Krucker & Benz 1998, Parnell & Jupp 2000).

The concept of stochastic flares heating coronae has found
appeal also in the stellar case, in particular for magnetically ac-
tive stars. The latter show properties that are difficult to explain
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with steady heating mechanisms but follow naturally from flare
concepts: i) many magnetically active stars show coronal elec-
tron temperatures in excess of 10 MK, reminiscent of flaring
plasma, with an emission measure distribution that can natu-
rally be explained by the sum of emission measure distributions
of randomly occurring flares (G̈udel et al. 2003); ii) measured
electron densities in active stars are elevated, often reaching
values of several times 1010 cm−3 (Ness et al. 2004); iii) mag-
netically active stars are continuous sources of non-thermal ra-
dio emission, ascribed to gyrosynchrotron emission from ac-
celerated electrons (G̈udel 2002).

Interpretations of stellar X-ray emission in terms of
stochastic flaring date back to the late eighties but have found
renewed interest in particular with more recent satellite obser-
vations that allow for longer or more sensitive observations
than hitherto possible. A summary of all previous observations
has been given by G̈udel (2004); we briefly summarize the re-
sults. A new methodology in flare identification was applied by
Audard et al. (1999, 2000) to magnetically active, nearby main-
sequence stars. They found a predominance of relatively steep
power laws includingα ≥ 2. Full forward modeling of a super-
position of stochastic flares was applied to EUV and X-ray light
curves by Kashyap et al. (2002) and Güdel et al. (2003) based
on Monte Carlo simulations, and by Arzner & Güdel (2004)
based on an analytical formulation. These investigations con-
verged toα ≈ 2.0 − 2.5 for M dwarfs. If the power-law flare
energy distribution extends by about 1–2 orders of magnitude
below the actual detection limit in the light curves, then the
entire emission could be explained by stochastic flares.

Generally, larger flares are found to be harder than
smaller flares (Güdel 2004), and the latter are harder than
the quiescent emission; this leaves the possibility that the
softest, quiescent emission could be due to a large number
of small, unresolved superimposed flares. We shall, indeed,
adopt here the working hypothesis that quiescent emission
could be due to unresolved superimposed flares, and these
would produce overall softer emission, as observed during
“quiescence”.

Young stellar objects such as T Tauri stars are extremely ac-
tive X-ray sources, showing the same characteristics also found
in active main-sequence stars. An extension of the stochastic-
flare studies to T Tauri stars is warranted, but the larger dis-
tances of these stars and consequently their lower fluxes have
made such investigations much more difficult. Two studies have
been undertaken, one by Wolk et al. (2005) on a sample of
T Tauri stars in the Orion region observed byChandra, and
one by Stelzer et al. (2006) on a sample of T Tauri stars in the
Taurus Molecular Cloud; the latter study includes a reconsid-
eration of the sample presented by Wolk et al. The results of
these investigations are not fully conclusive, withα values of
1.9 ± 0.2 and 2.4 ± 0.5 for the Orion and the Taurus sample,
respectively (Stelzer et al. 2006).

The present work attempts to extend theoretical and nu-
merical work presented by Arzner & G̈udel (2004) for main-
sequence stars to a sample of T Tauri stars in the Taurus region.

2. Methods

Scargle (1998) has proposed a method to find changes in
the count rates and thus decompose the observed light curve
into Bayesian blocks of piecewise constant count rate. The
Bayesian block method is applied to XEST data in an accom-
panying article (Stelzer et al. 2006).

While the Bayesian blocks are successful in detecting
abrupt changes in the count rate, the assumption of piecewise
constant flux is somewhat artificial and not well adapted to
stellar flares, which typically have a rapid rise followed by
a slow decay. In order to investigate the occurrence of flares
down to very low levels, we now study an alternative model in
which a constant flare shapeξ(t) is assumed, and suppose that
a flaring light curve is a superposition of many similar events.
Mathematically, the flare timestk are assumed to be uniformly
distributed with rateλ [flares/s], and the light curve is modeled
by a stationary random process of the form

f (t) =
∑

k

ak ξ(t − tk) [ct/s] (2)

where theak > 0 are flare amplitudes [cts/flare] drawn from
some probability densityP(ak). By definition, the flare ampli-
tudesak have units of counts (per flare), and the flare shapeξ(t)
has unitss−1. All ak andtk are assumed to be statistically inde-
pendent, and the observed photon arrival times are assumed to
form a non-homogeneous Poisson process with intensityf (t).
The flare profile is normalized to one (

∫

ξ(t)dt = 1) and we also
require that
∫

tξ(t) dt < ∞ . (3)

The condition (Eq. 3) is a technicality which will facilitate the
estimation of the flare shape. It is valid in the frequently ob-
served case of approximately exponentially decaying flares.

