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Abstract We evaluate the representation of dynamic sea

surface height (SSH) fields of 33 global coupled models

(GCMs) contributed to the fifth phase of the Coupled Model

Intercomparison Project (CMIP5). We use observations

from satellite altimetry and basic performance metrics to

quantify the ability of the GCMs to replicate observed SSH

of the time-mean, seasonal cycle, and inter-annual vari-

ability patterns. The time-mean SSH representation has

markedly improved from CMIP3 to CMIP5, both in terms

of overall reduction in root-mean square differences, and in

terms of reduced GCM ensemble spread. Biases of the time-

mean SSH field in the Indian and Pacific Ocean equatorial

regions are consistent with biases in the zonal surface wind

stress fields identified with independent measurements. In

the Southern Ocean, the latitude of the maximum meridi-

onal gradient of the zonal mean SSH CMIP5 models is

shifted equatorward, consistent with the GCMs’ spatial

biases in the maximum of the zonal mean westerly surface

wind stress fields. However, while the Southern Ocean SSH

gradients correlate well with the maximum Antarctic cir-

cumpolar current transports, there is no significant corre-

lation with the maximum zonal mean wind stress

amplitudes, consistent with recent findings that the eddy

parameterisations in GCMs dominate over wind stress

amplitudes in this region. There is considerable spread

across the CMIP5 ensemble for the seasonal and interannual

SSH variability patterns. Because of the short observational

period, the interannual variability patterns depend on the

time-period over which they are derived, while no such

dependency is found for the time-mean patterns. The model

performance metrics for SSH presented here provide insight

into GCM shortcoming due to inadequate model physics or

processes. While the diagnostics of CMIP5 GCM perfor-

mance relative to observations reveal that some models are

clearly better than others, model performance is sensitive to

the spatio-temporal scales chosen.
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GCM skill � Model evaluation � AR5

1 Introduction

Sea level changes reflect the ocean’s integral response to a

broad spectrum of processes that affect the oceans currents

and density structure, as well as the total ocean volume

(Milne et al. 2009). Numerous studies have documented

that sea level has risen globally throughout the twentieth

century at a mean rate of about 1.8 mm/year (Meehl et al.

2007). The rate has increased to about 3.1 mm/year since

1993 (Church and White 2011), and is projected to increase

further over the twenty-first century under global warming

scenarios (Perrette et al. 2013). Both the observed and

projected sea level changes are spatially highly non-uni-

form due to differential ocean warming, wind changes, the

influence of ocean dynamics, and gravitational and solid

earth responses (Milne et al. 2009; Yin 2012; Meyssignac

et al. 2012; McGregor et al. 2012). The World Climate

Research Program’s (WCRP’s) Coupled Model
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Intercomparison Project (CMIP; Phase 3 and 5) includes an

unprecedented set of climate simulations from coupled

general circulation models (GCMs) for the recent past as

well as for future climate (Meehl et al. 2007). This pro-

vides a unique opportunity to assess how well climate

models simulate key characteristics of sea surface height

(SSH) with high quality satellite data, as has been done for

other observables (e.g. Kwok 2011; Li et al. 2012; Lee

et al. 2013; Jiang et al. 2012).

The main goal of our paper is to evaluate how well the

spatial and temporal features of SSH patterns simulated by

the CMIP5 models compares to available observations. All

GCMs show global steric sea level rise from heat uptake

under twenty-first century warming scenarios, but the

individual magnitudes vary (Yin 2012). In addition,

regional sea level changes can deviate by up to ± 100 %

from the global mean changes (Yin 2012; Landerer et al.

2007; Yin et al. 2010a; Pardaens et al. 2010), but these

regional patterns show only a few regions of agreement

across the various models (Perrette et al. 2013; Yin 2012).

The CMIP3 multi-model ensemble (MME) exhibited sig-

nificant inter-model spread in the magnitude of projected

SSH-change patterns, such that over large areas of the

global oceans the inter-model differences towards the end

of the twenty-first century were larger than the model-mean

change (Meehl et al. 2007). Notable exceptions to this

were areas of consistent SSH change in the Southern

Ocean, and patches in the Arctic, South-East Pacific and

West-Indian Ocean (see Fig. 10.32 in Meehl et al. 2007).

In an effort to reduce the ensemble spread (Yin et al.

2010a), used the global mean root-mean square difference

(RMSD) between the GCMs’ and observations’ time-mean

SSH fields to exclude 5 of 17 CMIP3 models from the multi-

model ensemble, which slightly improved the inter-model

agreement for projected SSH changes at the end of the

twenty-first century. Here, we expand the model evaluation

to annual and interannual time scales as described in Sect. 2

Our results highlight various improvements in the new

CMIP5 ensemble over CMIP3, and also aspects of consistent

model biases that provide new insights into deficiencies and

shortcomings of the underlying model formulations and

physics. The paper is organized as follows: in Sect. 2, we

describe the methods and data sets and observations; in Sect.

