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1. New obs.: hybrid prominence + coronal rain  
(cf., cloud prominences, coronal spiders; Lin, Martin, Engolvd 2006)
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coronal rain originates from prominence-like, turbulent, possibly an open fan/
current sheet above an arcade/dome, cf., McKenzie supra-arcade fans,  

AIA 171 (Y)/304 (R)



Hybrid prominence + coronal rain: IRIS  
Top (open fan): prominence threads, turbulent flows, large line width  

Bottom (closed loops): coronal rain, narrow line width
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More examples: More examples: Turbulent prominence threads turning 
into underlying coronal rain
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More examples: 
Turbulent prominence 
threads turning into 
underlying coronal rain
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2. Fan-spine geometry and coronal 
rain (Reeves+, submitted)
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Potential field 
extrapolation (Courtesy 
of Xudong Sun)
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Another example with IRIS

• High density regions above loop arcades, apparently high-β. Sometimes 
dips are visible"

• Subsonic and supersonic fast flows away from high density regions"
• Filamentary structure



Supra-arcade downflows, 
McKenzie tadpoles
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McKenzie 2014

Asai et al. 2003



3. A Unifying Picture relating to 
apparently disparate phenomena  
 
Common: current sheet above loops  
1) Hedgerow Prominence  
2) SADs  
3) Coronal rain
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McKenzie 2014

Asai et al. 2003



Summary

Wei Liu @Stanford-Lockheed 11

A new paradigm: Hybrid Prominence – Coronal Rain complex in 
supra-arcade turbulent fan regions 
!
1) Open fan: Prominence, turbulent flow patterns; possibly related 

to high-beta condition – like flare SADs; 
!
2) Underlying loops in arcade: coronal rain sliding down loops, 

strong magnetic field, low-beta. 
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A new kind of rain?



• Iris/SJI (no SG): 1400, 1330 & 2796 (36.5 s) 
• SDO AIA: 304 & 171 (12 s) 
• Hinode/SOT (4.8 s)

loop with rain 
(starting at 
23:12 UT)

Present study: Hinode - IRIS - SDO



Observations: 
SOT - SJI - AIA

Loop arcade? 
Loops stay bright in AIA 
(and even increases 
during rain event) 
Peculiar rain paths 
towards the end: rain in 
more than 1 loop?



loop 
arcade?

Observations: SOT - SJI - AIA



loop with 
rain

jet-like 
structure or 
LOS effect?

Intensity 
decrease, 

simultaneous 
with rain

Observations: SOT - SJI - AIA



loop with 
rain

jet-like 
structure

region 
A

transverse 
cut

Observations: SOT - SJI - AIA
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of movies

prominence 
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rain
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intensity 
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intensity 
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loop jet-like 
structure

transverse 
cut

30 km/s

Transverse MHD 
waves in phase 

with intensity 
variation

4-5 min period 
signatures of 
damping 
slight drift 
downward

x-t diagrams along cuts

supersonic 
propagating 

intensity 
disturbances?



harmonics?

p-mode induced?

Power maps



Transverse MHD waves 
in Ca II H

Movie of xt transverse cuts with height



Rain occurs after 
damping of transverse 
MHD waves detected by 
AIA 
Transverse MHD waves in 
Ca II H 
Smaller periods 
More complex pattern, 
multiple period? 

Image of maxima for xt transverse cuts with height

Transverse MHD waves in Ca II H



• Loop stays warm, especially upstream of rain 

• Coronal intensity decrease, mostly above loops: cooling seems to occur only above 
apex. No usual progressive cooling from coronal temperatures is observed (only TR to 
chromospheric) 

• Very low downward velocities (~30-40 km/s) 

• Dark intensity region above loop arcade 

• Periodic EUV intensity variations at apex in phase with damped oscillations in POS of 
loop (harmonics with fundamental mode at ~5 min + other freqs.) 

• Small amplitude oscillations in POS in Ca II H with multiple periodicity (differ from EUV) 

• Fast jet-like structures from region? Apparently in-phase with intensity variations 

• Divergence of rain paths towards the end: multiple rain loops? 

Discussion - Peculiar rain event

What is happening? 