The assumptions of independence and linear superposition
expressed by Equation (2) not only lead to a simple expression1

for the power spectral density (or two-time function)

| f̂ (ω)|2 = |ξ̂(ω)|2
∣

∣

∣

∣

N
∑

k=1

akeiωtk
∣

∣

∣

∣

2

N→∞−→ |ξ̂(ω)|2
{

λ2〈a〉2δ(ω) + λ〈a2〉
}

, (4)

but also admit a closed-form representation of the single-time
distribution of f (t) in terms of characteristic functions (i.e., the
Fourier transforms of probability densities, see Lukacs 1970).
In particular, Arzner & G̈udel (2004) have shown that given
the characteristic functionφa(s) of the flare amplitudesak.and
the characteristic functionφF(s,∆t) of the bin content (Poisson

parameter)F(t) =
∫ t+∆t

t
f (t′) dt′ are related by

φF(s,∆t) = exp

(

−λ
∫ ∞

−∞
dt

(

1− φa[sΞ(t,∆t)]
)

)

, (5)

1 This follows from f (t) being the convolution product ofξ(t) and
∑

k akδ(t− tk). The limit in Eq. (4) applies to sums over infinitely many
flares. See Bondesson (1988) for a general introduction and Mitra-
Kraev & Benz (2001) for a solar application.
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whereΞ(t,∆t) =
∫ t+∆t

t
ξ(t′)dt′ is the flare shape convolved with

the observational time bin. The derivation of Eq. (5) is dis-
cussed in detail in Arzner & G̈udel (2004) and exploits the in-
dependence of flare times and -amplitudes, which allows the
factorization of the characteristic function, and a decomposi-
tion into the possible (Poisson distributed) numbers of flares
occurring during the observation. Notice that in Eq. (4) it is
tacitly assumed that both〈a〉 and〈a2〉 exist.

Several observational predictions can be derived from
Equation (5), such as the distributionP∆(n) of counts in bins
of given duration∆t (i.e., the distribution of the values of the
light curve). The detailed calculations are given in Arzner&
Güdel (2004), and result in

P∆(n) = (2π)−1
∫ 2π

0
ds e−insφF(i − ieis,∆t) (6)

An additive constant backgroundb [ct s−1] is easily included,
as it amounts to replacingφF(s,∆t) by eisb∆tφF(s,∆t). An ad-
ditive constant background has the same effect as a qui-
escent contribution from the target, and cannot be distin-
guished by our present approach. However, as outlined in
the introduction, our assumption is that there is no separate
quiescent contribution to the light curve, but that “quies-
cent” emission is due to small, unresolved, superimposed
flares. In Arzner & Güdel (2004), Equation (6) (and a similar
result for the photon waiting time distribution) have been ap-
plied to EUVE data of AD Leo. In this article, we apply Eq.
(6) to XMM-Newton data, and introduce an important method-
ical refinement. In the original work, the flare shape was taken
ad-hoc as a one-sided exponential, with a decay constant cho-
sen by eye. Here we estimate the flare shape empirically using
Equation (4).

It should be pointed out that the application of Eq. (6) rep-
resents a rather drastic form of data reduction, since it projects
away the time ordering of the observed light curve. The pres-
ence of the flares manifests only in the deviation of the binned
count histograms from pure Poisson distributions. The advan-
tage is that the method is insensitive to data gaps and does not
require the flares to be resolved within the counting statistics.
It is, in fact, especially adapted to faint but flaring sources.

3. Observations and data reduction

3.1. Data

The data used for our investigation are part of XEST (Güdel
et al. 2006), a project that investigates X-ray emission of a
large sample of T Tauri stars and protostars in the Taurus
star-forming region using theXMM-Newton X-ray observa-
tory (Jansen et al. 2001). The survey comprises 27 different
fields across the cloud, and most of them used exposure time
of approximately 30 ks although a few were exposed up to
≈ 130 ks. The survey makes use of the European Photon
Imaging Cameras (EPIC) of the MOS (Turner et al. 2001) and
the PN type (Str̈uder et al. 2001).

TheXMM-Newton observatory uses grazing incidence mir-
rors for X-ray imaging in the range of 0.2 to 10 keV. The X-ray

Fig. 1.Top: photon arrival time versus energy of HD 31305 the (XEST
observation 26-051). Bottom: energy-integrated light curve. The time
bin size is 124 seconds.

photons are detected by two MOS-type CCD arrays and a pn-
type CCD array. The time resolution of these arrays depends
on their type and also on the operation mode. For the observa-
tions considered here, the MOS-type arrays (Turner et al. 2001)
have a time resolution of 2.6s whereas the pn array has a time
resolution 0.07s. In order to improve the statistics we haveco-
added all available MOS and pn data. In order to avoid artifi-
cial fluctuations, all detectors are required to be simultaneously
operational. Since we are interested in light curves, we accept
all energies between 0.5 and 7.3 keV. This choice of energiesis
motivated by instrumental considerations and by the uniformity
of data treatment.

