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Analysis of polarimetric satellite measurements
suggests stronger cooling due to aerosol-cloud
interactions
Otto P. Hasekamp 1*, Edward Gryspeerdt 2 & Johannes Quaas 3

Anthropogenic aerosol emissions lead to an increase in the amount of cloud condensation

nuclei and consequently an increase in cloud droplet number concentration and cloud albedo.

The corresponding negative radiative forcing due to aerosol cloud interactions (RFaci) is one

of the most uncertain radiative forcing terms as reported in the 5th Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC). Here we show that previous

observation-based studies underestimate aerosol-cloud interactions because they used

measurements of aerosol optical properties that are not directly related to cloud formation

and are hampered by measurement uncertainties. We have overcome this problem by

the use of new polarimetric satellite retrievals of the relevant aerosol properties (aerosol

number, size, shape). The resulting estimate of RFaci = −1.14 Wm�2 (range between −0.84

and −1.72 Wm�2) is more than a factor 2 stronger than the IPCC estimate that includes also

other aerosol induced changes in cloud properties.
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The effect of aerosols on cloud albedo, through an increase
in cloud droplet number concentration (Nd)

1, remains to
be one of the most uncertain components of the anthro-

pogenic radiative forcing2. Relationships between aerosol amount
and Nd, observed by satellites provide an important constraint for
climate models to compute the radiative forcing due to
aerosol–cloud interactions. The slope of this relationship on a
log-log scale is often referred to as susceptibility. Estimates of
susceptibility have so far mostly been based on measurements of
the aerosol optical depth (AOD)3,4 or aerosol index (AI)5–8. AOD
is a poor proxy for Cloud Condensation Nuclei (CCN) con-
centration8–10, because it is not only affected by the concentration
of CCN particles, but also depends strongly on the aerosol size
(i.e., a small number of particles with large size can have the same
AOD as a large number of particles with small size). Also,
hydrophobic mineral dust aerosols contribute substantially to the
AOD but are not very effective as CCN. This leads to an esti-
mated susceptibility that is too weak9. Indeed, most models
predict susceptibilities that are much higher than susceptibilities
based on measurements of AOD8,11. An empirical way to sup-
press the effect of size variation on the AOD and to suppress the
effect of mineral dust is to use the AI which is the product of
AOD and Angstrom Exponent (a measure of the AOD spectral
dependence). Although the physical meaning of the AI is only
qualitative, model studies suggest8,9 that AI is better suited than
AOD to estimate RFaci. However, studies using AI also find
susceptibilities that are substantially smaller than what models
predict6. In addition to the use of nonoptimal CCN proxies, also
measurement uncertainties, especially at low aerosol concentra-
tions, lead to an underestimate of susceptibility12.

In this study, we use information on aerosol number, size, and
shape retrieved from satellite based polarization measurements, to
obtain an improved estimate of susceptibility and RFaci. These
measurements indicate that susceptibility depends strongly on
aerosol size and shape. Based on this, we define a CCN proxy as
the column number of particles with radius >0.15 µm, for scenes
where the percentage of spherical aerosols >90%. Also, we exclude
observations at small aerosol concentrations where measurement
uncertainties have large effect on the derived susceptibility12.
Using the new CCN proxy, we find susceptibilities that are sub-
stantially larger, and an RFaci estimate that is substantially more
negative, than estimates based on AOD or AI, as used in previous
studies.

Results
Dependence of susceptibility on size and shape. With recent
advances in aerosol retrievals from polarization measurements13,
satellite data products have become available, such as column
number (Na), size distribution, and particles shape. We investi-
gate the ability of aerosols to act as CCN using POL arization and
Directionality of Earth’s Reflectance-3 (POLDER-3) retrieved fine
and coarse mode Na, effective radius (reff ), effective variance
(veff ), and fraction of spherical particles (f sp) from the SRON
algorithm16–18, in combination with MODerate resolution ima-
ging spectroradiometer (MODIS) retrievals of cloud droplet
effective radius and cloud optical thickness19, from which Nd is
derived11. Following the suggestion of Dusek at al.14, we define a
CCN proxy Nccn as the column number of aerosol particles (in
cm�2) with radius > rlim, where rlim is a threshold radius to be
determined. As a proxy for particle hygroscopicity and to exclude
hydrophobic mineral dust, grid cells with f sp > f sp;min are selec-
ted, where f sp;min, is a threshold to be determined. Using collo-
cated POLDER-3 Nccn and MODIS Nd retrievals on a 1� by 1�

