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Abstract
We evaluate the ability of process based models to reproduce observed global mean sea-level
change. When the models are forced by changes in natural and anthropogenic radiative forcing
of the climate system and anthropogenic changes in land-water storage, the average of the
modelled sea-level change for the periods 1900–2010, 1961–2010 and 1990–2010 is about
80%, 85% and 90% of the observed rise. The modelled rate of rise is over 1 mm yr−1 prior to
1950, decreases to less than 0.5 mm yr−1 in the 1960s, and increases to 3 mm yr−1 by 2000.
When observed regional climate changes are used to drive a glacier model and an allowance is
included for an ongoing adjustment of the ice sheets, the modelled sea-level rise is about
2 mm yr−1 prior to 1950, similar to the observations. The model results encompass the
observed rise and the model average is within 20% of the observations, about 10% when the
observed ice sheet contributions since 1993 are added, increasing confidence in future
projections for the 21st century. The increased rate of rise since 1990 is not part of a natural
cycle but a direct response to increased radiative forcing (both anthropogenic and natural),
which will continue to grow with ongoing greenhouse gas emissions.

Keywords: sea level, climate change, projections

1. Introduction

A complete understanding of 20th century sea-level rise has
been lacking, with the observed rise over recent decades
being larger than projections in the Intergovernmental Panel
on Climate Change (IPCC) Third (TAR, Church et al 2001)
and Fourth Assessment Reports (AR4, Hegerl et al 2007). As
a result, sea-level projections for the 21st century and beyond

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

have been controversial. The omission of ‘rapid’ dynamic ice
sheet contributions from the AR4 projections, because of the
lack of a published basis for estimating them, compounded
this problem. Rahmstorf et al (2007) argued that the observed
sea-level rise since 1990 was at or above the upper limit of
the TAR projections, and Rahmstorf et al (2012a) argued
that both the TAR and AR4 projections were biased low.
However, using an improved understanding of the impact
of volcanic eruptions on sea level, Church et al (2011a)
described the comparison slightly differently, finding that
while the observed rise was in the upper quartile of the AR4
projections there was no inconsistency between observations
and projections from 1990. Semi-empirical models (SEMs;
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Rahmstorf 2007, Horton et al 2008, Vermeer and Rahmstorf
2009, Grinsted et al 2010, Jevrejeva et al 2010, 2011,
Rahmstorf et al 2012b) have been proposed as an alternative
way to estimate future sea-level rise.

Using observations of 20th century temperatures,
Bittermann et al (2013) [B13] compared SEM forecasts
of 20th century sea-level rise to the observations. They
concluded that, when both tide-gauge reconstructions of
global mean sea-level and paleo sea-level data were used to
estimate the parameters of their SEMs, their forecasts for
1900–2000 (range of 13–30 cm) were in agreement with the
observations (14–26 cm). For the period 1961–2003, they
also found that when the SEM was trained using the Church
and White (2011) [CW11] estimates of GMSL and paleo
data up to 1960, the predicted rate of 2.0 mm yr−1 (range
of 1.9–2.3 mm yr−1) agreed with the observations within
the uncertainties. However, using the Jevrejeva et al (2008)
estimate of GMSL, with or without the paleo data, resulted
in sea-level projections that were biased high by up to 70%.
B13 challenged the sea-level process model community to test
their projections for the same period.

Here we evaluate the ability of process based models (the
basis of 21st century projections) to simulate 20th century
global averaged sea-level rise. These process based models
are dependent on our physical understanding of the climate
system built up over many years. Modelling sea level requires
simulations of oceanic and atmospheric global and regional
temperatures. In contrast to the SEMs, the process based
models are forced by greenhouse gas concentrations and
simulate temperature changes, rather than using observed
temperature or radiative forcing changes as input, and they
are not trained with observed sea levels and are therefore
not sensitive to uncertainties in them. This study builds upon
recent progress in understanding the 20th century sea-level
budget (Church et al 2011b, Moore et al 2011, Gregory et al
2013a) but focuses clearly on model results and their ability to
project sea-level change. We compare individual contributions
to sea level calculated with the World Climate Research
Programme Coupled Model Intercomparison Project Phase 5
(CMIP5) model results with observations (section 2) and
compare the sum of these terms to the observed sea-level
rise since 1900, 1961 and 1990, as in B13. We discuss
the possibility that some fraction of 20th century sea-level
change is possibly due to internally generated variability that
is unlikely to be simulated in phase and amplitude by the
models (section 3). We also discuss the implications of the
results for the observed increase in the rate of rise and for
future projection of 21st century sea-level rise (section 4).

