# ISSI Team "3D+t 67P Gas & Dust Coma Models"

Summary of the first Meeting (28 Sep – 1 Oct 2015)

M. Fulle – INAF Trieste

# Participants

Vladimir Zakharov (LATMOS Team) Mike Combi (ICES Team) Nicolas Thomas (Bern Univ., Bern+Taiwan Team) Joerg Knollenberg (DLR Berlin) Francesco Marzari (Padova Univ., OSIRIS + LATMOS Team) Fernando Moreno Danvila (IAA Granada) Alessandra Rotundi (Napoli Univ.) Vincenzo Della Corte (IAPS Roma) Stavro Ivanovski (IAPS Roma) Martin Rubin (Bern Univ., ICES)

Marco Fulle (convener)

### Invited Talks: 1. V. Zakharov (LATMOS)

- Nucleus Model: Shape 3 from RMOC, degraded to 2.5 x 2.5 deg (15k mesh, size 50m) illumination problem: solar zenithal angle (SZA) computed on the degraded mesh this can be very far from the real average SZA in case of small-scale nucleus roughness
- 2. Back gas flux on nucleus taken into account (LATMOS only, not ICES, partially Bern)
- 3. Gas coma models: both Fluid and DSMC (tests on convergence of both approaches)
- 4. Gas parameters by COPS data fit: water flux min/max = 0.8% 1.8% (not yet fixed)
- 5. Starting condition: homogeneous water loss rate = 6E+25 mol/s (SZA dependent only)
- 6. COPS (and possibly DFMS) data fit improved by other gas models (e.g. thermal lag)
- 7. Water loss depends on heliocentric distance r\_h and on diurnal solar illumination (SZA)
- 8. CO and CO2 loss rates depend on diurnal solar illumination only (not on r\_h)
- 9. 3D+t gas and dust comae ready for 20-21 Aug 2014 and 8-11 Oct 2014 (all prelanding)
- 10. Maximum lifted radius = 3.3 mm (August) and 4.7 mm (October) at bulk density =1 g/cc

# Comparison of gas density and velocity (effect of the shape model)



# Fluid and kinetic description



Gas density distribution by the BE-NSE (left) and DSMC (right) at r<sub>h</sub>=3.3 AU.

# Invited Talks: 2. M. Combi (ICES)

- Nucleus Model: both Shape 3 from RMOC and Shape 4 from OSIRIS degraded to 1.5 x 1.5 deg (50k mesh, size 30m on the nucleus surface) illumination problem: solar zenithal angle (SZA) computed on the degraded mesh
- 2. Gas coma models: DSMC steady only (not foreseen soon 3D+t comae)
- 3. Gas parameters constrained by COPS data fit: water flux night/day = 2%, CO2 night/day = 10%
- 4. Starting condition: homogeneous water loss rate = 7.6E+25 mol/s (SZA dependent only)
- COPS and DFMS data fit already improved by "active areas" (spherical harmonics): 80% of water from the neck (20% other); 80% of CO2 from south (20% other)
- 6. 3D gas and dust comae soon ready for end of August 2014
- 7. Maximum lifted radius = 0.6 mm on 23 August 2014 at bulk density = 1 g/cc

### Invited Talks: 3. N. Thomas (Bern+Taiwan)

- 1. Nucleus Model: Shape 4 from OSIRIS, degraded to 1.5 x 1.5 deg (50k mesh, size 32m) illumination problem: solar zenithal angle (SZA) computed on the degraded mesh
- 2. Gas coma models: purely kinetic DSMC, no time-dependent coma foreseen
- 3. No feedback in T from coma, T = 0 when non illuminated, water flux on night = 0
- 4. Not only half-maxwellian flux (LATMOS, ICES), but also cos<sup>^</sup>n to simulate sinkholes
- 5. Starting condition: homogeneous water loss, then non-homogeneous asap
- 6. COPS data fit by non-homogeneous water loss from 29 Aug to 22 Sep 2014
- 7. backflux of gas absorbed (areas at T = 0) vs reflected (sunlit areas) taken into account
- 8. CO and CO2 outflow not taken into account
- 9. Dust coma of spheres of radius up to 0.3 mm with constant drag coefficient C\_D = 2, no back-reaction on gas, bulk dens.=1 g/cc, no dust-dust collision, nucleus point-like gravity
  10. WAC fits on 5 Sep 2014, single sizes, dust/gas = 2 at r = 15 μm, 800 (??) at r = 150 μm

# Invited Talks: 4. J. Knollenberg (DLR)

1. Models of Imhotep outburst (12 Mar 2015) and of collimated outburst (22 Aug 2015)

#### 2. Imhotep outburst:

Motion of dust due to gas drag and nucleus gravity

Free molecular gas-dust interaction, spherical dust, drag C\_D from Bailey & Hiatt 1971

Steady (hr time scale) production fits data much better than explosive outburst

Power-law size distribution in the range 10  $\mu$ m – 10mm poorly fits data; good fit by:

- 2.1 Truncated size distr. between 10  $\mu$ m 1mm with diff. Index = -2.6 (dust/gas = 0.66)
- 2.2 "Knee" size distr. provided by GIADA with knee at radius = 0.5 mm (dust/gas = 1-2)
- 3. Collimated outburst (see next slide):

Outflow from surface area into the background gas explains data (no need of sinkhole)

### **Outflow into background gas (fluid approximation)**



Gas stream can be effectively collimated by interaction with background
 pressure (Zjet/Zback=100, Qback= 3 10^27 s-1)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