latitude–longitude grid, we determine the susceptibility S ¼

d log Nd
d log Nccn

as a linear regression coefficient for binned points of
logNd versus logNccn. When determining S, we leave out values
of Nccn < 107cm�2, because our simulator results (see Methods)
indicate that inclusion of these small values may lead to a strong
underestimate of S because of measurement uncertainties.

Figure 1 shows S for global ocean data as a function of rlim and
for different values of f sp;min. For the interpretation of these
results it is important to note that that the size distributions
measured by POLDER relate to humidified particles. Compared
to dry particles, there is about a factor 2 increase in particle radius
if the relative humidity is >90%20 (which is typically the case for
grid cells that contain a cloud). First of all, S increases with f sp;min,
indicating that particle sphericity is a good indicator of the
capability of an aerosol to take up water and hence nucleate
droplets. An optimal value for f sp;min = 0.90 is found. Looking
at the dependence on rlim, S is independent of rlim from 0 to
0.025 µm consistent with laboratory results14 showing that such
small particles are not suitable as CCN. S strongly increases
for rlim between 0.05 and 0.15 µm, and then flattens off between
0.15 and 0.20 µm. The reason for this behavior is that particles
with (wet) radius > 0.15 µm are suitable as CCN even at low
supersaturation (0.1%), while the aerosol burden including
smaller particles may consist of a substantial fraction of non-
CCN. The inclusion of non-CCN leads to an underestimate of
susceptibility because variations in non-CCN have no effect on
Nd. For rlim > 0.20 µm, S decreases again but the determination of
S becomes increasingly uncertain in this range (because of the
small range in Nccn, dominated by low values). Furthermore, for
these large values of rlim, the number of larger aerosols is no
longer a good proxy for the number of aerosols at intermediate
sizes that make up the bulk of the CCN. The value for rlim =
0.15 µm corresponds to the best CCN proxy, because for this
value is is expected that only CCN-capable aerosols are included
in the aerosol burden. It should be noted that the actual CCN size
distribution also contains smaller particles (this fraction becomes
larger with increasing supersaturation) and the assumption is that
relative variations in the POLDER CCN proxy Nccn are
representative for the variations in CCN.

Comparison between CCN proxies. Figure 2 demonstrates that
there is not a simple scaling between AOD and Nccn. For example,
areas with anthropogenic pollution around Asia, Europe, and the
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Fig. 1 Dependence of susceptibility on size and shape. Susceptibility S as
function of minimum particle radius rlim for different values of the minimum
fraction of spherical particles (fsp;min). Error bars indicate the standard error
(2σ) of the linear regression.
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US East coast as well as biomass burning west of Africa are more
pronounced in Nccn, whereas mineral dust transport from the
Sahara over the Atlantic ocean gives a large signal in AOD but is
almost absent in Nccn.

Figure 3 shows the relationships of Nd with AOD, AI, and
Nccn, respectively, for global ocean retrievals. Comparing the
dependence of Nd on AOD and AI, we see that for AI the
dependency is stronger for higher AI values, but at AI values
<0.05 there is virtually no dependence of Nd on AI. This suggests
that AI is a poor CCN proxy at low AI but a better CCN proxy
than AOD at higher values of AI. An explanation for the behavior
at low AI is that the Angstrom Exponent can get very close to 0
(meaning that the AOD is independent of wavelength), in which
case AI is no longer related to particle concentration. Further-
more, as suggested by Ma et al.12, absolute measurement
uncertainties dominate at low aerosol concentrations (and hence
low-AI values) which leads to an underestimate of susceptibility.
When leaving out AI values <0.05 the slope increases from 0.4 to
0.57. Nccn shows the strongest relationship with Nd. Here,
increase in slope, (from 0.55 to 0.66) by leaving out the small
values affected by measurement uncertainties (see Methods) is
less strong than for AI. Removal of the largest 10% of data would
slightly enhance the slope for Nccn, but the increase is small (0.01)
and even weaker for AI.