2.2, we summarize methods and analysis schemes; in Sect. 3,

we present results of the various skill metrics and compari-

sons for the CMIP3 and CMIP5 ensembles, and in Sect. 4 we

discuss the main conclusions of this paper.

2 Methods and data description

Our analysis focuses on dynamic SSH, which is defined as

the local sea surface height deviation from the global

mean. Therefore, the global mean of SSH is zero at every

time step, and we do not consider global mean sea level

changes here. The latter can be steric due to net ocean

heat changes, or non-steric due to net ocean mass changes

from melting land ice. For ocean warming, global mean

sea level can be computed off-line even if the GCMs

employ a volume-conserving Boussinesq approximation

(Greatbatch 1994; Griffies and Greatbatch 2012). While

the dynamic SSH patterns related to surface momentum

and buoyancy fluxes are explicitly and adequately simu-

lated (Yin et al. 2010a), the current generation CMIP3 and

CMIP5 models do not account for net ocean mass changes

from melting glaciers and ice sheets. If associated sea

level changes were uniform, the global mean could simply

be subtracted from the observations. Hoewever, due to

gravitational and loading effects on sea level (Farrell and

Clark 1976), net ocean mass changes have a distinct non-

uniform SSH pattern, with the largest deviations from a

uniform rise occuring in the near field of the mass sources

(Tamisiea et al. 2001). For the purposes of this paper, the

issue is then whether land-ice fingerprint signals might be

present in the 20-year altimetry record, and whether they

could lead to a bias in the comparison to the CMIP

models.

Several recent papers have explored detection thresh-

olds for land-ice fingerprints, assuming specific levels of

ice melt (Kopp et al. 2010; Hay et al. 2012). While these

studies differ slightly in their assumptions of melt rates,

background SSH variations and observing systems (i.e.,

relative sea level or sea surface height), a common result

is that accelerating ice melt rates should be detectable via

their associated sea-level fingeprints over the next dec-

ades. However, for the lower ice-melt rates over the last

20 years, the gravitational and loading effects are likely

masked by dynamic SSH variability. This is consistent

with results from a joint-inversion approach, using both

altimetry and time-variable gravity observations, that

found altimetry observations to currently have at best only

marginal resolution capability of mass-related sea level

changes (Rietbroek et al. 2012). Based on contemporary

geocentric sea-level fingerprints (Riva, pers. communca-

tion, 2013), we also note that the CMIP-biases discussed

below are an order of magnitude larger (and vary in sign)

near the ice-sheets than the expected fingerprint ampli-

tudes over the last 20 years. Therefore, we perform our

following analysis under the assumption that the non-

homogeneous sea-level fingerprints from ocean mass

changes do not significantly impact the comparison to

CMIP models. Dynamic SSH from the CMIP models can

then be directly compared to SSH observations from

satellite altimetry as long as the global mean of each data

set at every time step is removed using a common land

mask (see inset in Fig. 2). In this way we ensure that
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biases are not due to a global mean offset. As land-ice

melt continous to accelerate and contribute to sea level

changes in the future, source-specific SSH fingerprint

patterns may need to be considered to avoid biases in

model-to-observation comparisons.

2.1 Data sets

We use sea surface height above Geoid fields from 33

GCMs from the new CMIP5 multi-model ensemble, and

also 18 CMIP3 GCMs to assess improvements from the old
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Fig. 1 Taylor diagram of the

CMIP3 (grey dots) and CMIP5

(colored symbols, see legend)

mean dynamic topographies

(MDTs) compared against the

observed MDT from

(Maximenko et al. 2009). The

CMIP3 and CMIP5 ensemble

averages (shown as stars) show

the best agreement with

observations (see map inset in

Fig. 2 for ocean areas used).

Note that CMIP3 RMSD values

are consistent with those shown

in Fig. 2 of (Yin et al. 2010b)
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Fig. 2 Global mean RMSD between 33 CMIP5 models, the CMIP5

model mean, and the observations of the MDT from (Maximenko

et al. 2009). The grey bars represent the model/observations RMSD

value for the time-period 1993–2002, and the whiskers the distribu-

tion of RMSDs between the observed MDT and 10-year sliding

windows for each CMIP5 GCM for the ‘historical’ twentieth century

runs (central red mark is the median, box edges are 25th and 75th

percentiles). Note the different vertical scale for the INMCM4 model

on the right. CanCM4 is for years 1961–2005 only, HadGEM2-CC

for 1959–2005 only, and MIROC4h for 1950–2005 only. The map

inset shows the ocean area over which the model statistics were

computed for all CMIP5 GCMs; marginal seas have been excluded
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to the new ensemble. We use the first available GCM

realizations of the twentieth century experiments (identi-

fied as ‘20c3m’ in CMIP3 and ‘historical’ in CMIP5) if

available. Several GCMs in the CMIP5 ensemble differ

only in their non-ocean model components (e.g., Nor-

ESM1-ME and NorESM1-M), but we include all GCM

variants in our analysis. For CMIP3, the twentieth century

experiments start between 1860 and 1900, and end in 2000;

in CMIP5, the historical runs start between 1850 and 1960,

and end in 2005. As the SSH observations extend into the

twenty-first century (see below), we appended the CMIP3

‘20c3m’ runs with the appropriate model fields from an

A1B scenario run (Nakicenovic and Swart 2000) to ensure

consistent time overlap, but the choice of scenario is not

critical as they are similar over this short extension period.