2. Sea-level response to historical radiative forcing
and anthropogenic intervention in the water cycle

2.1. Ocean thermal expansion

Ocean thermal expansion (figure 1(a)) is available for 25
atmosphere–ocean general circulation models (AOGCMs)
participating in the CMIP5 experiment. The simulations used
here have been forced with the best estimates of historical

radiative forcings up to 2005 and then radiative forcing from
the RCP4.5 scenario (Moss et al 2010, Taylor et al 2012)
until 2010. However, the preindustrial spin-up and the control
simulation for these models assumed zero volcanic forcing
and thus the sudden imposition of the negative volcanic
forcing in the historical simulations from 1850 results in
a negative bias in the estimated ocean thermal expansion
(Gregory 2010). To overcome this bias, we have added
0.1 mm yr−1 (±0.05 mm yr−1) ocean thermal expansion
to the model results (Gregory 2010, Gregory et al 2013b).
We compare the model results to the observational estimates
based on the analysis of Domingues et al (2008), updated
to 2012 for the upper 700 m, the Levitus et al (2012)
analysis from 700 to 2000 m, and a linear trend from 1992
to 2011 for the ocean below 2000 m (Purkey and Johnson
2010). From 1970, when the amount of observational data
increases significantly, the models and the observations are
not significantly different and the observations are near the
centre of the model simulated range.

Modelled thermal expansion (figures 1(a), (d)) falls
slightly following the volcanic eruption of Santa Maria in
1902. The rate of expansion is then relatively constant up until
the eruption of Mt Agung in 1963 when there is a significant
fall in sea level. There are similar falls in sea level following
the eruptions of El Chichon in 1982 and Mt Pinatubo in 1991.
The increase in sulfur dioxide emissions by more than a factor
of two from 1950 to 1975 (Smith et al 2011) results in an
increasingly negative aerosol forcing that partially offsets the
increasing greenhouse gas concentrations leading to a slower
rate of warming (and thermal expansion) after 1960 (Church
et al 2011b). Over the 20th century, there is a clear increase
in the rate of rise with the fastest rate occurring from 1993.
This latter increase is a result of increasing greenhouse gas
concentrations, recovery from impacts of the Mt Pinatubo
eruption (Gregory et al 2006, Gleckler et al 2006, Church
et al 2005, Domingues et al 2008, Gregory et al 2013a) and
falling sulfur dioxide emissions from 1975 to 2000 (Smith
et al 2011).

2.2. Glacier contributions

Marzeion et al (2012) use an (offline) glacier model forced by
regional surface temperatures and precipitation from AOGCM
CMIP5 climate simulations to estimate glacier contributions
for the 20th century (figures 1(b), (d), grey and purple
lines). Their model is calibrated using individual glacier mass
balance observations also used by Cogley (2009), such that the
Marzeion et al (2012) results are neither strictly independent
from the Cogley (2009) results, nor from observations.
However, the dependency is very weak, since only about 0.1%
of all the world’s glaciers are included in these observations
(substantially less in terms of surface area and ice volume,
and with a mean time series length of only 15 years). Two
different validation methods in Marzeion et al (2012) show
that the model is able to reconstruct observed glacier changes
independent of the observations, such that the combined
contribution of all the glaciers to sea level is in fact only
weakly dependent on the observations of individual glacier
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Figure 1. Comparisons of modelled and observed (a) ocean thermal expansion (observations in blue), (b) glacier contributions, (c) changes
in terrestrial storage (the sum of aquifer depletion and reservoir storage) and (d) and the rate of change (10 year centred average) for the
terms in (a) to (c). Individual model simulations are shown by grey lines with the model average shown in black (thermal expansion) and
purple (glaciers). The estimated glacier contributions estimated by Cogley (2009, green), Leclercq et al (2011, red) and using the model of
Marzeion et al (2012, dark blue) forced by observed climate are also shown in (b). All curves in (a) and (b) are normalized over the period
1980–1999 and the colours in (d) are matched to earlier panels.

contributions. From 1950, the model results (15 available
models) used by Marzeion et al are not significantly different
from the observed estimated changes in glacier mass of
Cogley (2009) and the estimates based on glacier length from
Leclercq et al (2011). The Marzeion et al modelled rate of

rise is almost constant during the first half of the century
up until 1960 but larger than the Leclercq et al estimate
(that also relies on Cogley), then smaller until the 1990s
(figure 1(d)), after which it increases. Loss of glacier area at
low altitudes combined with the stabilization of temperatures
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for the 1950–1975 period could have contributed to this
slowing of the rate of glacier contribution.