Susceptibilities Saod, Sai, and Sccn, corresponding to AOD, AI,
and Nccn, respectively, for different geographical regions21 are
shown in Fig. 4. The values were determined using the whole
range for AOD, AI, and Nccn (Sfull, solid bars), and also when
ignoring the low values (Sopt, transparent bars). As shown by our
simulator (see Methods), Soptccn provides our best estimate for
susceptibility for Nccn, as it ignores the low values affected by

measurement uncertainties. A similar reasoning would apply for
AOD and AI, but all previous studies on RFaci used in the IPCC
5th assessment report (AR5)2 used the whole range of AOD or
AI, so in order to compare with previous work Sfullaod and Sfullai are of
relevance. For all regions, both, Sfullccn and Soptccn are higher than or
similar to the corresponding values of Sai and Saod. S

full
ai is either

similar to or smaller than Sfullaod, while S
opt
ai > Soptaod for most regions.

The value Soptccn = 0.66 for Nccn for the global ocean (range between
0.4 and 0.85 for the different regions) is about 50% higher than
both Sfullaod (0.41) and Sfullai (0.40), which are based on the approach
used in previous studies included in IPCC-AR52. Looking at the
different regions, the relative difference between Soptccn and Sfullaod are
largest in NAO, TAO, NPO and TPO. The relative difference
between Soptccn and Sfullai are for most regions similar to the global
difference, except for SPO, SIO, and SAO which are strongly
affected by the Nd-AI behavior at low AI. The susceptibility we
find using Nccn is closer to the values found by in situ studies22

than the susceptibilities based on AOD or AI. The susceptibility
for AI (Soptai ) gets much closer to that of Nccn (S

opt
ccn) when AI values

<0.05 are left out.

Radiative forcing due to aerosol–cloud interactions. Based on
Soptccn, we determine RFaci using different aerosol–climate models8 to
compute the increase ΔNccn between pre-industrial times (PI) and
present-day (PD). Here, we assume that our derived susceptibilities
are applicable to the PI–PD increase in vertically integrated CCN
concentration at 0.3% supersaturation. From ΔNccn we compute
ΔNd using the values of Soptccn for the different regions, the resulting
change in cloud albedo using the Twomey formula1 and the
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Fig. 2 Aerosol Optical Depth and CCN column number. Annual average values of the aerosol optical depth (AOD) and cloud condensation nuclei (CCN)
column number (Nccn) for 2006.
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resulting RFaci;ocean (over ocean) using the approach of Gryspeerdt
et al.8. The strongest contribution to RFaci;ocean comes from the
northern Pacific ocean (Fig. 5). To estimate the contribution over
land, we use the scaling factors between the global- and ocean-only

RFaci value from different aerosol climate models23. Combining the
different values of RFaci;ocean, from the different model estimates
of ΔNccn, with the different ratios RFaci/RFaci;ocean and the expected
uncertainty distribution due to uncertainty in Soptccn (from the
simulator), we get a histogram of possible values for RFaci (Fig. 6).
We take the median of this distribution, −1.14Wm�2, as our best
RFaci estimate, and define an uncertainty range using the 5 and 95
percentile values, respectively, which yields a range between −0.84
and −1.72Wm�2. This uncertainty range is dominated by the
uncertainty in RFaci/RFaci;ocean. We expect this uncertainty to
decrease when improved polarimetric observations over land
become available, in particluar from the NASA phytoplankton,
aerosol, cloud and ocean ecosystem mission24,25.

