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Plasma condensations in the 
universe

• Filamentary structure in 
interstellar medium (Cox 1972)!

• Planetary nebulae (Zanstra 1955)!

• Spiral arms of galaxies  (Spitzer 
1956)!

• Prominences (Parker 1953)!

• Coronal rain (Kawaguchi 1970, 
Leroy 1972)

PhysicsofSolarProminences:I—SpectralDiagnostics245

Fig.1AquiescentsolarprominenceobservedabovethelimbinHαwiththeHinode/SOTNFIfilter(Heinzel
etal.2008)

Activeprominencesaredynamicalfeaturestypicallyoccurringinthevicinityofactive
regionsandareusuallyshort-lived(theirlifetimeissmallerthanthelifetimeoftheassoci-
atedactiveregion).Theiraltitudeisoftensmallerthanthatofquiescentprominences.Both
quiescentandactiveprominencesformanintegralpartofthesolarcorona.Theconditions
fortheirstabilityareinherentlyrelatedtotheassociatedmagneticconfiguration(seePa-
perII,Sect.2).Prominencesandfilamentsmayundergolarge-scaleinstabilitieswhichwill
disrupttheirequilibriaandleadtoeruptions.Theseeruptionsareoftenassociatedwithflares
andCoronalMassEjections(CMEs).

Inthisreview,weareprimarilyinterestedinthedeterminationoftheprominenceplasma
parameterswhichplayaroleintheforceandenergyequilibria,whilePaperIIdescribes
recentprogressinfourareasofprominenceresearch:theirmagneticstructure,thedynam-
icsofprominenceplasmas(formationandflows),thedynamicsofmagneto-hydrodynamic
(MHD)wavesinprominences,andtheformationandlarge-scalepatternsofthefilament
channelsinwhichprominencesarelocated.Bothpapersfocusprimarilyonnon-eruptive
prominences.
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Thermal instability

• Parker (1953), Field (1965), Goldsmith (1971), Hildner 
(1974), Heyvaerts (1974), Heasley & Mihalas (1976),...
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The multiphase nature of the ICM is physically analogous to
the well-studied multiphase ISM. The ISM has three dominant
phases: a molecular phase at ∼100 K, an atomic phase at
∼104 K, and the hot phase at 106 K. The cooling function
in the ISM is thermally bistable with thermally stable phases at
∼100 K and ∼104 K. The hot phase is thermally unstable but
is probably maintained at its temperature by supernova heating
(McKee & Ostriker 1977). The same physical considerations
apply for the ICM, except that the hot phase is maintained by a
still poorly understood heating process (e.g., AGN feedback).

This paper is organized as follows. Section 2 summarizes our
model equations and the results of a linear stability analysis
including conduction along field lines, cosmic rays, and mag-
netic fields (see the Appendix). Section 3 presents the numerical
set-up and the results of our numerical simulations. Section 4
discusses the astrophysical implications of our results.

2. GOVERNING EQUATIONS AND NUMERICAL
METHODS

A magnetized plasma with cosmic rays can be described by
the following two-fluid equations:
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where d/dt = ∂/∂t + v · ∇ is the Lagrangian time derivative,
Λ(T ) is the cooling function,

Q = −κ∥ b̂(b̂ · ∇)T (6)

is the heat flux along magnetic field lines,

Γ = −D∥ b̂(b̂ · ∇)pcr (7)

is the diffusive cosmic-ray energy flux (multiplied by [γcr − 1]),
ρ is the mass density, ne and ni are the electron and ion number
densities respectively, v is the common bulk-flow velocity of
the thermal plasma and cosmic rays, B is the magnetic field,
b̂ = B/B, p and pcr are the thermal-plasma and cosmic-ray
pressures, κ∥ is the parallel thermal conductivity, D∥ is the
diffusion coefficient for cosmic-ray transport along the magnetic
field, and γ = 5/3 and γcr = 4/3 are the adiabatic indices of
the thermal plasma and cosmic rays, respectively. We assume
one-third solar metallicity so that the mean molecular weights
are µ = 0.62 and µe = 1.18. We do not include gravity in
the momentum equation (Equation (2)) in order to focus on
the thermal physics. Note that our model equations also do not
include the streaming of cosmic rays relative to the thermal
plasma, which provides a mechanism for heating the thermal
plasma (e.g., Loewenstein et al. 1991; Guo & Oh 2008). This is

numerically subtle to include (Sharma et al. 2009c) and will be
studied in future work.