• Transverse MHD waves generated somehow (leaky p-modes…) 
• Ponderomotive force from standing waves may generate intensity variation 

and high density region at apex, from which catastrophic cooling follows 
(rain). Force may decelerate the rain 

• Damping of waves goes into heating and maintains parts of the loop at 
coronal temperatures (for instance, where resonant absorption takes place) 

• Resonant absorption and KHI may result, leading to multiple current sheets 
(heating), turbulent spectra (multiple periodicities) and reconnection (jet)

Discussion - Possible scenarios

Potential issues: 
• Darkening observed mostly above loop arcade, simultaneous with rain (not at time of 

large amplitude waves) 
• Slow propagating EUV disturbances 
• Enough amplitude and energy? vph~400 km/s, vt~15 km/s (A~2 Mm), <n>~ 3×109 cm-3 

-> F = 2×105 erg cm-2 s-1 .

Transverse MHD waves



Kinematic effects on rain: Clumps modelled as beads on a string:  
➝ dynamical system (Verwichte+, in prep.)

Discussion - Possible scenarios
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Discussion - Possible scenarios
The Astrophysical Journal, 757:21 (15pp), 2012 September 20 Low et al.

Figure 4. Two solutions of the isothermal 2D KS slab with a = 0.4 (left) and a = 0.6 (right), displayed in the same format as Figure 3, both with k0/k = 0.5 and
a0 = 0.25. These a > a0 states have magnetic islands of closed field lines nested around an O-type neutral point and looped around by the infinitely long (dashed)
separatrix field line associated with the X-type neutral point shown.

and 4 show four examples with the same values of B2, B3 but
with increasing values of a as a measure of departure from
one-dimensionality. In each figure, the thin lines are constant-
A field lines projected on the y − z plane and the thick lines
are contours of constant density. The constant field component
Bx = B1 may be taken to be the same for the three examples.
This field component does not affect the equilibrium in the y − z
plane, but it gives the field, in 3D space, a sheared configuration
for the field lines extending to y → ±∞ and a twisted flux-rope
configuration for the magnetic islands, or regions of closed field
lines, found in Figure 4.

For a < a0 = B2/2B3, all the field lines extend to infinity and
are unevenly bowed because the loaded mass per unit magnetic
flux varies across the field, the cases in Figure 3. For a > a0,
periodic magnetic islands appear, lined up along the z-axis, the
two illustrative cases in Figure 4. In each magnetic island, the
closed field lines nest around an O neutral point. The island
boundary is a part of a separatrix line, drawn as a dashed line in
Figure 4, associated with an X neutral point. This separatrix line
comes in from y → −∞, passes through the X neutral point
to go around the magnetic island, passes through that neutral
point again, and then goes off to y → ∞. As a increases past
a0, the special case of a = a0 shown on the right in Figure 3
corresponds to the parametric simultaneous appearances of the
O and X neutral points in coincidence, manifesting as a cusp on
the dashed line shown.

The density ρ(y, z) concentrates around the vertical plane
y = 0 in a vertical series of alternating maxima and saddle
points. Along y = 0, the saddle points are minima in density
alternating with the maxima, having the respective values

ρmin = B2B3k

2π
(
√

1 + a2 + a)−2, (58)

ρmax = B2B3k

2π
(
√

1 + a2 + a)2. (59)

Each of these equilibrium fluids when perturbed to evolve
under the frozen-in condition moves with its flux surfaces of

constant-A deforming as fluid surfaces, described by induction
equation (19). The mass sandwiched between any two flux
surfaces on which A = A1, A2, two constants,

M(A1, A2) =
∫

A1<A(y,z,t)<A2

ρ(y, z, t)dydz, (60)

is a constant in time, where ρ(y, z, t) is the evolving density
and A(y, z, t) satisfies Equation (19). To clarify our notation,
with no loss of generality, we can fix A1 to define a reference
flux surface. Then M(A1, A) is a function of a single variable A
such that setting this variable A = A2, a constant, picks out the
second flux surface to define the invariant total mass measured
from the reference surface. We call M(A1, A) the (invariant)
mass function. Its derivative dM(A1, A)/dA is the total mass
per unit A-flux, which we refer to as mass per unit flux for
brevity. We can calculate M(A1, A) from the field and density
in the a-family of equilibrium states. By this calculation we can
attribute the two-dimensionality of the equilibrium state to the
fact that the mass per unit flux varies with A when a ̸= 0, that
is, flux tubes of a fixed unit axial flux are loaded with unequal
total masses. The field is thus unevenly bowed by the weight
varying from flux tube to flux tube. The special case of a = 0
corresponds to a uniform loading of mass for each flux tube of a
fixed axial flux. These flux tubes are identical, thus compatible
with equilibrium varying only in the y dimension.