To test the sensitivity to the assumption that the POLDER derived
susceptibilities for Nccn are applicable to the column CCN at 0.3%
supersaturation, we also computed RFaci using the PI–PD increase in
column CCN at 0.1% supersaturation. This yields virtually the
same RFaci best estimate and range (within 0.01Wm�2), which
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Fig. 4 Susceptibilities for different CCN proxies. Susceptibilities based on
aerosol optical depth (AOD), aerosol index (AI), and cloud condensation
nuclei (CCN) column number (Nccn) for global ocean data and for the
regions defined by Quaas et al.39: North Pacific Ocean (NPO), Tropical
Pacific Ocean (TPO), South Pacific Ocean (SPO), Southern Indian Ocean
(SIO), South Atlantic Ocean (SAO), Tropical Indian Ocean (TIO), Tropical
Atlantic Ocean (TAO), and North Atlantic Ocean (NAO). Solid bars are
based on the full range of Nccn, AI, and AOD values while transparent bars
only use the ranges Nccn > 107cm�2, AI > 0.05, and AOD > 0.07,
respectively. Error bars indicate the standard error (2σ) of the linear
regression and do not include the systematic error term of (+0.06 for Soptccn)
that follows from the simulator. The number of aerosol-Nd pairs are
indicated for proxy above the bars.
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Fig. 5 Spatial distribution of radiative forcing over ocean. Spatial distribution
of the radiative forcing due to aerosol–cloud interactions over the ocean
(RFaci;ocean), based on the mean of the different model estimates for the
increase in cloud condensation nuclei (CCN) column number between
present day (PD) and pre-industrial (PI) times.
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demonstrates our assumption on this aspect does not contribute to
the uncertainty in RFaci.

The values RFaci;aod (based on Sfullaod) and RFaci;ai (based on Sfullai ) are
−0.33Wm�2 (range: −0.19 to −0.54Wm�2) and −0.80Wm�2

(range: −0.58 to −1.24Wm�2), respectively. Here, the differences
between RFaci;aod and RFaci;ai can be explained by the fact that the
PD–PI increase in AI from the models is much larger than the
increase in AOD. Our ranges overlap with previous estimates based
on AI and AOD4,8 but the best estimates are more negative. This is
mainly because those earlier studies assumed a very small
contribution to RFaci over land, where satellites have poor
capabilities in providing AI/AOD–Nd relationships8 (our ocean-
only values for RFaci;aod and RFaci;ai are very close to the earlier

studies4,8). It is interesting to note that if we use Soptai we obtain an
RFaci estimate of −1.04Wm�2, i.e., close to our best estimate. This
suggests that the main issue with the use of AI as in previous studies
is its behavior at small values, and in other aspects it appears to be a
useful proxy for CCN8.

Discussion
It is not straightforward to scale our RFaci estimate to an effective
radiative forcing due to aerosol–cloud interactions (ERFaci), which
also includes other aerosol induced changes in cloud properties
(e.g., cloud fraction and liquid water path). However, recent
studies23,26 suggest that ERFaci is at least as negative as RFaci
because the negative effect (in terms of radiation) of cloud fraction
adjustment is most likely stronger than the positive effect of LWP
adjustment. The top-down study on the Earth energy balance by
Murphy et al.27 finds a possible range (90% confidence) in total
aerosol radiative forcing (ERFaciþari), including also aerosol-
radiation interactions, between −0.3 and −1.9Wm�2 (best esti-
mate −1.06Wm�2), which is close to the estimated ERFaciþari
range of Bellouin et al.28, between −0.4 and −2.0Wm�2 (90%
confidence, which infers the lower bound of −2.0Wm�2 also by a
top-down approach). Taking our RFaci estimate as a lower bound
for ERFaci, and assuming RFari due to aerosol-radiation interac-
tions to be at least2 −0.2Wm�2, we see that our estimated RFaci
range is plausible given the top-down estimates, although the most
negative values are only realistic if RFari is weak and the LWP and
cloud fraction effects cancel each other out. Also, our estimate is

plausible given estimates from climate models constrained by
pollution trends29 (between −0.90 and −1.70Wm�2 at 68%
confidence).