For CMIP5, we use results from the ‘historical’ simulations

only. Tests with a CMIP5 model subset revealed no sig-

nificant sensitivities to the particular model years (e.g.,

1993–2012 vs. 1993–2005 only) for the time-mean and

annual climatology comparisons performed here. We

exclude some marginal ocean areas or enclosed seas from

our analysis where the models exhibit SSH biases that are

clearly unrealistic and would unduly distort squared-dif-

ference metrics (e.g., MIROC-ESM CMIP5 models have

SSH values of ?15 m over Hudson Bay, and values of -15

m over the Mediterranean). We suspect that these biases

have more to do with model resolution or how the diag-

nostic SSH calculation is performed rather than a funda-

mental deficiency in the simulation. An complete overview

of CMIP3 and CMIP5 ocean and atmosphere GCMs and

their resolutions can be found in Tables 3 and 4 of Jourdain

et al. (2013). We note that the spatial resolution of the

ocean components in the CMIP3 and 5 archive varies, but

even the newer CMIP5 runs generally do not resolve

oceanic eddies, which are thus parameterized. For the two

CMIP5 GCMs GISS-E2-R and MIROC5, we added the

equivalent water thickness of their respective sea ice fields

to obtain an effective sea surface height (Griffies et al.

2009).

Insufficient spin-up of the control runs in CMIP-type

GCMs often show residual drift that can be removed in the

forced runs (Yin 2012; Yin et al. 2010a). In the following

analysis we do not correct the historical runs for control run

drift because (1) most of the drift maps into the global

mean sea level which we remove, and (2) because the drift

should have little impact on the mean annual cycle and

interannual variations (see discussion below). Significant

drift can hypothetically impact the time-mean dynamic

SSH topography, but our analysis indicates that this is not

the case here (see Sect. 3.1). However, for detection-attri-

bution analyses and projections, a drift correction is crucial

for estimating trends and variability. (Yin 2012; Gleckler

et al. 2012).

We compare the CMIP SSH fields against observations

of the time-mean dynamic topography (MDT) from

(Maximenko et al. 2009), which combines observations

from satellite altimetry, near-surface drifters, NCEP wind

and observations from the Gravity Recovery and Climate

Experiment (GRACE) over the time period 1992–2002.

For time-variable SSH signals, we use satellite altimetry

observations from 1993–2012 provided by AVISO (Ducet

et al. 2000), which are now available as part of the

‘obs4MIP’ project (http://esg-gateway.jpl.nasa.gov). We

re-grid all CMIP and observational data sets onto a com-

mon 1x1 latitude-longitude grid using bi-linear interpola-

tion. We note that the time-mean model assessment is not

dependend on the use of the Maximenko-MDT or the time-

mean AVISO data. In fact, the MDT and time-mean

AVISO fields have a pattern correlation of R = 0.998, and

either one yields essentially identical in the following

analysis (i.e., in Fig. 1). Since dynamic SSH is significantly

influenced by surface momentum fluxes from wind over

many regions, we also use the Scatterometer Climatology

of Ocean Winds (SCOW) based on QuikSCAT satellite

measurements (Risien and Chelton 2008) to assess if

common biases between SSH and wind stress exist. This

will enable us to evaluate features that we expect to be

similar between SSH and wind stress using independent

measurements. A detailed evaluation and comparison

between CMIP3 and CMIP5 simulated surface wind stress

and QuikSCAT observations can be found in (Lee et al.

2013).

2.2 Metrics

The choice of a metric to evaluate model performance is

somewhat subjective but we use several basic statistical

measures that are routinely used in meteorological and

climate analysis, namely: the global mean statistics of root-

mean-square differences (centered RMSD), spatio-tempo-

ral correlation, and standard-deviation. These basic mea-

sures can be examined collectively, e.g., in Taylor-

diagrams (Taylor 2001) and are useful first steps for

quantifying how well the models agree with observations

as well as with each other. We also examine spatial fields

of absolute biases between models and observations. While

it is reasonable to examine model-to-observation agree-

ment for the time-mean and annual cycle fields, interannual

and longer variations are expected to differ as CMIP sim-

ulations are forced externally, but free to evolve in terms of

internal variability. This, and the relatively short time-span

of available global observations, makes it challenging to

examine how the CMIP models agree with observations on

interannual time scales. Therefore, we limit our CMIP-to-

observations comparison on patterns and amplitudes of

interannual RMS variability after removing a seasonal

1274 Landerer et al.
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climatology and band-pass filtering between 1 and

10 years, and we assess the impact of choosing different

time-periods (see Sect. 3.3 for details).