From all XEST observations we have selected a set where
the model assumption of Eq. (2) is plausible by inspection of
the light curves and where>1000 counts are available (but
pile-up can be neglected), and have determined the maximum-
likelihood parameters of the flare amplitude distribution.In the
rest of this Section, we discuss the detailed procedure consider-
ing as an example the observation HD 31305 (XEST-26-051),
which is a A0 V background star, the X-ray emission of which
probably comes from an unseen companion. The raw data of
this observation are presented in Fig. 1. The top panel shows
the photon arrival time versus energy (one dot represents one
count). The bottom panel shows the energy-integrated, time-
binned counts. The time bins∆t are 2−n-th fractions of the total
observing time, as needed for the Fourier analysis of the pulse
shape (Sect. 3.2), and are chosen such that the bins contain
of order 10 counts. Different observations use different time
bins. A background estimate has been obtained from∼10 times
larger source-free extraction regions, giving a (scaled, constant)
background rate ofb = 0.0027 ct s−1 (this value refers to HD
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31305). Since the relative error ofb is only about 0.2%, we
considerb as exactly known.

3.2. Estimation of the flare profile

In order to estimate the flare profileξ(t) from the observations,
we work with the power spectrum (or, equivalently, the auto-
correlation), thus making use of the assumption of stationarity.
Consider Eq. (4). The factor in curly brackets, representing the
random flare pulses, is constant except atω = 0. On the other
hand, the factor|ξ̂(ω)|, representing the flare shape, is continu-
ous atω = 0 and satisfies|ξ̂(0)| = 1 (both by virtue of Eq. (3)).
Therefore,|ξ̂(ω)| can be obtained from| f̂ (ω)| by continuous in-
terpolation toω = 0 and appropriate scaling. This is the basic
idea used here to estimate the flare profile; however, the actual
implementation requires two additional steps.

First, | f̂ (ω)| must be estimated from the observed counts.
To this end we consider the power spectrum|n̂i| of the binned
light curve, assuming that the bins are sufficiently fine to re-
solve the flare shape. (In practice, the power spectrum|n̂i| is
computed by a fast Fourier transform and we use a discrete fre-
quency index to indicate the actual numerical implementation.
The Fourier normalization convention is that ˆn0 equals the to-
tal number of observed counts.)|n̂i| represents a noisy version
of | f̂i|, involving two kinds of noise. The first type is photon
counting noise. Since the countsni in bins of contentFi satisfy
〈nin j〉 = FiF j + Fiδi j (see, e.g., Feller 1968 and Reiss 1993),
the power spectral densities of the binned events and of the bin
contents are related by|n̂i|2 = |F̂i|2 + N , whereN is the ex-
pected total number of counts. The photon counting noise thus
manifests in a constant additive contribution to the power spec-
trum. The second type of noise stems from the finite number of
observed flares, and will be referred to as flare shot noise. As
a consequence the term in curly brackets in Eq. (4) becomes a
fluctuating function of frequency. For the discrete Fourierrep-
resentation, the fluctuations are approximately exponentially
distributed with varianceN〈a2〉 (this was found numerically).
Thus, the flare shot noise is a multiplicative noise in frequency
space with a relative amplitude of unity. Both the flare-shotand
photon counting noise can be suppressed by filtering. The flare-
shot noise, which is multiplicative in the frequency domain, is
removed by filtering ln|n̂i|2. The photon counting noise, which
is white in the time domain, is removed by filteringξ(t) once
this is obtained from a Fourier back transform (see below).
Our filters are implemented as Lee filters (Lee 1986) with sizes
adapted to the expected noise, and the results are tested by eye
for compatibility with the observed light curve.

Secondly, and more fundamentally, the spectrum|ξ̂(ω)|
does not contain the phase information needed to Fourier-invert
|ξ̂(ω)|eiφ(ω) into the flare shapeξ(t). We shall not address here
the general phase retrieval problem (Klibanov et al. 1995) but
make the minimal phase assumption (Burge et al. 1974)

φ(ω) =
1
π

∫ ∞

−∞

ln |ξ̂(s)|
ω − s

ds , (7)

which is equivalent to requiringξ(t) = 0 for t < 0. Such causal
flare shapes apply to flares with a rapid (unresolved) rise phase,

followed by a slower decay. The integral in Eq. (7) is under-
stood in the principal value sense and can be computed by a
discrete Hilbert transform (Henery 1984).