# Invited Talks: 5. F. Marzari (OSIRIS-LATMOS)

- 1. Input: LATMOS coma dust space density
- 2. Output: synthetic dust coma images
- 3. Parameters: OSIRIS-SC kernels
- 4. Assumptions: dust Mie scattering (slide 12!)
  - 4.1 Organic (interstellar, Jenniskens 1993)
  - 4.2 Silicates (amorphous and crystalline olivine and piroxene, Bertini et al. 2007)
- 5. Example of synthetic dust coma image  $\rightarrow$
- 6. Comparison with data performed by polar plots (both radial and angular  $\rightarrow$ )
- 7. The neck jet is clearly dominant in the model (assumed dust radius from 6 to 15  $\mu$ m, to be expanded to 0.1 mm 3D+t at least)



# Invited Talks: 6. F. Moreno Danvila (IAA)

- 1. Fit of VLT and OSIRIS dust coma images taken from April to October 2014
- 2. Assumptions:
  - 2.1 Several dust velocity (time & size) functions (size dependent and independent)
  - 2.2 GIADA size distr. with diff. index = -2 (GIADA) or -3 (Fulle et al. 2010) below the knee
  - 2.3 Dust loss rate provided by coma photometry best fit (inverse technique, next slide)
- 3. Significantly better coma fit with index = -3 than -2 below the knee
- 4. Coma fit less dependent on the assumed ejection velocity
- 5. The extracted dust loss rate recovers the outburst observed on April 2014 (next slide)

#### **DUST AND WATER LOSS RATES**



Heliocentric distance (AU)

# Invited Talks: 7. A. Rotundi (GIADA)

- 1. Description of the instrument
- 2. two big dust families so far detected:
  - 2.1 Compact dust (providing by far most mass and also cross section)
  - 2.2 Fluffy dust (high charge/mass, complex dynamics, fragmentation)
- 3. Strong evolution after perihelion TBC
- 4. Correlations with other instruments (COSIMA, new: ROSINA-COPS)

Constraints on dust cross section distribution

- 1. "Knee"-distribution best fitting most data
- 2. Regarding cross section, the observed knee distribution is well approximated by a DELTA FUNCTION of dust radius r:

During all 2014, 67P size distr. =  $\delta$ (r - r\_knee)



#### Coma brightness fit provides the dust/gas ratio

Since r\_knee > 0.1mm, dust brightness must follow the geometric optical approximation Let's fit the dust coma by two single-value size distributions,  $\delta(r - r_1)$  and  $\delta(r - r_2)$ 

The coma brightness is  $I_1 = k N_1 \pi r_1^2 = I_2 = k N_2 \pi r_2^2$  so that  $N_1 / N_2 = r_2^2 / r_1^2$ 

The dust mass in the coma is  $M_1 = N_1 4/3 \pi r_1^3$  and  $M_2 = N_2 4/3 \pi r_2^3$  and depends on Q/v

where Q is the dust loss rate and v is the dust velocity (v depends on  $r^{-1/2}$ )

We obtain  $Q_1 / Q_2 = M_1 v_1 / M_2 v_2 = (N_1 r_1^3 / N_2 r_2^3) (r_1 / r_2)^{-1/2} = (r_1 / r_2)^{1/2}$ 

#### Changing the single radius r, the dust/gas ratio changes as the square root of r

Bern model gets dust/water ratio = 2 at r = 15 μm, i.e. dust/water ratio = 6 at r = 150 μm (in perfect agreement with GIADA results): but it gets a dust/water 100 times higher
Probable source of error (TBC): Fink's Mie code, not converging at sizes > 10 μm
Action Item 4. All used Mie codes must be verified to converge up to mm-sizes

# Summary and Action Items 1

- 1. Nucleus Model: RMOC Shape 3 (LATMOS & ICES) vs. OSIRIS Shape 4 (ICES & Bern)
- 2. Thermal feedback on nucleus taken into account by LATMOS only
- 3. homogeneous vs. non-homogeneous surface, improved coma fit by: Alternative gas models, e.g. thermal lag (LATMOS) vs. active areas (ICES & Bern)
- 4. Water night activity: night/day = 2% (LATMOS & ICES) vs. none (Bern)
  Physical explanations: 4.1 2% is the water loss rate from extended sources (upper limit)

4.2 2% mimics nucleus thermal lag (extended sources << 2%)

- 5. Action Item 1: Plot COPS data fit at hr resolution for all second half August 2014
- 6. Available gas coma models at << 1 hr resolution:
  - 6.1 20-21 August 2014 (LATMOS)
  - 6.2 23 August 2014 (ICES)
  - 6.3 5 September 2014 (Bern)

### Summary and Action Items 2

- 7. Maximum ejected dust radius = 3.1 mm (LATMOS) vs. 0.6 mm (ICES): significant ?
   One possible explanation: C\_D = 2 (ICES) vs. C\_D up to 5 when Mach=1 (LATMOS)
- 8. Nucleus mesh size seems not a problem to eject largest dust:
  - 8.1 LATMOS adopts the largest mesh but ejects the largest dust
  - 8.2 r = 3.1 mm a factor 3 below the observed largest radius = 9 mm (Rotundi et al. 2015)
  - 8.3 Only neck "upper" gas coma can eject largest dust out of the nucleus gravity field
- 9. Action Item 2: Plot "% nucleus surface ejecting to infinity" vs. "max. lifted radius" to recover a significant dust/gas ratio taking into account dust fall-back
- 10. Action Item 3: Assume single-value dust size distr.: r = 1  $\mu$ m, 10  $\mu$ m, 100  $\mu$ m
- 11. The extracted dust/gas ratio should grow as sqrt(r): Action Item 4: Test of Mie code
- 12. Action Item 5: fit of the WAC data set of 30-31 August 2014 (by spheres of 1 g/cc)

Comparison by polar radial and angular plots (avoid image data-model comparisons)