It is difficult to study the problem of thermal instability
without a well-defined equilibrium state. In order to ensure
that we have such a state, at each time step the heating term
H (t) in Equation (4) is updated so that the volume-averaged
heating and cooling in our computational domain balance each
other. Without such heating, the plasma as a whole cools to
very low temperatures on a cooling time (the same timescale on
which the thermal instability is developing). Since the source
of heating and its functional form are not that well understood
in the ICM, we choose a constant heating per unit volume for
simplicity. Calculations with a constant heating per unit mass,
i.e., H (t) ∝ ρ, yield very similar results because cooling (∝ n2)
dominates in the cold phase and heating dominates in the hot
phase in both cases.

2.1. Linear Stability

In the Appendix we study the linear thermal stability of a
uniform plasma with magnetic fields, cosmic rays, and thermal
conduction along magnetic field lines. To isolate the physics
of interest in this paper, we focus on the “condensation mode,”
i.e., the entropy mode. This calculation is a straightforward
generalization of previous results (e.g., Field 1965), but we
include it for completeness. Here we quote the final results.

When the cosmic-ray and magnetic pressures are negligible
compared to the plasma pressure, and the cooling time tcool is
long compared to the sound-crossing time, the growth rate for
the thermal instability (σ ) is given by

σγ = −χ∥k
2
∥ − t−1

cool
d ln(Λ/T 2)

d ln T
, (8)

where t−1
cool ≡ (γ − 1)neniΛ/p. Note that the thermal conduc-

tivity, κ∥, in Equation (6) is related to the diffusivity used here,
χ∥, by κ∥ = nekBχ∥. The first term on the right-hand side of
Equation (8) describes the conductive stabilization of modes
with short wavelengths parallel to the local magnetic field (large
k∥). This implies that the fastest growing modes will be elon-
gated along the magnetic field lines and hence filamentary. The
critical parallel length scale at which σ = 0 (the Field length)
is given by

λF ≡ 2π
[

χ∥tcool

d ln(T 2/Λ)/d ln T

]1/2

. (9)

When the cosmic-ray and/or magnetic pressure is large
compared to the plasma pressure, the isochoric growth rate
applies, i.e.,

σ = −χ∥k
2
∥ − t−1

cool
d ln Λ
d ln T

. (10)

This is also applicable when the cooling time is shorter than the
sound-crossing time, irrespective of the magnetic and cosmic-
ray contributions to the total pressure. However, for typical ICM
conditions, the cooling time in the hot plasma is longer than the
sound-crossing time.

2.2. Thermal Conductivity and the Cooling Function

The thermal conductivity of a fully ionized plasma is gov-
erned by electron collisions with the background ions and elec-
trons. We are interested in plasmas hotter than 104 K, so that

κ∥ = 1.84 × 10−5

ln λ
T 5/2erg s−1 K−7/2 cm−1, (11)
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Thermal instability in coronal loops

• Loop geometry: length, area (cross-section, asymmetry), dips!

• Heating: volumetric rate, scale length, timescale (steady, impulsive, finite), 
asymmetry!

• Radiative loss function

Parameter space?

The Astrophysical Journal, 737:27 (14pp), 2011 August 10 Xia et al.