The full procedure of estimatingξ(t) from the observations
is illustrated in Fig. 2. The gray crosses in the top panel repre-
sent the modulus of the fast Fourier transform of the light curve
of Fig. 1 (bottom), using 1024 equal time bins of duration 124s.
The zero frequency signal clearly peaks out, as expected from
Eq. (4). The Poisson noise level is indicated by white dashed
line. The solid curve in Fig. 2 (top) represents our filtered esti-
mate for| f̂ (ω)|. This is then scaled to|ξ̂(ω)|, endowed with the
minimal phase of Eq. (7), and transformed back into time do-
main to obtain the estimate for the flare shape (Fig. 2 bottom,
black line). For comparison, the result of usingφ(ω) = 0 is also
shown (gray line); it represents the convolution square root of
the autocorrelation.

When treating the full set of observations (Table 1 below),
the flare shape is estimated individually for each observation.
Different observations have thus flare shapes of different decay
time. Within a given observation, the flare shape is assumed to
be constant.

Fig. 2.Estimation of the flare shape of Fig. 1. Top: observed (crosses)
and filtered (solid line) spectral densities. The Poisson noise levelN
is indicated by white dashed line. Bottom: flare shape obtained from
the minimum-phase (black) and zero-phase (gray) assumptions. It is
the minimum-phase solution which is used in all further analysis.
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3.3. Determination of the flare rate and -amplitude
distribution

Once the flare profile is known, we numerically evaluate
Equation (6) for a power-law flare amplitude distribution ofthe
form

P(ak) =

{

c a−αk A ≤ ak ≤ B
0 else

(8)

whereA andB (in units of counts per flare) are lower and up-
per cutoffs, respectively, andc is a normalization constant. The
cutoffs A andB must in general be applied in order to ensure
that P(ak) can be normalized and that the first moments ex-
ist, as assumed in Eq. (4). For probabilistic normalization, a
lower cutoff is needed ifα ≥ 1 and an upper cutoff is needed
if α < 1. Furthermore, the existence of moments up to second
order requires an upper cutoff if α < 3. In order to be free of
theoretical restrictions onα we assume that both lower and up-
per cutoffs exist, which we parameterize technically byA and
B/A. We then determine the parameters (α, A, B) so that they
maximize the Poisson likelihood of the observed distribution
of the binned counts. The flare rateλ is determined by the nor-
malization constraint̂ξ(0) = 1, implying thatλ〈a〉 + b = f̂ (0).
The power law index and dynamical range of the flare ampli-
tudes are limited to 0.5 ≤ α ≤ 5 and 102 ≤ B/A ≤ 106; this
choice covers the physically expected and observationallydis-
tinguishable situations. The lower cutoff A is not constrained
since arbitrarily small flares are possible. The best-fit solution
for P∆(n) for the data of Figs. 1 and 2 (HD 31305) is shown
in Fig. 3, where the gray histogram represents the data, and
the black histogram represents the best-fit model. The insets
represent projections of the likelihood surfaces at (0.68,0.90,
0.99) confidence levels, obtained by thresholding the (Poisson)
likelihood ratio of the predicted histograms relative the the
maximum-likelihood solution. The best-fit solution is marked
by crosses, and equalsA = 0.0058 counts/flare andα = 2.05.
The (projected) 68% confidence errors of the power law index
is 1.99 ≤ α ≤ 2.23. It should be noticed that the choice of
68% confidence is ad hoc, and favours small error bars. If
we had used 95% confidence levels (between the light gray
and medium gray regions in the inlets of Fig. 3), the cor-
responding error of the power law index was found to be
1.93≤ α ≤ 2.32. Note from Fig. 3 that the limits ofα andA are
not constrained by the data but limited by the explored range
of A. The most likely flare rate, derived from the most likely
(α, A, B), is λ = 0.98 flares/s. We recall that it is the deviation
of the observed curve in Fig. 3 from a purely Poisson shape
which reflects the presence of the flares, and is detected by our
method. The case of quiescent emission, where the Poisson in-
tensity f (t) is constant, can be obtained as a special limit of Eq.
(4) whenλ→ ∞ (Sect. 3.5).

3.4. Monte-Carlo exploration

In order to speed up the parameter space exploration and to
extend the explored parameter range, we use a combination
of Monte-Carlo exploration and interactive search for an ini-
tial guess using a graphical user interface. Four representa-

Fig. 3. Determination of best-fit parameters (α, A, B) of the flare am-
plitude distributionP(ak) ∼ a−αk with A < ak < B for HD 31305. The
flare amplitudesak and their lower and upper cutoffs A andB are in
observed counts per flare.

tive results are illustrated in Fig. 4. The first line shows the
same observation as Figs. 1 to 3, and is repeated here in or-
der to clarify the presentation of Monte-Carlo results. Theleft
column shows the light curve in the same binning as used in
Eq. (6). Gray dashed lines indicate the range of binned counts
used for parameter estimation. Low counts are rejected when
they interfere with data gaps due to increased background. The
middle column shows the observed (black) and best-fit (gray)
histograms of binned counts. The y-axis represents the square
root of the counts rather than the counts themselves; by this
trick, the Poisson error becomes approximately 0.5 for all bins,
so that the agreement between observation and model can be
judged by visual inspection. The right column shows the Monte
Carlo samples in (A, α)-space (projection). Black dots denote
samples that are accepted within 68% confidence; gray dots
represents samples that are rejected. The best-fit solutionis
marked by large crosses. Different data sets use different time
bins∆t. Note that since we show projected acceptance regions,
black and gray dots may co-exist at a given location.