3 Results

3.1 Time-mean SSH field

We first analyze the representation of the time-mean

dynamic SSH fields, which are closely related to the time-

mean ocean circulation that governs the large-scale trans-

ports of heat, freshwater, and nutrients. A Taylor diagram

for the 33 CMIP5 MDT fields averaged over 1992–2002

(Fig. 1) reveals pattern correlations varying between 0.95

and 0.99, and standard deviations slightly larger than what

is observed. The RMS differences between observations

and CMIP5 models cluster between 12 mm (CMCC-GM)

and 19 mm (CanCM4); the INMCM4 model

(RMSD = 36mm) appears to be an outlier in this analysis.

Similar to previous findings for many other model variables

(Gleckler et al. 2008), the CMIP5 ensemble mean SSH-

MDT yields the highest correlation and the lowest RMSD at

about 9 mm. Based on the MDT Taylor statistics, the

CMIP5 simulations have improved markedly over the

CMIP3 runs (grey dots in Fig. 1) in several aspects. Firstly,

the absolute RMSDs are generally reduced in CMIP5.

Secondly, the spread of the global RMSDs among the dif-

ferent CMIP5 models has noticeably decreased (with the

exception of INMCM4) from the CMIP3 spread, which

featured RMSDs that varied by a factor of up to &3 across

the ensemble (Yin et al. 2010a). Thirdly, the multi-model

mean RMSD in CMIP5 is about 25 % smaller than in

CMIP3 (note, however, that the CMIP3 ensemble consists

of 18 models, whereas our CMIP5 ensemble consists of 33).

Oceanic variability time scales can be longer (several

decades and longer) than what the MDT observations used

here cover (11 years). Since unforced internal climate

variability [e.g., El Niño-Southern Oscillation (ENSO),

North Atlantic Oscillation (NAO), etc.] in the GCMs is not

constrained to be synchronized to real-world occurrence,

we wondered if the RMSDs between observed and CMIP

MDTs might be due to long-term variability and changes

over time. To examine this, we again computed the global

RMSD over a sliding window of all possible 11-year mean

SSH fields for each CMIP5 model over the twentieth

century (from 1870 to 2005) against the single realization

of the observed MDT. While the individual RMS differ-

ences of overlapping windows are not independent from

each other, this approach demonstrates that differences in a

model’s RMSD due to an evolving 20 year climatology is

relatively small compared to inter-model differences.

Alternatively, one could look at all the realizations

available, as is commonly done, but the ensemble size

available for many models is very small or limited to a

single realization. With our approach, the use of a sliding

window in a single realization, each model is evaluated in a

consistent manner. The results of the sliding window ana-

lysis, shown as percentile boxes in Fig. 2, indicate that the

RMSDs for each individual model are relatively stable over

the twentieth century, with individual model RMSDs

varying generally less than 10 %. We interpret these results

such that interannual or decadal-scale variability is unlikely

the main source of the differences between observed and

simulated time-mean SSH fields.
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The RMSD variations among the CMIP3 models are

generally larger than the twentieth-century RMSD varia-

tions for each individual CMIP3 model (not shown), indi-

cating that the biases are systematic—and different– for

most of the models. In CMIP5, model-to-model differences

are more similar in amplitude to an individual model’s

twentieth century variations. We also examined if the

CMIP5-observations MDT RMSDs are consistently at a

minimum (relative to the entire twentieth century) over the

contemporaneous time-period (1992–2002, grey bars in

Fig. 2). If that were the case, it could indicate that exter-

nally forced SSH changes (i.e., from greenhouse gases)

have significantly and consistently affected the MDT in the

CMIP simulations. The results in Fig. 2 are somewhat

inconclusive in this regard: while for some models, the

MDT RMSD appears to be at a minimum during the period

overlapping with observations, other models have larger

RMSDs in the overlapping time period. Not finding a

consistent signature in this metric is perhaps not surprising

given the global scale of the analysis, as well as the

intrinsic variability (see Sect. 3.3). The spatial patterns of

the MDT biases vary across the GCMs, but some consistent

features emerge (Fig. 3, see also Suppl. Material

Fig. 1SM). Most GCMs have prominent biases over the

Southern Ocean and the Indian Oceans, and we thus

examine these regions in more detail in the following

sections. While much of the Pacific Ocean regions away

from the equator are relatively well simulated in most

GCMs, we also examine the equatorial Pacific biases due to

the importance of this region for interannual climate

modes.

3.1.1 Equatorial regions

Ocean dynamics in the equatorial regions are strongly

influenced by surface momentum fluxes (wind stress). We

therefore investigated if the CMIP5 MDT biases are con-

sistent with biases of mean zonal surface wind stress in the

equatorial regions between 2S and 2N. Because we are

looking at individual ocean basin biases, the equatorial

zonal mean SSH between 2S and 2N for each ocean basin

(Pacific, Atlantic, and Indian Ocean) has been subtracted.