introduced in the lower atmosphere, chromospheric plasma is
evaporated into the coronal portion of the flux tube. For uniform
heating with an amplitude of ∼10−3 erg cm−3 s−1, the coronal
loop only becomes hot and dense, whereas for localized heating
with the same amplitude, the enhanced radiation due to op-
tically thin radiative losses in the corona leads to catastrophic
cooling and plasma condensation. While symmetric heating was
assumed in these simulations, further simulations showed that
steady asymmetric heating can yield periodic formations of cold
plasma condensations across the magnetic dip and their drainage
to a footpoint of the flux tube (Antiochos et al. 2000). Karpen
et al. (2001) found that even arched field lines can host the
repetitive formation and drainage of the cold plasma condensa-
tion, implying that the magnetic dip might not be a necessary
condition for filament formation, though a deeply dipped field
line hinders the condensation from draining down, keeping the
Hα thread near the magnetic dip for a long time (Karpen et al.
2003). Assuming a more realistic asymmetric loop geometry
and a non-uniform cross section, together with adopting an up-
dated radiation loss function, it was found that numerical simu-
lations can reproduce the formation rate, the elongated structure
of the condensations, and the high-speed motions (∼50 km s−1)
of filament threads (Karpen et al. 2005, 2006). Condensations
can also form when the energy input is impulsive and ran-
domly distributed in time, provided that the average interval be-
tween energy pulses is shorter than the coronal radiative cooling
time (∼2000 s; Karpen & Antiochos 2008). This thermal non-
equilibrium model is also used to simulate other condensations
in coronal loops, such as coronal rains, with a semicircular ge-
ometry and a shorter length (Müller et al. 2003, 2004; Klimchuk
et al. 2010). All these studies emphasized that an adaptive mesh
is critically necessary to resolve the thin transition regions be-
tween a condensation and its surrounding corona and to follow
the condensation throughout its evolution.

In most previous works, the dynamic formation of filaments
in the magnetized solar corona is reduced to a one-dimensional
(1D) radiative hydrodynamic problem along a given magnetic
loop. The simulation then tracks the plasma dynamics along
the loop under the influence of gravity, pressure gradients, ther-
mal conduction, optically thin radiative losses, and a prescribed
heating. In all these works, the strong localized heating was
set to be steady or intermittent for tens of hours. If this local-
ized heating is due to chromospheric reconnection, the heating
should in reality be short lasting. It is still unclear whether a
one-off heating with finite lifetime can lead to the formation
of a long filament thread. Starting with simulations with steady
localized heating (both symmetric and asymmetric), which aim
to investigate the details of the plasma condensation and its
dynamics, this paper, for the first time, further investigates the
response of a coronal loop to localized heating with a limited
duration. In addition, due to the great contemporary interest in
prominence seismology, we address whether quiescent promi-
nences (or threads) can survive continuous perturbation from
p-mode waves, and how these wave modes are transmitted and
reflected through the prominence body. The paper is organized
as follows. Our numerical method is described in Section 2,
and the results for steady heating, which confirm and extend
earlier work to a wider parameter regime, are presented in
Section 3. Section 4 collects all novel aspects of our work:
(1) testing the evolution against different criteria of the ther-
mal instability that accounts for the catastrophic cooling, (2)
the response of the plasma condensation to the switching off of
the localized heating, and (3) the stability of the condensation

under p-mode-driven perturbations. Conclusions are drawn in
Section 5.

2. NUMERICAL METHOD

2.1. Governing Equations and Radiative Loss Treatment

As mentioned above, the plasma beta of the filament environ-
ment is believed to be small; therefore, it is generally assumed
that the coronal flux tubes, which can support the filaments
against gravity, are rigid and the mass flow is channeled along
the magnetic field line in the corona.4 With such an assumption,
the plasma dynamics of the filament threads is simply described
by the 1D radiative hydrodynamic equations as follows:

∂ρ

∂t
+

∂

∂s
(ρv) = 0, (1)

∂

∂t
(ρv) +

∂

∂s
(ρv2 + p) = ρg∥(s), (2)

∂ε

∂t
+

∂

∂s
(εv+pv) = ρg∥v+H (s)−nHneΛ(T )+

∂

∂s

(
κ

∂T

∂s

)
, (3)

where ρ is the mass density, T is the temperature, s is the
distance along the loop, v is the velocity of plasma, p is the
gas pressure, ε = ρv2/2 + p/(γ − 1) is the total energy
density, nH is the number density of hydrogen, ne is the
number density of electrons, and g∥(s) is the component of
gravity at a distance s along the magnetic loop. Furthermore,
γ = 5/3 is the ratio of the specific heats, Λ(T ) is the radiative
loss coefficient for the optically thin emission, H (s) is the
volumetric heating rate, and κ = 10−6 T 5/2 erg cm−1 s−1 K−1