3.5. Benchmark with non-flaring data

As a benchmark, we have applied the method of Sect. 2 to a
non-flaring data simulated from constantf (t). The outcome
is shown in the last line of Fig. 4. The distribution of binned
counts follows a Poisson distribution (middle panel), whereas
the flare shape, estimated by the procedure of Sect. 3.2 is ap-
proximatelyδ-peaked (not shown). As can be seen from the
right panel, the spectrum parameters (A, α) are not well con-
strained by the (simulated) observation. The same holds for
the dynamic rangeB/A. The shape of the acceptance region in
(A, α, B/A)-space (Fig. 4 bottom right shows the 68% region) is
determined by the flare amplitude distribution (Eq. 8) and the
procedure of Sect. 3.2. Since the mean count rate is adjustedby
the choice ofλ, the acceptance of models is determined by the
higher order statistics, in particular by the variance of the ex-
pected bin contents, which becomes noticeable when it exceeds
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Fig. 4. Monte-Carlo exploration of three sample observations. One line of figures corresponds to one observation. Left column: light curves.
Middle column: observed (black) and best-fit (gray) histograms of thelight curve values. Right column: 68% reduced acceptance regions in
(A, α) space (projections from (A, α, B)-space).α represents the power law slope of the flare amplitude distribution, andA represents the lower
cutoff of the flare amplitudes in cts/flare. Black dots represent points inside the 68% acceptance regions; gray dots represent point outside
these regions; large crosses denote the best-fit solutions. Note that dueto the projection effects, black and gray dots may overlap. The last line
represents a benchmark with uniform (quiescent) data.

the Poisson (counting) noise of individual bins. As a result,
models predicting few large flares (largeA, smallα) are ex-
cluded and models predicting many small flares (smallA, large
α) are accepted. In fact, a constant Poisson intensityf (t) may
be obtained from Eqs. (2) and (8) as the limit of infinitely many
(λ → ∞) infinitely small (〈ak〉 → 0) flares, such thatλ〈ak〉
equals the observed average (source) count rate. The bound-
ary of the acceptance region in Fig. 4 (bottom right panel) is
roughly given by the condition that the variance of the expected
bin content,〈F2〉 − 〈F〉2, equals the Poisson variance〈F〉. To
summarize, quiescent light curves (f (t)=const) allow only one
parameter to be determined (the average count rateλ〈a〉) and do
not constrain the individual parameters (A, α, A/B) as long as

the predicted fluctuations off (t) are within the Poisson noise
of the observation; the resulting acceptance region in (A, α)-
projection is open toward largeα and smallA.

4. Results and Discussion

We have applied the procedure of Section 3 to a set of 22 XEST
observations chosen to meet the model assumptions of a statis-
tically homogeneous superposition of random-amplitude flares.
The results are listed in Table 1 and illustrated in Fig. 4 andin
the Appendix. All Monte Carlo explorations shown in these
Figures involve about 5000 samples. The first line of Fig. 4 has
already been discussed in Sect. 3.
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Table 1.Maximum-likelihood parameters with (projected) 68% confidence intervals. Asterisks denotes error bars which are so large that they
could not be determined.Ncnt is the number of observed counts;Nbg is their expected background contribution. The parameters (α, A, B) are
defined in Eq. (8);A is in units of counts/flare.λ is the flare rate [flares/s] and is derived from (α, A, B) and the observed average count rate.
The values of this table refer to Figs. 4 and A.1 to A.3. The stellar type is: type 1= protostar, type 2= accreting T Tau star (classical T Tauri
star), type 3= non-accreting T Tau star (weak line T Tauri star;we note that the classification can be ambiguous in some cases, see Güdel
et al. 2006); ”MS” refers to main sequence stars that are not recognized members of the Taurus Molecular Cloud. The last column shows the
best-fit reduced chi square; observations withχ2

red > 2 represent bad fits; observations withχ2
red < 1 hint at noisy data where the statistics is not

sufficient to discriminate between different model parameters.