In the Indian Ocean, the time-mean strength of Westerlies

in the CMIP5 models is generally too weak relative to the

QuickSCAT observations (Fig. 4). This in turn implies a

too weak Indian Ocean equatorial SSH zonal gradient.

Indeed, the mean equatorial upward tilt towards the east is

consistently too weak in the CMIP5 models (Fig. 4).

Similarly, the CMIP5 mean SSH biases in the tropical

Pacific are consistent with the zonal wind stress biases: in

the West, the models have a too strong easterly wind stress

component that leads to a steeper SSH gradient than

observed; in the Central Pacific, the models’ zonal wind

stress is too weak and leads to a weaker SSH gradient than

observed; in the East, models and observations agree well

for both zonal wind stress and SSH. Over the Atlantic

basin, the easterly wind stress in CMIP5 is generally too

weak, which contributes to weaker than observed CMIP5

SSH gradients. Other forcings than wind stress influence

SSH variability in this region (McGregor et al. 2012),

though it is not clear if this can explain the time-mean bias

as well. Qualitatively, very similar results hold for the

CMIP3 models (not shown here; see (Lee et al. 2013) for

details).

A detailed assessment of surface wind stress in CMIP3

and CMIP5 simulations is discussed in (Lee et al. 2013). In

the equatorial regions, the MDT structure is closely related

to the time-mean vertical pycnocline structure, and hence

any biases in MDT would be mirrored in the pycnocline

depth. The too weak SSH gradients in the Indian and

Atlantic Oceans correspond to a pycnocline that is too flat,

which in turn influences the models’ capabilities to prop-

erly generate tropical climate modes such as the Indian

Ocean Zonal/Dipole Mode. A recent analysis has found

that the unrealistic Indian Ocean pycnocline structure

(which mostly depends on temperature) in the CMIP
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(red). The biases were computed between 2S–2N over the time-mean

SSH for model years 1992–2002, matching the observations. Bottom

equatorial zonal wind stress (2S–2N) of the CMIP5 ensemble (black)

and QuickSCAT observations (red); see (Lee et al. 2013) for a

detailed analysis of individual CMIP5 GCMs
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models leads to a thermocline-SST feedback that is too

strong, and hence an overestimate of Indian-Ocean dipole

amplitude (Cai and Cowan 2013).

3.1.2 Southern Ocean

The time-mean SSH field in the Southern Ocean (primarily

a down-sloping meridional gradient towards the South) is

closely related to the strength of the Antarctic circumpolar

current (ACC). The circumpolar flow is affected by the

zonal momentum balance, surface buoyancy fluxes of heat

and freshwater, and by the Southern Ocean overturning.

The zonal current velocities are related to the meridionally

tilted isopycnal surfaces set up by the Ekman transport and

overturning circulation in the Southern Ocean (Gill 1982).

However, significant poleward eddy-induced transports

tend to reduce the meridional isopycnal gradients, which

would tend to reduce the ACC transport. Due to their rel-

atively coarse horizontal resolution, the ocean models used

in coupled CMIP simulations require a parameterisations

for these eddy-induced transports, for example through a

quasi-Stokes diffusivity constant based on (Gent and

McWilliams 1990) (also Griffies 1998, and references

therein).

Here, we evaluate two questions regarding the Southern

Ocean mean dynamic topography biases seen in CMIP5

models: (1) Are biases in the latitudinal location of the

maximum mean zonal westerly wind stress field consistent

with biases in the latitudinal location of the maximum

meridional sea surface height gradient ðSSH �x
dyÞmax; and (2)

are there significant correlations between the maximum

ACC transports, westerly wind stress maxima, and maxi-

mum meridional sea surface height gradients? Several

recent papers have documented coherent equatorward

biases of the maximum westerly wind stress (and hence the

westerly jets that drive the ACC) in CMIP5 models (Swart

and Fyfe 2012; Meijers et al. 2012). Consistent with this

bias, we find that the maxima of the zonal mean MDT

meridional gradients also show a clear tendency for being

biased northward compared to observations, although the

spread is larger than for the zonal wind stress maxima

(Fig. 5). As far as correlations between the maximum

amplitudes of ðSSH �x
dyÞmax; ACC transport and westerly

wind stress are concerned, we found no significant rela-

tionship between the maxima of westerly wind stress and

ðSSH �x
dyÞmax (grey dots in Fig. 6). Similar conclusions were

presented recently by (Meijers et al. 2012), who showed

that the maximum ACC transport is not significantly cor-

related with the maximum wind stress in the CMIP5-GCM

ensemble. Furthermore, (Kuhlbrodt et al. 2012) also found

that the ACC transport in CMIP3 models is not signifi-

cantly correlated to the maximum westerly wind stress

amplitude, whereas the models’ meridional density differ-

ence Dqy across the ACC was. Our results, using

ðSSH �x
dyÞmax as a first-order proxy for ACC transport (the

correlation is R = 0.89, Fig. 6), are in line with both of

these studies. As discussed in detail by (Kuhlbrodt et al.