2.3. Greenland and Antarctic contributions

The contributions of the Greenland and Antarctic Ice Sheets
for the 20th century are poorly determined. Observational
estimates for 1993–2011 (Shepherd et al 2012) indicate a net
contribution of about 11 mm, about two thirds of this from
Greenland. Models of surface mass balance (using AOGCM
results) for Greenland agree with the increased surface mass
loss over the last two decades but indicate little impact on
sea level over previous decades, and with divergent results
for the first half of the 20th century. (See Gregory et al
(2013a) for a full discussion.) Recent model results for
four major Greenland outlet glaciers (Helheim, Jakobshavn,
Petermann and Kangerdlugssuaq) forced by changes in ocean
temperatures (Nick et al 2009, and personal communication)
indicate a contribution of order 0.6 mm yr−1 for 2000–10,
consistent with the observational estimates. However, we
are unaware of any completed model simulations of the
Greenland Ice Sheet contribution for the 20th century using
the new generation of ice sheet models.

For Antarctica, Levermann et al (2012) have recently
completed an ice sheet model simulation for the 20th century
using ocean temperatures on the shelf near Antarctica and
atmosphere–ice exchange from the CMIP5 AOGCMs, with an
allowance for a delay of the warming to penetrate underneath
the ice shelves. The 20th century contribution is only 4 mm,
mostly since 1990, similar to recent observational estimates
(Shepherd et al 2012).

These results indicate significant progress in modelling
ice sheet response to climate and ocean forcing. However,
as they are as yet incomplete, we have not included these
new model results here. Instead, we include estimates of these
terms in section 3 and discuss the implications in section 4.

2.4. Land-water storage

Internally generated climate variability influences the amount
of water stored as soil moisture and in lakes, rivers and
reservoirs. On short timescales, the rate of change in the
storage can be several millimetres leading to rapid rates of
sea-level change (Boening et al 2012). However, over decadal
timescales the net contribution is small (Ngo-Duc et al 2005)
and hence for the comparison we ignore this contribution.

There are also direct human related interventions in the
hydrological cycle that impact the amount of water stored
on land. This occurs principally through the building of
reservoirs (Chao et al 2008, Lettenmaier and Milly 2009)
and the depletion of groundwater (Konikow 2011, Wada et al
2012). For reservoir storage, we use the estimates of Chao
et al with no allowance for seepage (as in Gregory et al
2013a). We assume that the reservoirs are on average 85%
full (with a range of 70–100%). For groundwater depletion,
we average the observational estimates of Konikow (2011)
and model results of Wada et al (2012). Over the first half
of the 20th century, both of these terms are small (figure 1(c)).

After 1950, the significant increase in the rate of dam building
leads to negative contribution to sea-level change. From the
1980s, a slowing in the rate of dam building and an increase
in the rate of groundwater depletion leads to a small positive
contribution to sea-level rise (figures 1(c) and (d)).

2.5. Observed and modelled sea-level change 1900–2012

We compare the sum of the ocean thermal expansion, glacier
and estimated land-water contributions (available for 13
models) with observational estimates of global mean sea level
of CW11 and Ray and Douglas (2011) [RD]; figure 2. Both
estimates are similar over the 20th century (RD has a slightly
larger trend), with a broad maximum in the rate of rise from
1930 to 1950, a minimum about 1960 and then a rising trend
to the end of the records. Both series have a minimum in the
rate of rise in the 1920s and a maximum in the 1970s, but it is
unclear if these two features are robust or an indication of the
inadequacy of the available sea-level data.

The sum of the modelled ocean thermal expansion,
glacier, and terrestrial storage contributions from 1900 to 2010
(figure 2(a)) ranges from 110 mm to almost 200 mm with a
model average of 153 mm. The spread of models encompasses
the GMSL estimate of CW11 but is slightly less than RD.
The average of the model results explains about 80% of the
observed rise. The average modelled rate of sea-level rise
(figure 2(b)) is more than 1 mm yr−1 prior to 1950, as a
result of early 20th century warming and thermal expansion
and increased glacier melting, but is somewhat less than the
observed rate over 1930–50. The average modelled rate of
rise decreases to less than 0.5 mm yr−1 in the 1960s before
increasing again to reach a maximum of 3 mm yr−1 in
2000, about double the 20th century average and substantially
greater than the modelled rate of rise in the first half of the
20th century. The slower rate of rise from 1950 to 1980
is likely a result of the impact of volcanic eruptions, the
increase in tropospheric aerosol loading (emissions peak in
the 1970s) on the modelled ocean thermal expansion and
glacier melting contributions, a loss of glacier area following
early 20th century melting and an increase in the rate of
reservoir storage.