source name type XEST# Ncnt Nbg A [cts/flare] α B/A λ [flares/s] χ2
red

test - UNIFOR 9996 1000.0 5.7 · 10−1 ∗
∗ 3.3∗∗ 3.6 · 102 ∗

∗ 8.8 · 10−2 ∗
1.2·10−2 0.58

V807 Tau 2 04-012 2672 38.1 1.14.1·101

∗ 0.7∗∗ 5.8 · 101 ∗
∗ 3.7 · 10−3 1.1

1.5·10−3 1.15

GK Tau 2 04-035 2471 246.7 9.1 · 10−2 8.2
∗ 3.0∗∗ 1.2 · 105 ∗

∗ 4.1 · 10−1 ∗
6.9·10−3 0.51

L1489 IRS 1 06-059 3027 303.4 1.2 · 101 2.1·101

∗ 4.7∗∗ 1.5 · 104 ∗
∗ 6.2 · 10−3 1.6·101

3.4·10−3 1.16

2MASS J04345693+2258 MS 08-003 3215 168.9 7.1 · 10−4 1.1
4.4·10−4 0.50.7

∗ 5.2 · 105 ∗
∗ 6.1 · 10−4 9.9·10−4

4.8·10−4 5.11

2MASS J04351316+2259 MS 08-014 1199 163.0 1.2 · 101 2.0·101

4.8 4.4∗2.9 4.0 · 102 ∗
∗ 1.5 · 10−3 2.8·10−3

9.7·10−4 2.08

HD 29050 MS 08-017 1299 66.3 1.8 · 101 2.5·101

1.1·101 5.0∗3.8 4.1 · 103 ∗
2.1·103 1.3 · 10−3 2.0·10−3

9.2·10−4 1.78

HQ Tau 3 08-037 6616 275.7 1.6 · 101 2.2·101

8.0 5.0∗3.5 1.9 · 102 ∗
∗ 9.8 · 10−3 1.6·10−2

7.1·10−3 3.69

HP Tau 2 08-048 4263 1163.9 1.7 · 10−1 1.7·101

∗ 2.4∗∗ 7.1 · 105 ∗
∗ 2.0 · 10−1 1.8·101

5.0·10−3 1.48

HP Tau G2 3 08-051 19521 34.6 1.2 · 10−1 7.4
∗ 3.0∗∗ 4.0 · 101 ∗

∗ 3.17.7·102

7.4·10−2 1.67

CoKu LkHa 332 G2 3 10-017 5373 87.0 2.51.1·101

∗ 3.3∗∗ 1.3 · 101 ∗
∗ 4.6 · 10−2 ∗

1.3·10−2 1.54

DN Tau 2 12-040 7464 149.1 3.0 · 10−1 4.6
∗ 3.0∗∗ 9.0 · 102 ∗

∗ 4.3 · 10−1 ∗
4.1·10−2 0.45

CoKu Tau/3 3 12-059 18640 619.3 1.7 · 10−1 3.6
∗ 2.9∗∗ 1.6 · 101 ∗

∗ 1.9∗
1.3·10−1 1.15

DI Tau 3 15-042 3305 1281.0 2.62.2·101

∗ 3.0∗∗ 2.1 · 101 ∗
∗ 2.1 · 10−2 ∗

3.5·10−3 0.60

IT Tau 2 18-030 15736 312.0 3.6 · 10−1 1.0·101

∗ 2.9∗∗ 2.0 · 101 ∗
∗ 8.3 · 10−1 ∗

4.2·10−2 1.01

Anon 1 3 20-005 8041 473.3 2.1 · 10−1 2.3·101

∗ 1.8∗∗ 5.0 · 102 ∗
∗ 1.3 · 10−1 5.8

7.9·10−3 1.72

V773 Tau 3 20-042 37324 134.4 1.1 · 10−1 1.9
∗ 3.5∗∗ 9.0 · 101 ∗

∗ 6.6∗4.6·10−1 0.76

1AXG J041453+2805 MS 20-071 3026 242.2 3.7 · 10−2 2.4
∗ 3.1∗∗ 1.8 · 105 ∗

∗ 1.2∗
2.8·10−2 0.79

JH 188 MS 22-006 1818 205.0 7.41.9·101

∗ 3.6∗∗ 3.7 · 103 ∗
∗ 2.4 · 10−3 3.3·10−1

1.1·10−3 2.33

HD 285845 MS 22-024 52074 864.7 3.8 · 101 4.5·101

2.6·101 4.6∗3.7 9.4 · 104 ∗
∗ 1.9 · 10−2 2.4·10−2

1.6·10−2 3.94

HL Tau 1 22-043 2956 252.4 9.6 · 10−2 3.9
∗ 3.0∗∗ 2.5 · 102 ∗

∗ 2.8 · 10−1 ∗
1.0·10−2 0.81

V710 Tau 2 22-070 4701 442.7 4.0 · 10−2 1.0·101

∗ 0.6∗∗ 2.4 · 102 ∗
∗ 2.4 · 10−2 ∗

5.5·10−3 3.85

HD 31305 MS 26-051 7049 436.3 1.0 · 10−3 2.3
4.4·10−4 2.02.5

1.9 6.4 · 105 ∗
4.4·102 3.76.3

7.6·10−3 0.85

The second and third lines of Fig. 4 show an exam-
ple (2MASS J04351316+2259; XEST-08-014) of a strongly
variable but photon-starved light curve, as well as an exam-
ple where no visible flares are present (CoKu Tau/3; XEST-
12-059). In both cases, the observed histogram (middle col-
umn, gray color) can be well reasonably represented by
the model (middle column, black). In the case of 2MASS
J04351316+2259 we may conclude thatα > 3. In the case of
CoKu Tau/3, no such conclusion is possible, and the data are
compatible with pure Poisson noise (as apparent from the light
curve). Among the remaining Monte-Carlo results (Appendix,
Figs. A.1 to A.3) we emphasize the following ones:

– GK Tau (XEST-04-035): Although the flare amplitude dis-
tribution cannot be tightly constrained by the data, good fits
(middle column) are possible.

– XEST-08-003:this figure is shown as an example that
cannot be fitted with the present model(the reduced

chi square being 5.11), and is shown for comparison only.
In fact, the light curve is not statistically homogeneous
but shows enhanced activity for timest < 15 ks. Equally
bad fits were found in two further investigated observa-
tions (XEST-22-097 and XEST-22-100) which are thus not
included in Table 1. Among the observations retained in
Table 1, HQ Tau, HD 285845, and V710 Tau have large
reduced chi squares as well, which reflect in systematic de-
viations between observed and predicted binned count his-
tograms.

– HP Tau G2 (XEST-08-051): this is a relatively quiet obser-
vation with many data gaps and low background. Although