The total weight averaged over a full periodicity in the
z-direction given by

W = k

2π

∫ 2π/k

0

∫ ∞

−∞
ρgdydz

= B2B3

π
(61)

is independent of parameter a, exactly the weight W given by
Equation (54) for the a = 0 1D isothermal KS slab. We recover
the formula k = πk0W/B2

2 showing that the product of the

9

A solution for a 
Kippenhahn-Schlütter slab

Low+ (2012b)

A&A 533, A18 (2011)

Fig. 3. Time signature of relative mass density, collected at the x-point
for the case of Ap = 5.

here, McLaughlin & Hood 2006), while slow waves are guided
along the separatrices.

Figure 2 shows the snapshot at the instant of time when
the fast and slow waves have already left the region around the
x-point. The entropy mode is manifested as the stationary void
blob around the x-point. This blob starts to evolve according to
buoyancy force, which pushes the plasma upwards along the sep-
aratrices. Such upward flow is seen at t = 2 × 103 s (Fig. 2,
bottom panel).

Figure 3 displays the time signature that is drawn by collect-
ing wave signals in

∆ϱ

ϱe
≡ ϱ − ϱe

ϱe
(10)

at the x-point. This time signature reveals the initial phase at
which the mass density abruptly falls off in time due to the ac-
tion of the initial pressure pulse. This phase lasts until t ≃ 10 s.
Later on, mass density oscillates as a result of propagating fast
and slow waves. This oscillatory phase lasts to about t = 100 s,
and it is followed by a gradual rarefaction of plasma.

3.2. Rapid cooling

Since the radiation term is absent in the MHD equations,
the cooling of hot plasma due to radiative losses is not con-
sidered here. On the other hand, the radiation losses can be
important just after the onset of flare/nanoflare, which may
lead to “catastrophic cooling” of the hot plasma to transi-
tion region/chromospheric temperatures once the temperature
and mass density reach some critical values (Schrijver 2001).
The one-dimensional loop models show that the catastrophic
cooling is a loss of equilibrium; i.e., the radiative losses be-
come stronger than heating and heat conduction (Antiochos &
Klimchuk 1991; Müller et al. 2003, 2004; Karpen et al. 2006;
Klimchuk et al. 2010). Including a magnetic field, i.e. consid-
ering two-dimensional loops, may modify the non-equilibrium
state. However, the solution of full MHD equations with heat-
ing, heat conduction, and radiative losses is a formidable task.
Therefore, all non-adiabatic processes are ignored in our study,
and the sudden cooling is modeled by a negative value of Ap,
i.e., sudden decrease in the plasma pressure at the null point.

The pulse of Eq. (9) with Ap = −0.75 again triggers fast
and slow magnetoacoustic-gravity waves, as well as the entropy
mode (Fig. 4). But now the entropy mode is represented by mass

Fig. 4. Mass density profiles (color maps) and velocity vectors at t =
250 s (top panel) and t = 2 × 103 s (bottom panel) for the negative
value of Ap = −0.75 (i.e. rapid cooling). Mass density and velocity are
measured in units of 10−15 kg m−3 and 0.2 km s−1, respectively.

density enhancement at the x-point. We observe that the density
enhancement, corresponding to the cooler region, persists for a
long time at the null point, while being weakly affected by the
gravity. Therefore, when a nanoflare occurs at a null point, its lo-
cation can be traced through the density enhancement of a lower
temperature.

Figure 5 displays the time signature that is drawn by collect-
ing wave signals in ∆ϱ/ϱe at the x-point. Similar to Fig. 3 this
time signature reveals the initial phase at which the mass density
varies in time because of the action of the initial pressure pulse
and resulting propagation of fast and slow waves. This phase
lasts until t ≃ 100 s. Later on, mass density remains essentially
constant.