For the period since 1961 (figure 2(c)), the modelled
rise ranges from about 50 to 110 mm and encompasses the
observed rise of close to 90 mm, with the model average rise
of 75 mm explaining about 85% of the observed rise. Since
1990 (the start of the projections for the TAR and the AR4;
figure 2(d)), the modelled sea-level rise ranges from 30 to
65 mm and encompasses the observed rise of about 55 mm,
with the average model rise of 51 mm explaining over 90% of
the observed rise. The model average rate over 1993–2010 of
3 mm yr−1 is almost equal to the rate of 3.2 ± 0.4 mm yr−1

observed with satellite altimeters (with both rates being very
linear). The increased rate of the modelled rise from 1980
to 2000, and particularly after 1993, is a result of continued
increases in greenhouse gas concentrations, the recovery of
the climate system from the series of volcanic eruptions
(particularly Mt Pinatubo in 1993), decreasing sulfur dioxide
emissions from 1975 to 2000 and increasing land-water
contributions.
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Figure 2. The sum of the modelled contributions from ocean thermal expansion, increased glacier melting and changes in land-water
storage. The light grey lines are individual models with the black line the model mean. The 20th estimates of global mean sea level are
indicated by the blue (CW11) and green (RD) lines with the shading indicating the uncertainty estimates (two standard deviations). The
satellite altimeter data since 1993 is shown in red. The adjusted model mean (dashed black line) is the model mean after an allowance for
the impact of natural variability on glacier contributions and a potential long-term ice sheet contribution are included. The results are given
(a) for the period 1900–2010, (b) the rates of sea-level change for the same period, (c) for 1961–2010, and (d) for 1990–2010. The dotted
black line is after inclusion of the Shepherd et al (2012) ice sheet observational estimates but excluding the peripheral glacier contribution
(to avoid double counting). The red dot is the average rate from the altimeter record.

3. Other effects on sea-level change

There are at least two potential additional contributions to
20th century sea-level change. Firstly, the ice sheets are often

assumed to have been in a state of approximate mass balance,
hence making zero net contribution to sea level before the
major increase in greenhouse gas emissions of the 20th
century. However, the long response time of the Antarctic and
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(to a lesser extent) Greenland ice sheets means that there may
be a small ongoing contribution to sea-level change due to
climate change in previous centuries or millennia (Huybrechts
et al 2011). An ongoing contribution of 0.0–0.2 mm yr−1 was
considered in the sea-level budget studies of Gregory et al
(2013a) and Church et al (2011b). Here we have added a
0.1 mm yr−1 contribution to the above modelled estimates
(10 mm over the 20th century).

Secondly, there may be contributions related to internally
generated variability on decadal timescales (Delworth and
Knutson 2000). Marzeion et al (2012) have also computed
glacier mass changes using observed rather than simulated
temperature change (figure 1(b), blue line). An additional
contribution of about 20 mm is estimated to occur between
1920 and 1960, with the largest additional contribution in
the 1930s (the difference between the blue and purple lines
in figure 1(b)). While the Leclercq et al (2011) estimates
from measurements of glacier length indicate a smaller
overall contribution during the 20th century, they also give
a greater rate of mass contribution from 1920 to 1940 than
for earlier and later periods. These additional early 20th
century contributions are a result of a regional warming over
Greenland during this period (Chylek et al 2004).

When these two terms are added to the AOGCM results,
the sea-level rise over the 20th century (figure 2(a), dashed
line) is 176 mm, which is over 90% of the observed GMSL
estimate, and both observed time series lie within the model
spread (the individual model results have not been replotted
after the addition of these terms). The modelled rate of rise in
the first half of the 20th century is now closer to the observed
rate and the observed rate lies within the spread of the model
rates through nearly all of the century, although the timing
of the faster rate of rise occurs slightly earlier in the model
results than in the observations. There is little change to the
simulations from the additional terms for the periods since
1961 and 1990 and the average model results for these periods
remain within 20% of the observed rise (figures 2(c), (d)). The
observational estimates (Shepherd et al 2012) indicate a small
20th century ice sheet contribution that would further close
the gap between the observed and modelled sea-level rise to
about 10% or better, as depicted by the dotted lines in figure 2.