2012) based on CMIP3 simulations, the quasi-Stokes dif-

fusivity parameterisations j of eddy-induced transports,

used in many CMIP models, can explain the large across-

model variance of the simulated ACC maximum transports.

Therefore, wind stress is not the dominant factor that

determines ACC transports and the corresponding Southern
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maxima of the meridional SSH gradients and westerly surface wind

stress maxima in the 33 CMIP5 models (box-plots; median is shown

in red, box edges are at the 25th and 75th percentiles), and for the

observations (black dots). See (Lee et al. 2013) for details on the wind

stress analysis
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Fig. 6 Scatter plot of the maxima of westerly surface wind stress
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maxima of the Southern Ocean meridional SSH gradients. Zonal wind

stress and ACC values are taken from Table 3 of (Meijers et al. 2012),

and plotted against the corresponding SSH values
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Ocean SSH patterns. Many CMIP5 models employ similar

parameterisations as used in CMIP3, and hence the

dependency of ACC transports and sea surface height in

the Southern Ocean would be strongly dependent on the

ocean models’ values of j, rather than on zonal wind stress

magnitudes.

The detailed processes, in particular from unresolved

eddies, that affect the relationship between mean zonal

wind stress biases and SSH biases as shown here are not

easily discernible from the zonal mean analysis (Figs. 5

and 6). Several studies have emphasized the important role

of eddies in the Southern Ocean momentum balance

(Boning et al. 2008), such that one may not expect linear

relationships between wind stress, ACC transport and SSH

changes. Also, surface buoyancy fluxes (heat and fresh-

water) have a significant influence on ocean dynamics at

mid to high latitudes, and therefore any biases in these

fields likely contribute to the SSH biases described above

(Meijers et al. 2012; Russell et al. 2006; Carman and

McClean 2011).

3.2 Monthly climatology SSH variations

In this section, we briefly discuss the representation of the

monthly climatology anomalies of SSH in CMIP5 com-

pared to the climatology of the AVSIO altimetric data. The

monthly climatologies, relative to the time-mean fields, are

derived from the model years 1993 through 2005 for the

CMIP5 historical runs, and from the model years 1993 to

2010 for CMIP3 (twentieth century runs extended by the

corresponding A1B scenario run); we tested and confirmed

that the individual seasonal model statistics are not sensi-

tive to the particular choice of the time periods. Seasonal

variations of SSH in the tropical regions are dominated by

surface wind field changes, whereas in the higher latitudes

buoyancy fluxes and heat content changes tend to be more

important. As we did for the time-mean fields, we com-

puted Taylor statistics of each CMIP5 model, but this time

for the 12 monthly climatology anomaly SSH fields for

each model (Gleckler et al. 2008).

From Fig. 7, it is apparent that the spread of the CMIP5

ensemble is somewhat lower than the spread of the CMIP3

ensemble, though the level of improvement is modest, and

the CMIP3 and CMIP5 ensemble mean annual Taylor

statistics are almost identical. However, no single model

achieves a correlation score above 0.8, in stark contrast to

other variables that have a strong annual cycle such as

surface temperature (Gleckler et al. 2008). The reasons for

these comparatively low correlations may be related to

generally smaller ratios of annual versus interannual vari-

ability in the oceans when compared to the atmosphere. In

addition, SSH is influenced by surface heat fluxes as well

as wind stress curl, making the seasonal SSH dynamics

more complex than surface temperatures. At least part of

the higher than observed seasonal standard variations in

many CMIP5 models is contributed by too large a seasonal
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Fig. 7 Taylor diagram
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climatology SSH fields of the

CMIP5 models (see legend),

and CMIP3 models (grey dots).

For each model, 12 monthly

maps are used to compute the

Taylor statistics (see Methods

for details)
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SSH amplitude in the equatorial and tropical regions, in

particular over the Indian and Pacific Ocean (see Suppl.

Material Fig. 2). Compared to observations from the

QuikSCAT instrument, many CMIP5 models tend to over-

estimate the overall magnitude of the seasonal wind stress

anomalies, especially in spring and autumn (Lee et al.

2013). Consistent with this, the median of the global mean

seasonal SSH amplitudes across the individual CMIP5

GCMs is about 13 % larger than the observed AVISO

signal. However, while most CMIP5 models overestimate

the observed spatio-temporal standard deviation, the model

mean standard deviation is about 10 % lower than

observed, indicating that individual model biases tend to

average out in the ensemble mean (Fig. 7 and SM-Fig. 2).