A18, page 4 of 5

Parker 
(80’s)

Murawski + (2011)

• Complex interaction between plasmas and fields 
in low-β: 0 thickness current sheets (tangential 
discontinuities) can form where material can 
collapse (Low+ 2012a,b; Low 2014)"

• Spontaneous formation and resistive dissipation of 
discrete currents"

• Parker’s view: tangential discontinuities must exist 
in the corona to allow the field to release energy 
and reach the observed magnetic field topologies"

• Null points in the field are preferential sites for 
thermal instabilities (Murawski+ 2011): MHD 
thermal mode (entropy mode)

current sheets



• Reconnection sites: 2nd tearing mode instability -> plasmoid generation. 
Major role in energy release (Biskamp 2007, Lapenta 2008, Drake+ 2006, 
Daughton+ 2006)

secondary current sheets that, in turn, may become unstable
again. This process of cascading to smaller scales is reminis-
cent of fractals.11 If the large-scale configuration evolves
slowly, eventually the reconnection layer will tend to a sta-
tistical steady state characterized by a hierarchical structure
of plasmoids (see Fig. 1 for snapshots of the cascade). Two-
dimensional numerical simulations show that reconnection
rate becomes nearly independent of S in this regime, with a
value !0:01VAB.25,28,37 The number of plasmoids np, the
widths d, and lengths l of secondary current sheets follow
scaling relations np / S, d / 1=S, and l / 1=S.28 These scal-
ing relations may be understood by assuming that all second-
ary current sheets are close to marginal stability. The
rationale behind the assumption is as follows. First, we note
that cascade to smaller scales will stop if the local Lundquist
number lVA=g of a secondary current sheet is smaller than
Sc. Second, secondary current sheets typically get stretched
and become longer over time due to gradient in the outflow,
which on average increases from zero near the center to !VA

near the ends of the reconnection layer. Third, when the cur-
rent sheet length l becomes sufficiently long such that
lVA=g > Sc, the current sheet becomes unstable, new plas-
moids are generated, and the fragmented current sheets
become short again. Consequently, we expect the local
Lundquist number lVA=g to stay close to Sc, i.e.,
l ! gSc=VA ! LSc=S. The corresponding current sheet width
d ! l=

ffiffiffiffiffi
Sc
p
! LS1=2

c =S, and the number of plasmoids is esti-
mated as np ! L=l ! S=Sc. Finally, reconnection rate can be
estimated by gJ ! gB=d ! BVA=

ffiffiffiffiffi
Sc
p
! 10"2VAB, which is

independent of S. These scaling relations are consistent with
the simulation results.

IV. STATISTICAL DISTRIBUTION OF PLASMOIDS

Statistical descriptions of plasmoids have drawn consid-
erable interest in recent years,29,37,41,42 partly due to the pos-
sible link between plasmoids and energetic particles.21,43

The fractal-like fragmentation of current sheets suggests
self-similarity across different scales,11 which often gives

rise to power laws.44 A recent heuristic argument by
Uzdensky et al. suggests that if we consider the statistical
distribution of the plasmoids in terms of their magnetic
fluxes w, the distribution function f ðwÞ follows a power law
f ðwÞ ! w"2.29 This result can be formally derived by adopt-
ing a model of plasmoid kinetics (similar to that given in
Ref. 41) and obtaining steady-state solutions of the plasmoid
distribution.45

The governing kinetic equation for the time evolution of
f ðwÞ is written as

@f

@t
þ a

@f

@w
¼ fdðwÞ " f N

sA
" f

sA
; (3)

where NðwÞ '
Ð1
w f ðw0Þdw0 is the cumulative distribution

function, i.e., the number of plasmoids with fluxes larger
than w. Several idealized assumptions have been made in
writing Eq. (3). First, the flux of a plasmoid grows due to
reconnection in adjacent secondary current sheets. Following
the assumption that all secondary current sheets are close to
marginal stability, the flux of a plasmoid grows approxi-
mately at a constant rate a ! BVA=