the power law index is not constrained by the data, we may
visually distinguish two ‘branches’ of solutions:A > 1
cts/flare andα > 3 or A < 1 cts/flare andα < 3. Thus,
based on the data we can make statements of the form: if
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the flares yield at least one count (A > 1 cts/flare) then
α > 3.

– HD 285845 (XEST-22-024): Here, the power law indexα
and the lower cutoff A can be constrained by the data ac-
cording toα > 3.7 andA ≥ 26 cts/flare.

– JH 188 (XEST-22-006): similar to HP Tau G2, in thatα val-
ues above 3 require lower flare amplitude cutoffs A below
a few counts per flare. A more detailed analysis shows that
anα value below 3 requires a dynamic rangeB/A < 103.

As a general trend, one can see from Figs. 4 to A.3 that
A is correlated with α. This correlation reflects the fact that
the total number of counts (the integral under the power
law distribution) should agree with the observed number
of counts within Poisson errors. Thus, steep power laws (α
large) correspond to large lower cutoffs (A large).

The results of the other observations are summarized in
Table 1. The targets we are studying in the present work are
predominantly T Tauri stars identified in the Taurus Molecular
Cloud (TMC), although two objects are classified as protostars,
and we also include a few favorable X-ray targets found in the
XEST survey that appear to be foregroundand background
stars. The TMC members have been classified according to the
equivalent width of the Hα line (an accretion signature) and
based on the presence of an infrared excess (a disk signature).
We used the classification as tabulated in Güdel et al. (2006),
i.e., type 1 objects are protostars, type 2 objects are accreting
T Tauri stars (“classical T Tauri stars”), and type 3 objectsare
non-accreting T Tauri stars (“weak-line T Tauri stars”). The
classification into accretors and non-accretors is, for this arti-
cle, motivated by potential differences in their magnetic config-
urations. In Table 1,Ncnt is the total number of counts present
in the observation; this includes an estimated background con-
tribution Nbg. Note thatA values below one count per flare
imply that the smallest postulated flares cannot be individu-
ally observed. The dynamic rangesB/A cover usually between
2 and 4 orders of magnitude. The (derived) flare ratesλ are
mostly in the order of one flare per kilosecond. In order to
decide on whether confidence limits can be given on param-
eters, we use the criterion that there should be at least

√
NMC

rejected solutions (dots) outside the accepted parameter inter-
val in a Monte-Carlo simulation ofNMC samples. Otherwise,
we conclude that the confidence boundary is outside the ex-
plored parameter range, or that the parameter cannot be bound
at all. In cases where the above criterion is not fulfilled, confi-
dence limits are not given in Table 1 but the presence of large
error bars is marked by asterisks. Inspection of Figs. A.1 toA.3
and of Table 1 shows that from all observations,α andA can
only be constrained in a few cases. For HD 31305, both up-
per and lower limits can be given, andα is tightly constrained
between 1.9 and 2.5. The reduced chi square (1.03) indicates
that the fit is acceptable. For XEST-08-014, only a lower limit
on α can be given,α > 2.9. A similar finding holds for HD
29050, whereα > 3.8, and HQ Tau, whereα > 3.5, although
in these cases the goodness-of-fit is questionable. A much safer
result is possible for HD 285845, whereα > 3.5 can firmly be
established. In all other cases,α is unconstrained, or only con-
strained in combination withA or A/B. The comparison with

the pure Poisson noise example (Fig. 3 bottom) suggests that
the observations from GK Tau, CoKu LkHa 332 G2, DN Tau,
CoKu Tau/3, DI Tau, IT Tau, V773 Tau, XEST- 20-071, HL
Tau, and V710 Tau are compatible with quiescent emission – a
result which is also obvious from inspection of the light curves.