3.3 Interannual SSH variations

Comparing variability on interannual to decadal scales

between models and observations is not straight forward as

the GCMs’ internal variability is not constrained to be in

phase with observations. In this sense, RMS differences or

temporal correlations are not appropriate metrics to assess

model performance for longer than seasonal time scales;

instead, we focus on comparing the patterns and amplitudes

of inter-annual variability, similar to (Gleckler et al. 2008).

To extract these interannual patterns, we remove for each

model and the observations the mean annual cycle, detrend

the SSH data, and apply a band-pass filter with corner

frequencies of 1 and 10 years; interannual variability is

then the standard variation at each gridpoint of the filtered

fields. The choice of 10 years as the maximum period is

motivated by the limited length of the observational record.

The SSH observations from altimetry cover 18 years, and

we use the same record length (i.e., 1988–2005) to generate

the interannual variability maps for the CMIP5 models (see

SM-Fig. 3). We note that detrending and band-pass filtering

the de-seasonalized SSH observations (1993–2010) redu-

ces the global mean inter-annual variability by about 50 %;

detrending only reduces the inter-annual variability by

12 %.

In the equatorial-tropical latitude band between 20S and

20N, the spatial pattern of observed interannual SSH var-

iability as defined here is dominated by tropical Pacific

variability related to ENSO and variability in the Indian

Ocean. In the subtropical to subpolar latitudes, variability

peaks appear in the meandering parts of Kuroshio exten-

sion and Gulf Stream/North Atlantic Current, and along the

ACC boundary (Fig. 8, top). The average interannual var-

iability pattern of the CMIP5 models broadly replicates

these features, albeit at lower amplitudes (e.g., in the

tropical Pacific Ocean; Fig. 8). The spatial amplitude pat-

tern of the 1-10 year interannual variability varies among

the CMIP5 models (see SM-Fig. 3). The main observed

features - high variability in the equatorial Central to East

Pacific, western Pacific warm pool, tropical Indian Ocean,

North Atlantic Gulf Stream, Pacific Kuroshio, and South-

ern Ocean ACC front - are reproduced in the models, albeit

to varying degrees. For example, the NorESM1 models

appear to be able to capture the patterns and amplitudes in

the Indian and Pacific Oceans quite well, whereas the two

MIROC-ESMs underestimate amplitudes in these regions

(see SM-Fig. 3). As discussed above, biases in the mean

fields can have an effect on a model’s capability to gen-

erate climate variability modes, in particular in the tropical

regions where the pycnocline depth plays an important role

in generating the Indian Ocean Dipole (Cai and Cowan

2013).

Moving to a more quantitative comparison between

observed and CMIP5-simulated interannual variability, we

calculated Taylor-diagrams from the interannual amplitude

patterns. Other authors have analyzed interannual vari-

ability by using Taylor-diagrams, and pattern correlations

Fig. 8 Spatial patterns of interannual SSH variability of the AVISO

observations (top) and the mean of the interannual variability patterns

of the CMIP5 models (bottom). The monthly mean climatology has

been subtracted, the data have been detrended, and a band-pass filter

(1–10 years) has been applied
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using the first EOF-moments of SSH-variability or trends

(Meyssignac et al. 2012; McGregor et al. 2012). We focus

the following analysis of interannual variability on the

Pacific between 20S and 20N because interannual vari-

ability in this region is comparatively large (Fig. 9; see

Suppl. Material for a global analysis). The most striking

feature of Fig. 9 is the large ensemble spread, and the

reduces performance of the models compared to time-

invariable metrics. The highest pattern correlation is about

R = 0.8, whereas all CMIP5-GCMs reach at least
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Fig. 9 Taylor diagram

summarizing the normalized

statistics of interannual SSH

variability patterns of the

CMIP5 models over the tropical

Pacific Ocean area (between

20S and 20N). The monthly

mean climatology has been

subtracted, the data have been

detrended, and a band-pass filter

(1–10 years) has been applied.

Note that models INMCM4 and

MRI-CGCM3 have negative

correlations (see also Fig. 10)

and are thus not displayed here
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Fig. 10 Spread of pattern correlation between interannual SSH

variability of the CMIP5 models and observations over the tropical

Pacific Ocean area (between 20S and 20N). For each model, the data

points are derived by sliding a 18-year window over the historical run,

and computing the pattern correlation to the observed interannual

variability (the latter remains the same). Data processing and filtering

is as in Fig. 9
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R = 0.95 for the time-mean SSH fields (Fig. 1). As can

already be inferred from the spatial patterns (see SM-Fig.

3), the CMIP5 amplitude variations relative to the observed

interannual variability are quite large, with many models

underestimating the observed amplitudes in the tropical

Pacific, or having different spatial patterns.