ffiffiffiffiffi
Sc
p

. This gives the plas-
moid growth term a@f=@w on the left hand side. Second,
new plasmoids are created when a secondary current sheet
becomes longer than the critical length for marginal stability.
We assume that when new plasmoids are created, they con-
tain zero flux; this is represented by the source term fdðw),
where dðwÞ is the Dirac d-function, and f is the magnitude of
the source. This source term sets the boundary condition for
f ðwÞ at w ¼ 0. Third, plasmoids disappear due to coales-
cence with larger plasmoids, which is assumed to be instan-
taneous. Assuming the characteristic relative velocity
between plasmoids is of the order of VA, the time scale of a
plasmoid with flux w to encounter a larger plasmoid is esti-
mated as !L=NðwÞVA ! sA=NðwÞ. This gives the coales-
cence loss term "fN=sA. Note that when two plasmoids
coalesce, the flux of the merged plasmoid is equal to the
larger of the two original fluxes.41 Therefore, coalescence
does not affect the value of f at the larger of the two fluxes.
Finally, plasmoids are advected out from the reconnection
layer with speeds !VA on a characteristic time scale sA. This
is represented by the advection loss term "f=sA.

Exact steady-state solutions of Eq. (3) can be found ana-
lytically.45 However, for the discussion here, it is instructive
to consider approximate solutions in different regimes. At
large w when N ( 1, the steady-state equation reduces to
a@f=@w ’ "f=sA. In this regime, f ! expð"w=asAÞ. On the
other hand, when N ) 1, the advection loss term is negligi-
ble, and we have a@f=@w ’ "fN=sA. In this regime, N
’ 2asAw"1 and f ¼ "@N=@w ’ 2asAw"2 is the solution. As
such, the steady state solution admits both an exponential tail
and a f ! w"2 power-law regime. The dominant loss mecha-
nism in the former regime is advection, while it is coales-
cence in the latter. In other words, the plasmoids in the
power-law regime must be deep in the hierarchy, whereas
large plasmoids follow a distribution that falls off exponen-
tially. Transition from the power-law regime to the exponen-
tial tail occurs when N ’ 1, i.e., at w ’ 2asA. The
distribution function f ðwÞ also deviates from the w"2 power

FIG. 1. Out-of-plane current density at different times shows fractal-like
cascade to smaller scales via the plasmoid instability. First, the Sweet-
Parker current sheet breaks up to form a chain of plasmoids connected by
secondary current sheets (top panel). Secondary current sheets are Sweet-
Parker like, become unstable again, and generate the next batch of plasmoids
(middle panel). This cascade leads to a hierarchy of plasmoids of various
sizes (bottom panel). These snapshots present a small portion of the whole
simulation box from a S ¼ 107 simulation. The reader is referred to Fig. 4 of
Ref. 28 for an illustration of the whole system.
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probability distribution functions fðc Þ for S ¼ 106,
3$ 106 [two runs, labeled as (a) and (b)], and S ¼ 107.
Distribution functions are normalized such thatR1
0 fðc Þdc is equal to the average number of plasmoids

in each time slice. These numerical results appear to be
robust and reproducible, as exemplified by the two S ¼
3$ 106 runs that yield nearly identical distribution func-
tions. Qualitative similarities between Figs. 1 and 2, espe-
cially the existence of three distinct regimes, are evident.
However, the distribution function in the power-law regime
is closer to fðc Þ % c&1 instead of fðc Þ % c&2.

To understand the discrepancy between the numerical
results and the power-law prediction of Eq. (2), we need to
critically examine the basic assumptions that give rise to
the fðc Þ % c&2 power law. In the fðc Þ % c&2 regime,
the dominant balance in Eq. (1) is between the plasmoid
growth term and the loss term due to coalescence, i.e.,
!@f=@c ’ &fN="A. A key assumption underlying the
loss term&fN="A is that the relative speeds of a plasmoid
with respect to neighboring plasmoids larger than itself are
of the order of VA and are uncorrelated to the flux of the
plasmoid. To examine this assumption with numerical
data, we measure the relative velocity!v of each plasmoid
at any given time with respect to the first larger plasmoid it
will encounter by extrapolating the trajectories of the
plasmoids with their velocities at that time. Note that !v
is undefined for the largest plasmoid, or when all larger
plasmoids are moving away from a given plasmoid. The
plasmoids with !v undefined are disregarded in the analy-
ses. Figure 3 shows the distribution gðc ;!vÞ of plasmoids
with respect to c and !v from the run S ¼ 107. Here we
normalize gðc ;!vÞ such that