The IPCC-AR5 estimate2 of ERFaci, is −0.45Wm�2. This
relatively weak negative forcing, which is reduced compared to
IPCC-AR430, is a result from an expert judgement where a large
weight was given to satellite based studies. It has already been
suggested by previous authors8,9, and supported by our results,
that some of the earlier satellite-based estimates of RFaci, used in
IPCC-AR5, were biased low due to the use of AOD as CCN
proxy. We find that also the AI estimates are biased low by almost
50% due to issues at low-AI values. Our RFaci estimate overcomes
the known issues with previous estimates by using aerosol mea-
surements more directly related to aerosol–cloud interactions
(aerosol number, size, and shape)14,15 and by using only mea-
surements in the range not dominated by measurement uncer-
tainties. The lower bound of our range (RFaci =−0.84Wm�2) is
almost a factor 2 more negative than the IPCC-AR5 estimate of
ERFaci, and is actually more in line with the IPCC-AR4 estimate.
Our best estimate of RFaci =−1.14Wm�2 is even more negative
than the IPCC-AR5 estimate of −0.90Wm�2 for the total aerosol
radiative forcing (ERFaciþari). These findings put into question
that by expert judgement the satellite studies were given more
weight than model estimates in IPCC-AR5, resulting in a weaker
negative forcing than IPCC-AR4, in particular because our esti-
mate is more in line with the models and with IPCC-AR4. A
stronger aerosol cooling indicates that the global temperature is
more sensitive to anthropogenic greenhouse gas emissions than
previously assumed31, because it partly masks the warming by
greenhouse gases32.

Methods
POLDER-3 aerosol retrievals. In this work, we use the POLDER-3 aerosol pro-
duct retrieved by the SRON aerosol retrieval algorithm16,17 (processed for the year
2006) previously used for computing the direct radiative effect of aerosols18.
Retrievals are based on Collection-3 level-1 POLDER-3 medium resolution data
(18 ´ 18 km2). We restrict ourselves to retrievals over ocean because of limited
quality of over-land retrievals, especially for cases with low aerosol loading. Fur-
thermore, we restrict the study to 60�S < latitude <60�N. POLDER-3 achieves
global coverage in 1.5 days.

Cloud screening has been performed based on goodness-of-fit between forward
model and measurement17. This means aerosol retrievals in (partly) cloudy scenes
and directly next to clouds are excluded33. The aerosol products have been gridded
on a 1� ´ 1� latitude-longitude grid. The aerosol retrieval algorithm is based on a
description of aerosols by a fine and a coarse mode (indicated by superscripts f and
c, respectively), where each mode is described by a log-normal function. Aerosol
properties in the state vector are for both modes the effective radius reff , effective
variance veff , the real and imaginary part of the refractive index mr and mi , and the
aerosol column number concentration Na . The fraction of spheres34 f sp of the
coarse mode is included as a fit parameter in the retrieval state vector. In this study,
we use the AOD, Na, reff , and veff of the fine and coarse mode, and f sp.

Nccn is computed from the log-normal bi-modal size distribution for the
retrieved Na , reff and veff of the fine and coarse mode as the column number of
particles with radius > rlim ¼ 0:15 µm. To investigate the capability of POLDER-3
to provide Nccn, we created 1000 synthetic POLDER-3 measurements with varying
aerosol properties in the following range (superscripts f and c indicate fine and

coarse mode, respectively): 0.02–0.3 µm for rfeff , 0.65–3.5 µm for rceff , 0.1–0.3 for

vfeff , 0.4–0.6 for vceff , 1.33–1.60 for mf
r and mc

r , 10
�8−0.1 for mf

i , 10
�8–0.02 for mc

i ,
0.005–0.7 for AODf and AODc, and 0–1 for f sp. We put a random error on the
synthetic measurements with a standard deviation of 2% for radiance and 0.015 for
degree of polarization, which is representative for POLDER-3 measurements over
ocean35. From the synthetic experiment we conclude that the uncertainty on

individual retrievals of rfeff is 0.034 µm (bias 0.016 µm) and on f sphere 0.25 (bias
0.13). For Nccn we find that for 71% of the data the difference between retrieved
and true Nccn is smaller than 0:20 � Nccn þ 4 ´ 106 cm�2. We use this as an
uncertainty estimate of Nccn.

Comparing POLDER Npol
ccn with corresponding values Naer

ccn computed from
the aerosol size distribution of ground-based aerosol robotic network
(AERONET) measurements, we find (Supplementary Fig. 1) R2 ¼ 0:58, a bias of
8.0 × 106 cm�2, a mean absolute difference of 1.95 × 107 cm�2, and a root mean
square difference of 3.90 × 107 cm�2. Totally, 51% of the POLDER-AERONET
differences are smaller than the error bound found from the synthetic
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Fig. 6 Histogram of RFaci. Histogram of the Radiative Forcing due to
aerosol-cloud interactions (RFaci) based on the different values of RFaci;ocean
from the different model estimates for the increase in cloud condensation
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effect of the uncertainty distribution of the susceptibility Soptccn derived in
this study.
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experiment (0:20 � Nccn þ 4 ´ 106 cm�2), which suggest that this is a reasonable
error estimate given that the differences are also affected by errors in AERONET
data. Most important, there is no significant trend of the relative difference
ððNpol

ccn � Naer
ccnÞ=Npol

ccnÞ with Npol
ccn (R2 ¼ 0:01), which would affect the Nccn � Nd

relationships.