4. Discussion

Ocean thermal expansion and the increased melting of
glaciers are the two dominant contributions to 20th century
sea-level rise in the simulations, with a smaller contribution
from changes in land-water storage. Each of these components
has its own unique temporal dependence. The model results
indicate that most of the variation in the thermal expansion
and glacier contributions to global mean sea level is a response
to radiative forcing of the climate system from changes in
concentrations of greenhouse gases, stratospheric volcanic
aerosol and tropospheric anthropogenic aerosol. Observations
in the latter half of the 20th century provide strong support for
and confidence in the model simulations of these components.
However, since parameters in the glacier model are estimated
from observations in the latter half of the 20th century, the

evaluation of the glacier models is not a fully independent test
of their skill.

Not all 20th century sea-level rise is necessarily
externally forced. There is evidence for an enhanced glacier
contribution in the first half of the 20th century (Marzeion
et al 2012, Leclercq et al 2011). Since climate models can
simulate early 20th century global averaged temperature
well (Stott et al 2000), the difference between the two
glacier estimates may be partly related to regional climate
changes (rather than global averaged temperatures), although
natural variability impacts both regional and global averaged
temperatures (Delworth and Knutson 2000). The extent to
which internally generated climate variability can lead to
enhanced sea-level rise deserves further investigation. If the
apparent impact during the first half of the 20th century was
repeated in the future, it would increase projections for the
21st century by the order of 20 mm. However this additional
sea-level rise will enter the calibrations of SEMs that use
global averaged temperatures (or radiative forcing) and thus
will impact the SEM projections.

The range of the model simulations over the three
periods, and particularly since 1961 and 1990, encompasses
the observed sea-level rise with the model mean within 20%
(about 10% since 1990) of the observed rise. Experience
with multi-model ensembles is that they generally outperform
individual models (Weigel et al 2008, 2010), but specific
results are not available for sea level. The agreement of
observations with the model mean represents a significant
improvement since the IPCC TAR (Church et al 2001) and
AR4 (Hegerl et al 2007) and is a reason for increased
confidence in the next generation of global mean sea-level
projections. This agreement also means that it should now
be possible to attribute 20th century sea-level rise to the
various climate forcings. Reasons for the improvement
include allowance for the omission of volcanic forcing in the
spin-up of the AOGCMs, more complete representation of the
radiative forcing driving the AOGCMs, a larger initial glacier
mass (Arendt et al 2012) and more complete observations of
glacier mass loss (Cogley 2009). Also, the Marzeion et al
glacier model is able to reconstruct observed glacier changes
independent of the observations and is an important part of the
improved representation of 20th century sea-level rise.

Significant challenges remain. It is likely that the
model spread does not cover the full range of possibilities
because of systematic uncertainties that are common to many
models. Hence, the model spread found here (about 40%
of the observed rise for the 20th century and more than
50% since 1961) may underestimate the full uncertainty,
particularly as it was not possible to include models of the ice
sheet components. The observational estimates of ice sheet
contributions since 1993 further close the gap between the
observed and modelled sea-level rise to 10% or better. This
evaluation is also incomplete as the ice sheet contributions to
date are only a small fraction for the potential longer-term
contributions. Careful comparison of the new generation of
ice sheet simulations with observations is required to critically
evaluate them.

Chambers et al (2012) argue there is an apparent 60
year cycle in the observed sea-level record. Similar variability
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is present in the forced simulations of the first half of the
20th century but is enhanced when the additional glacier
contributions are included in the sum of terms. For the latter
half of the 20th century, the observed minimum in the rate
of sea-level rise in the 1960s (a deceleration from 1940 to
1970) and the subsequent increase in rate to about twice the
20th century average at the end of the record is present in
the forced sea-level estimates. This increase is principally in
response to increasing greenhouse gas concentrations and a
combination of changing volcanic forcing and tropospheric
aerosol loading, leading to a larger ocean thermal expansion
and increased glacier melting. There is an additional
contribution of less than 20% from anthropogenic interference
in the hydrological cycle (figures 1(c) and (d)). Thus, the
observed increased rate of rise since 1990 is not part of
a natural cycle but a direct response to increased radiative
forcing (both anthropogenic and natural) of the climate
system. This radiative forcing will continue to increase with
ongoing greenhouse gas emissions. The simulation of the
observed 20th century sea-level rise and its variability within
the uncertainties is a reason for increased confidence in
projections of 21st century sea-level rise in future projections.
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