R1
&1 gðc ;!vÞdð!vÞ ¼ 1

for better visualization. We can clearly see that the distri-
bution is not uniform across different values of c . The
distribution covers a broader range of!v at smaller c , and
it becomes more concentrated around !v ¼ 0 at larger c .
Similar results are also observed in other runs. Therefore, it

appears that the reconnection layer organizes itself sponta-
neously into a state such that large plasmoids tend to avoid
coalescing with each other.
How do we interpret this phenomenon? As discussed

earlier, the flux of a plasmoid is approximately propor-
tional to its age because all plasmoids grow approximately
at the same rate !. Consequently, a plasmoid can become
large only if it has not encountered plasmoids larger than
itself for an extended period of time. Presumably, plas-
moids moving rapidly relative to their neighbors will
encounter larger plasmoids and disappear easily, whereas
those with small relative speeds are more likely to survive
for a long time and become large. This observation moti-
vates us to consider a distribution function Fðc ; vÞ, where
v can be interpreted as the plasmoid velocity relative to the
mean flow (which has a profile along the outflow direc-
tion). The governing equation for Fðc ; vÞ is written as

@tFþ !
@F

@c
¼ #$ðc ÞhðvÞ & FH

"A
& F

"A
; (3)

where the function H is defined as

Hðc ; vÞ ¼
Z 1

c
dc 0

Z 1

&1
dv0 jv& v0j

VA
Fðc 0; v0Þ; (4)

and hðvÞ is an arbitrary distribution function in velocity
space when new plasmoids are generated. The distribution
function fðc Þ can be obtained by integrating Fðc ; vÞ over
the velocity space. Equation (3) differs from Eq. (1) in the
plasmoid loss term due to coalescence, where the relative
speed jv& v0j between two plasmoids is taken into
account in the integral operator of Eq. (4). If we replace
jv& v0j in Eq. (4) by VA, then Eq. (3) reduces to Eq. (1).
Steady-state solutions of Eq. (3) can be obtained numeri-
cally. To fix ideas, we assume a Gaussian profile hðvÞ ¼
ð1= ffiffiffiffi

%
p

VAÞ expð&v2=V2
AÞ for the arbitrary source function.

Figure 4 shows the resulting fðc Þ for #"A ¼ 106, 107,
and 108. Assuming np ’ S=Sc and Sc ’ 104, these solu-
tions approximately correspond to S ¼ 3$ 107, 108, and

FIG. 3 (color online). The plasmoid distribution with respect
to the relative speed !v and the flux c from the run S ¼ 107.

FIG. 2 (color online). Plasmoid distribution functions from
direct numerical simulations.
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probability distribution functions fðc Þ for S ¼ 106,
3$ 106 [two runs, labeled as (a) and (b)], and S ¼ 107.
Distribution functions are normalized such thatR1
0 fðc Þdc is equal to the average number of plasmoids

in each time slice. These numerical results appear to be
robust and reproducible, as exemplified by the two S ¼
3$ 106 runs that yield nearly identical distribution func-
tions. Qualitative similarities between Figs. 1 and 2, espe-
cially the existence of three distinct regimes, are evident.
However, the distribution function in the power-law regime
is closer to fðc Þ % c&1 instead of fðc Þ % c&2.

To understand the discrepancy between the numerical
results and the power-law prediction of Eq. (2), we need to
critically examine the basic assumptions that give rise to
the fðc Þ % c&2 power law. In the fðc Þ % c&2 regime,
the dominant balance in Eq. (1) is between the plasmoid
growth term and the loss term due to coalescence, i.e.,
!@f=@c ’ &fN="A. A key assumption underlying the
loss term&fN="A is that the relative speeds of a plasmoid
with respect to neighboring plasmoids larger than itself are
of the order of VA and are uncorrelated to the flux of the
plasmoid. To examine this assumption with numerical
data, we measure the relative velocity!v of each plasmoid
at any given time with respect to the first larger plasmoid it
will encounter by extrapolating the trajectories of the
plasmoids with their velocities at that time. Note that !v
is undefined for the largest plasmoid, or when all larger
plasmoids are moving away from a given plasmoid. The
plasmoids with !v undefined are disregarded in the analy-
ses. Figure 3 shows the distribution gðc ;!vÞ of plasmoids
with respect to c and !v from the run S ¼ 107. Here we
normalize gðc ;!vÞ such that
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for better visualization. We can clearly see that the distri-
bution is not uniform across different values of c . The
distribution covers a broader range of!v at smaller c , and
it becomes more concentrated around !v ¼ 0 at larger c .
Similar results are also observed in other runs. Therefore, it