What can we conclude from the present study? Inspecting
Table 1 and Figs. 4 – A.3, we find the following:

– Most light curves studied here are compatible with a power-
law distribution of the flare amplitudes (counts per flare in
a fixed energy range). This confirms previous studies that
have found such distributions for solar and stellar flares.

– In those cases where α could be constrained, its value ex-
ceeds 2. This is the case for 2MASS J04351316+2259, HD
29050, HQ Tau, HD 285845, and HD 31395.

– No clear distinction of accretors and non-accretors is pos-
sible.

– About half of the studied observations are compatible with
a constant count rate at the given sensitivity, which may be
due to their limited observing time of some 40 kiloseconds.

– From those targets whereα andA could be constrained, the
following implications may be drawn. The observed values
α ≥ 2 suggest the dominance of many small flares over
few large flares in the coronal heating process, if we as-
sume that the corona is heated by flares. Hence, our re-
sults support a stellar analog of the solar micro (or even
nano-) flare heating scenario (Krucker & Benz 1998), al-
though at much higher flare energies than those of solar mi-
croflares.However, a clear statement can be made only
for 4 main-sequence stars and one T Tauri star.

This present study complements a XEST investigation of
individually detected flares by Stelzer et al. (2006), but uses a
different approach because we are, in the present work, pre-
dominantly concerned with stochastic flaring and therefore
with flare events that may not be detected individually in the
light curves. Our conclusions are, however, compatible with the
findings by Stelzer et al. (2006): They reportedα = 2.4±0.5 for
a TMC sample of T Tauri stars that showed detectable flares.
The larger samples that can be accessed by our method is com-
promised by the weaker constraints in the statistical results.
We also re-emphasize that a significant conclusion onα has
been obtained for only one T Tauri star.

This result is analogous to findings from nearby active stars
where a dominance ofα values in the range of 2–3 has been
found (Audard et al. 2000, Kashyap et al. 2002, Güdel et al.
2003, Arzner & G̈udel 2004). Although this points at impor-
tant contributions of stochastic flares to coronal heating,this
hypothesis cannot be fully proven using this methodology be-
cause our analysis requires the power-law distribution of the
flare occurrence rate to continue to flares that cannot be individ-
ually detected in the light curves. The analogy of our findings
with previously reported results for magnetically active stars
suggests that X-ray sources in T Tauri stars, at least as far as
the CCD detectors used here can record their X-ray emission,
are compatible with a coronal model in which small flares play
an important role.

We conclude with a few methodological remarks. In this
work, we have assumed that the flare shape is constant. The
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dependence of the decay time on the flare size has been dis-
cussed in G̈udel et al. 2003. Observations suggest that the
decay timeτ varies with the total number N of counts ac-
cording to τ ∝ Nβ, where β is no more than 0.25 (our cur-
rent assumption of constant flare shapes amounts to set-
ting β = 0, an assumption also supported by G̈udel et al.
2003). These authors found thatα increases with increas-
ing β. They interpreted this as being due to a larger time
occupation by relatively large count rates. The light curve
appears “softer”, requiring a higher α. As a consequence,
also for our work, α can only increase if we allow larger
flares to decay less rapidly.

For parametric flare amplitude distributions with few pa-
rameters, the parameters could also be estimated by forming
intermediate statistics such asλ〈a〉 (average count rate) and
λ〈a2〉 (variance of the light curve), and then functionally re-
late these statistics to the model parameters. Such an approach
is less optimal since it does not use the full shape of single-
time distributions such asPδ(n) and Pδ(x). Moreover, the in-
termediate statistics might not be sufficient and the computa-
tion of parameter errors is not as straightforward as from the
Poisson likelihood. Since the evaluation of Eq. (6) is computa-
tionally not demanding, we argue that it should be used rather
than some intermediate statistics in order to fully exploitthe
observed single-time statistics.
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Appendix A: A gallery of Monte-Carlo results

Figures A.1 to A.3 provide an overview of all observations used
in this study. These graphics represent the database for Table 1.
The arrangement of the graphics as identical to Fig. 4.
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Fig. A.1. Continuation of Fig. 4.
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Fig. A.2. Continuation of Fig. A.1.
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Fig. A.3. Continuation of Fig. A.2.