MODIS cloud retrievals. We use the MODIS Collection-6 retrievals of cloud
effective radius (CER) and cloud optical thickness (COT)19 to compute the cloud
droplet number concentration Nd using the adiabatic approximation11,36, and
aggregate the data at a 1� ´ 1� horizontal and daily temporal resolution. Here, we
consider only points for which CER > 4 µm and COT > 4, cloud fraction > 0.9 (at
5 km resolution), and with a sub-pixel inhomogeneity index (cloud_mask_SPI)
< 30, as these are the ranges where meaningful CER and COT retrievals can be
performed36. Further, we only consider liquid clouds by selecting 1� ´ 1� grid cells
with COT_ice = 0.

Deriving susceptibility. To derive the susceptibility from POLDER-3 and MODIS
data, we use all grid cells for the year 2006 for which we have both a valid
POLDER-3 Nccn value and a valid MODIS Nd value. After selecting the data points
in the region under consideration, we define a number of bins for Nccn where each
bin has an equal number of points. For deriving susceptibility we use 100 bins. The
Nccn value attributed to a certain bin is the median of all Nccn values in that bin.
The Nd value attributed to this bin is the median of all Nd values collocated with
the Nccn retrievals in that bin. This procedure gives us 100 paired values of Nccn
and Nd for the region under consideration. So, for determining the global (ocean)
value for susceptibility we aggregate all valid POLDER3-MODIS data pairs into 100
bins. Having the same number of measurements in each bin ensures that each bin
has the same statistical representativity. The susceptibility is determined by fitting a
linear regression through the the binned points of Nd versus Nccn. The derived
susceptibilities do not change significantly if a different number of bins is chosen
(e.g., for 20 or 1000 bins the global susceptibilities agree within 0.01 with those for
100 bins).

An important assumption we make here is that the aerosol properties are
uniformly distributed over a grid cell and that relative variations in the column
integrated aerosol concentration are representative for the aerosol that interacts
with the cloud at cloud base. Under this assumption, it is unnecessary to perform
retrievals below clouds or directly next to clouds, which is not possible with current
retrieval algorithms33. These assumptions may lead to an underestimation of
susceptibility because if the retrieved aerosol is not representative for the aerosol
that interacts with clouds, variations in retrieved aerosol properties would have no
effect on Nd. Aspects related to spatial sampling by the satellite are not expected to
impact the derived susceptibility12.

Simulating the effect of measurement errors. To investigate the effect of mea-
surement errors on Nccn, we use a simulator that models Nd as function of Nccn.
For the ensemble of Nccn we use the values measured by POLDER and we compute
the corresponding Nd assuming Nd ¼ C NS

ccn, with S= 0.66 and C= 0.001. When
we apply our procedure to determine susceptibility (see above) to the simulated
data set we find exactly S= 0.66, as expected. When we put 50% error (1σ) error on
Nd we still find S very close (within 0.01) to 0.66, showing that derived suscept-
ibilities are not very sensitive to random fluctuations on Nd. Next, we put random
errors on Nccn of the form errccn = relerrNccn + abserr, where relerr and abserr denote
the relative- and absolute error on Nccn, respectively. We choose a range (1σ) for
relerr of 0–0.5 and abserr of 0–5 × 106cm�2. From the simulated data with error we
determine the susceptibility Sfull using the whole range of Nccn and Sopt using only
values > 107 cm�2, leaving out 15% of the smallest values which are most heavily
affected by the absolute term in the measurement uncertainty.