appears that the reconnection layer organizes itself sponta-
neously into a state such that large plasmoids tend to avoid
coalescing with each other.
How do we interpret this phenomenon? As discussed

earlier, the flux of a plasmoid is approximately propor-
tional to its age because all plasmoids grow approximately
at the same rate !. Consequently, a plasmoid can become
large only if it has not encountered plasmoids larger than
itself for an extended period of time. Presumably, plas-
moids moving rapidly relative to their neighbors will
encounter larger plasmoids and disappear easily, whereas
those with small relative speeds are more likely to survive
for a long time and become large. This observation moti-
vates us to consider a distribution function Fðc ; vÞ, where
v can be interpreted as the plasmoid velocity relative to the
mean flow (which has a profile along the outflow direc-
tion). The governing equation for Fðc ; vÞ is written as

@tFþ !
@F

@c
¼ #$ðc ÞhðvÞ & FH

"A
& F

"A
; (3)

where the function H is defined as

Hðc ; vÞ ¼
Z 1

c
dc 0

Z 1

&1
dv0 jv& v0j

VA
Fðc 0; v0Þ; (4)

and hðvÞ is an arbitrary distribution function in velocity
space when new plasmoids are generated. The distribution
function fðc Þ can be obtained by integrating Fðc ; vÞ over
the velocity space. Equation (3) differs from Eq. (1) in the
plasmoid loss term due to coalescence, where the relative
speed jv& v0j between two plasmoids is taken into
account in the integral operator of Eq. (4). If we replace
jv& v0j in Eq. (4) by VA, then Eq. (3) reduces to Eq. (1).
Steady-state solutions of Eq. (3) can be obtained numeri-
cally. To fix ideas, we assume a Gaussian profile hðvÞ ¼
ð1= ffiffiffiffi

%
p

VAÞ expð&v2=V2
AÞ for the arbitrary source function.

Figure 4 shows the resulting fðc Þ for #"A ¼ 106, 107,
and 108. Assuming np ’ S=Sc and Sc ’ 104, these solu-
tions approximately correspond to S ¼ 3$ 107, 108, and

FIG. 3 (color online). The plasmoid distribution with respect
to the relative speed !v and the flux c from the run S ¼ 107.

FIG. 2 (color online). Plasmoid distribution functions from
direct numerical simulations.
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• Large plasmoids are those who live longer. Exponential increase in 
number at small scales (observed in magneto-tail & corona: Lin, J.+2008; 
Liu, R. + 2013; Nishizuka+ 2010, Takasao+ 2012)

Takasao	  et	  al.	  (2012)
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• Downward reconnection outflow can generate high density region 
(high-β?) above loop arcades: may explain dark supra-arcade 
downflows observed by McKenzie et al. (Guo + 2014)

current sheets

Discussion - Possible scenarios

The Astrophysical Journal Letters, 796:L29 (6pp), 2014 December 1 Guo et al.

(a)

(b)

(c)

(d)

(e)

Figure 2. Panel (a) shows the magnetic field line (shaded by values of density along its path) configuration and a x–y slice of the density profile at z = 0.1 from the
MHD model with uniform resistivity. Panel (b) shows the density profile (unit:cm−3) along the z = 0 plane, panel (c) shows the temperature profile (unit: K) on the
same plane, panel (d) shows the synthetic AIA 131 Å emission count rate, and panel (e) shows the synthetic AIA 193 Å emission count rate.
(A color version of this figure is available in the online journal.)

δBz = 0.025B0 sin
(

πx

Lx

)
cos

(
πz

Lz

)
.