Arguably, comparing the interannual variability pat-

terns in this way does not provide detailed insight into

the underlying variability dynamics and processes for the

individual models. The CMIP5 ensemble as a whole has

improved in key aspects of simulating ENSO (Bellenger

et al. 2013) over CMIP3; however, our analysis here

uses only 18 years of observed SSH data, which is too

short to fully capture episodic events such as ENSO,

even though the frequency peak of 3-8 years is in

principle captured in the band-pass limits. Other large-

scale climate modes such as the NAO, PDO, or Atlantic

Multi-decadal Oscillation have time scales beyond

18 years, and can thus strongly impact the agreement

between simulations and observations. To estimate the

potential effects of the limited observational time period,

we repeated the analysis of the interannual variability

again by sliding 18-year windows over the model years

from 1900 through 2005. Figure 10 shows the range of

the pattern correlations for each CMIP5 model obtained

in this way. It is readily apparent that the variations for

individual models can be quite large (e.g., between 0.3

and 0.7 for ACCESS1-0), presumably due to the lack of

synchronization between simulated and observed inter-

annual variability and the episodic nature of interannual

variations. On the other hand, some models (e.g.,

CNRM-CN5 and NorESMM1-M) always out-perform

other models, which could indicate better skill for the

spatio-temporal scales examined here.

4 Conclusions

We have assessed and quantified how well coupled climate

models of the CMIP5 climate model ensemble can repre-

sent the mean-state, annual climatology, as well as inter-

annual variability pattern of sea surface height variations

by comparing them against near-global satellite observa-

tions, available since 1993. We find substantial improve-

ments in the time-mean SSH bias in CMIP5 over CMIP3,

both in the individual model RMS reduction, as well as in a

reduction of ensemble model spread. The GCMs often

exhibit biases in the equatorial and Southern Ocean areas,

and these biases are broadly consistent with the biases in

the models’ wind stress fields. The mean-state biases of

SSH may also affect how the models are able to correctly

simulate climate variability modes that may interact or

depend on the mean climate state, which is particularly

relevant for Indian Ocean Dipole and ENSO variability.

In the Antarctic circumpolar current region of the

Southern Ocean, our results indicate that biases in the

latitudinal position of the meridional maximum SSH gra-

dients are consistent with the corresponding latitudinal

positioning biases of the zonal wind stress maxima. In both

cases, we observe a significant equatorward shift of

approximately 4 degrees for ðSSH �x
dyÞmax; and approxi-

mately 3 degrees for sx. Consistent with recent findings

(Meijers et al. 2012; Kuhlbrodt et al. 2012), we find that

the maximum meridional SSH slope across the ACC cor-

relates well with the maximum ACC transport, but not with

the maximum zonal surface wind stress. The implication

here is that the GCMs’ parameterisations schemes of the

Southern Ocean eddy-transports are a dominant factor that

influence model SSH biases.

Employing a sliding-window analysis over the CMIP5

historical runs, we found no significant dependency on the

time-scales over which the time-invariant model-to-obser-

vations differences are evaluated. For annual variations,

CMIP5 models are clustered closer together than the

models of the CMIP3 ensemble. However, CMIP5 models

tend to overestimate the annual standard deviation by up to

30 %, and the spatio-temporal correlations to the obser-

vations are lower than for atmospheric surface variables

(e.g., SST), and have not improved significantly from

CMIP3. Over the equatorial regions, the seasonal ampli-

tude CMIP5 model SSH biases are consistent with the

seasonal surface wind stress biases (Lee et al. 2013).

Comparing simulated and observed variability on interan-

nual time scales remains a challenge because internal,

unforced climate variability between models and observa-

tions is not synchronized. Focusing on variability time-

scales of 1–10 years in the equatorial Pacific between 20S

and 20N, we found a large spread of CMIP5 model per-

formance, with correlation values ranging from 0.05 to 0.8.

We note, however, that contrary to the time-invariant SSH

fields, the interannual metrics used here are quite sensitive

to the choice time-period that is used for the comparison.

As several previous studies have found for other climate

variables, we also find for sea surface height that the

GCMs’ performance is rather sensitive to spatial and

temporal scales and the choice of metrics (Taylor 2001;

Reifen and Toumi 2009; Knutti 2010; Weigel et al. 2010).

Model-to-observations differences are complex and fre-

quency-dependent, and the observed seasonal cycle and

interannual variability patterns offer more stringent tests of

model performance (Santer et al. 2009). The representation

of the time-varying fields is more challenging as the

accurate representation of the underlying physics is of

greater importance, rather than model tuning (Santer et al.

Sea surface height: CMIP5 versus observations 1281

123



2009). In addition, due to the lack of a clear and consistent

relationship between the mean-state SSH skill and the

interannual variability representation, caution should be

used to derive and apply skill scores from the metrics

discussed here to weigh individual models when forming

an ensemble average. Additionally, various recent studies

(Reifen and Toumi 2009; Knutti 2010; Räisänen and

Ylhäisi 2012) have demonstrated that common skill levels

of GCMs do not necessarily map into projections that are

close to each other. Regardless of the many issues around

and approaches for GCM averaging and model weighting,

the metrics used here are able to identify model outliers

and help to reveal consistent model biases related to

inadequate model physics or resolution that need to be

improved.
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