Supplementary Fig. 2 shows Sfull (left panel) and Sopt (right panel) as function of
abserr for different values of relerr. It can be seen that Sfull is being under-estimated
in the presence of measurement errors, as is expected from earlier results based on
AOD12. The values for Sopt are much closer to the true value of 0.66, although
under-estimation is still possible (up to 0.18 for the range of Nccn errors shown).
The simulation results confirm that Sopt is a better estimate of susceptibility than
Sfull . The expected measurement uncertainty of 0:20 ´Nccn þ 4 ´ 106 cm�2

indicates an underestimation in Sopt of 0.06. Choosing a larger cut-off value for
Nccn than 107 cm�2 does not reduce the uncertainty range.

Radiative forcing calculation. We use five different global aerosol climate models
(ECHAM6-HAM, CAM5.3, CAM5.3-CLUBB, CAM5.3-CLUBB-MG2, and
SPRINTARS) to compute the increase ΔNccn (using the column CCN at 0.3%
supersaturation) between PI and PD from a pair of nudged simulations that are the
same except that the PI simulation uses pre-industrial, and the PD simulation, PD
aerosol emissions. All these models, which were also used in the study by Gry-
speerdt et al.8, have participated in the AEROCOM intercomparisons in current or
previous model versions37,38. From ΔNccn, for the different models, we compute
ΔNd using the values for S as derived from POLDER-3 and MODIS. From ΔNd we

compute the change in cloud albedo using the Twomey formula1 and the RFaci
using Eq. (3) of Gryspeerdt et al.8

RFaci ¼ �F# f liqαcldð1� αcldÞ
1
3
ΔNd

Nd
; ð1Þ

where F# is the daily-mean incoming solar radiation flux at each grid-point for
each day, f liq the fractional cover by liquid–water clouds, and αcld the cloud
albedo taken from CERES. Since we only derived values for susceptibility over
ocean, the procedure above gives an estimate RFaci;ocean =−0.76Wm�2 over the
ocean and a range between −0.68 and −0.85Wm�2 from the range in ΔNccn
from the different models. The procedure for computing RFaci;aod and RFaci;ai is
the same as for Nccn except that they are based on the PD–PI increase in AOD
and AI, respectively.

To get an estimate of the land contribution to RFaci we looked at the ratio RFaci/
RFaci;ocean in 13 different aerosol climate models23. This gives us a range of values for
RFaci/RFaci;ocean between 1.12 and 2.24, and a mean value of 1.5. Further, the simulator
results indicate that for the expected error on Nccn (0:20 ´Nccn þ 4 ´ 106cm�2) the
global value of Soptccn is underestimated by 10%, but given that this error estimate itself
is quite uncertain also smaller and larger underestimations cannot be ruled out.
Therefore, we model this uncertainty with a normal distribution of the RFaci scaling
factor with mean 1.05 and standard deviation 0.05, assuming a linear dependence of
RFaci on susceptibility. Combining this distribution with the different values for
RFaci;ocean and the different values of the ratio RFaci/RFaci;ocean, we get a histogram of
possible values for RFaci We take the median of this this distribution, −1.14Wm�2,
as our best RFaci estimate, and define an uncertainty range using the 5 and 95
percentile values, respectively, which yield a range between −0.84 and −1.72Wm�2.
If we ignore the uncertainty on Soptccn we obtain a range for RFaci between −0.80 and
−1.60Wm�2 and if we assume an error on Soptccn that is twice as large (mean 1.10 and
standard deviation 0.10) we obtain a range between −0.86 and −1.84Wm�2. If we
would only take into account the uncertainty in the ratio RFaci/RFaci;ocean, the resulting
RFaci range would be from −0.85 to −1.70Wm�2. So, by far the largest part of the
total uncertainty range can be explained by the uncertainty in the ratio RFaci/
RFaci;ocean and the uncertainty caused by the uncertainty on Soptccn is small compared to
the total uncertainty.

When computing the uncertainty ranges for RFaci;aod (based on Sfullaod) and RFaci;ai
(based on Sfullai ) we do not take the uncertainty in S into account, in order to make
these estimate comparable to previous studies.

Data availability
The data set analyzed during the current study is available through ftp.sron.nl/open-
access-data/hasekamp/NatureComm2019/. The AEROCOM model history is available at
aerocom.met.no/data.html.

Code availability
The computer codes used to analyze the data are available from the corresponding author
on reasonable request.
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