Subsequently, magnetic reconnection occurs along an extended
Sweet–Parker current sheet. Reconnected magnetic field lines
form magnetic arcades in the downstream region, as can be seen
in panel (a) of Figure 1. The plasma ejected by the reconnection
outflows accumulates and forms a high-density region in the
arcade. An interface forms between the lower density recon-
nection outflows and the higher density plasma, which later on
becomes wavy and eventually develops finger-like structures.
Panel (a) of Figure 2 shows a close-up of the region where the
finger-like structures form. Two groups of field lines are traced.
One goes through where the instabilities occur and is severely
perturbed and distorted. The other goes through a less perturbed
region below the instabilities, where the magnetic field lines
approximately form arcades. Panel (b) of Figure 2 shows a 2D
slice of the density profile in the x–y plane near the center of the
current sheet (z = 0), panel (c) shows the temperature profile
and panel (d) shows the expected count rate (DN s−1 pixel−1) in
the AIA 131 Å channel. The emission count rate is calculated
according to the formula CR =

∫
n2f (T )dl DN s−1 pixel−1,

where f (T ) is the AIA 131 Å response function (Lemen et al.
2012), n is the electron number density, T is the temperature,
and dl is the line element along the line of sight. Likewise, we
also calculate the emission count rate in the AIA 193 Å channel,
shown in panel (e) of Figure 2. To use the response function, the
plasma density and temperature have to be converted to dimen-
sional units. Here the density is converted by assuming that unit
density in simulation equals 109 cm−3. The temperature is con-

verted by assuming that the normalized Alfvén speed VA = 1 in
the simulation corresponds to VA = 1000 km s−1 in the corona,
which gives the initial temperature Treal = (mpV 2

A/k)Tcode =
(1.67×10−27 kg × (106 m s−1)2/1.38 × 10−23 m2 kg s−2 K−1)×
0.125 ≃ 1.5 × 107 K for our simulation. Likewise, the initial
normalized magnetic field in the lobe (Bcode = 1) corresponds
to Breal ≃ 14 G, which is a reasonable value for the coronal mag-
netic field. The spatial scale in all the figures is dimensionless.
Assuming the length of the current sheet L = 2 Lx is one solar
radius, it follows that one simulation length unit equals about
3′′. The typical width of the finger-like structures is about two
to five simulation length units, corresponding to 6′′–15′′. These
values are consistent with observations.

The finger-like structures in all four panels of Figure 2 ap-
pear to be caused by plasma instabilities. As can be seen
from panel (b) of Figure 2, the instabilities take place at the
interface between lighter reconnection outflows and denser
plasma (piled-up density in front of reconnection outflows).
Because the reconnection outflows push the relatively station-
ary plasma ahead, the deceleration existing between lighter and
denser plasma plays a role that is equivalent to gravity in the
Rayleigh–Taylor instability. In addition, the “unfavorable” cur-
vature of the magnetic field lines on the top of the arcades
(panel (a) of Figure 2) makes the system potentially unstable
to the ballooning instability (see Bhattacharjee et al. 1998).
Because the resistivity is uniform in space and constant over
time, the result of this run suggests that the intermittent forma-
tion of finger-like SADs does not necessarily require intermit-
tent, locally enhanced resistivity, but can be attributed to ideal
instabilities in the downstream region.

3

continuous 
downflows hit 
high density 

region leading to 
RT instabilities

1. High density region can catastrophically cool down, leading to condensations. 
Due to reconnection the material becomes trapped in the loops leading to rain"

2. Large plasmoids may themselves become rain

Two possible scenarios for rain: 



Discussion - Possible scenarios

• Rain (1&2)"
• Darkening observed mostly above loop arcade, simultaneous with rain"
• Downward reconnection outflow impinges on loop generating transverse 

MHD waves (1&2)"
• Upward reconnection outflow may correspond to the observed jet. Similar 

speeds observed for “tadpoles” (1&2)"
• Shocks from reconnection outflow may partially warm-up the loop (1&2)"
• Clumpy morphology and evolution could be explained by continuous 

dissipation of resistive currents in plasmoids (2)

current sheets
Application to observations:

Potential issues:"
• Slow rain speeds"
• Periodicities? "
• Slow propagating EUV disturbances (plasmoids?)"
• Hot counterpart higher up in the corona? (to do)



Thank you!