is the Spitzer heat conductivity. As done in the previous works
mentioned in Section 1, we assume a fully ionized plasma and
adopt the one-fluid model. Considering the helium abundance
(nHe/nH = 0.1), we take ρ = 1.4mpnH and p = 2.3nHkBT ,
where mp is the proton mass and kB is the Boltzmann constant.
The radiative hydrodynamic Equations (1)–(3) are numerically
solved by the Adaptive Mesh Refinement Versatile Advection
Code (AMRVAC; Keppens et al. 2003, 2011), where the heat
conduction term is solved with an implicit scheme separately
from the other terms. To calculate the radiative energy loss, we
use second-order polynomial interpolation to compile a high-
resolution table based on the radiative loss calculations recently
done by Colgan et al. (2008). They calculated the radiative
losses for the solar coronal plasma using a recommended set
of quiet-region element abundances. In their calculations they
used a complete and self-consistent atomic data set and an
accurate atomic collisional rate over a wide temperature range.
As shown in Figure 1, Λ(T ) in our cooling table (solid line),
interpolated from Colgan et al. (2008) (square), is generally
∼2 times larger than the Klimchuk–Raymond radiative loss
function (dashed line) used in previous works (Karpen et al.
2005, 2006; Karpen & Antiochos 2008; Klimchuk et al. 2010).
The figure also demonstrates that our cooling curve better
represents the detailed temperature dependence of the radiative
loss.

Using our cooling table, we then exploit the exact integration
scheme (Townsend 2009), rather than traditional implicit or ex-
plicit time stepping methods. This method is much faster than
an explicit scheme, as it can avoid the numerical limit of the

4 It is noted that the plasma condensation greatly enhances the effect of
gravity, which can deform the magnetic loop as demonstrated by Wu et al.
(1990).
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Figure 1. Radiative loss coefficient Λ(T ) vs. T calculated by Colgan et al. (2008)
(squares) and our interpolation (solid line). Note that the Klimchuk–Raymond
profile (dashed line) shows the piecewise continuous radiative loss function used
in previous works.

radiative timescale on the simulation timestep. It is also more
stable than the implicit schemes based on Newton–Raphson
iteration. Below 20,000 K, we set Λ(T ) to vanish since the
plasma then becomes optically thick and is no longer fully ion-
ized. The use of explicit, (semi-)implicit, and exact integration
methods in grid-adaptive simulations has been analyzed recently
by van Marle & Keppens (2011).

2.2. Discretization and AMR Settings

When using the AMRVAC code, the total Variation Dimin-
ishing Lax–Friedrichs scheme using linear reconstruction em-
ploying a monotonized central limiter (Tóth & Odstrčil 1996) is
chosen for the spatial differentiation, combined with a predictor-
corrector two-step explicit scheme for the time progressing. Six
levels of adaptive mesh refinement (AMR) in a block-based
AMR approach are applied, which leads to a minimum grid spac-
ing of 6.77 km, comparable to the 5–6 km seen in previous works
such as Klimchuk et al. (2010). The refinement/coarsening cri-
teria are based on numerical errors estimated using density and
its gradient following Löhner’s prescription (Löhner 1987). If
any error exceeds 0.1, the block is refined. If all errors in the
block are less than 0.0125, the block is then coarsened. To in-
clude the heat conduction source in the energy equation, we
separately solve the heat conduction term in each AMR grid
block using the implicit scheme where the central difference
is taken for the space derivative of the temperature. This leads
to a local tri-diagonal linear system per grid block, where the
temperature on the block boundaries is taken from neighboring
blocks at the previous timestep. To simulate 10 hr physical time,
our implementation uses ∼1.5 hr on four processors.

2.3. Initial and Boundary Conditions

We adopt a loop geometry with a magnetic dip, which is
symmetric about the midpoint. On each side, the loop has a
vertical leg 5 Mm in length above the footpoint and a quarter-
circular arc 15.7 Mm in length connecting the vertical leg and
the dip, which is 218.6 Mm in length, as shown in Figure 2.
Note that the geometry of the loop determines the distribution
of g∥(s), which is symmetric about the midpoint and whose left
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Figure 2. Geometry of our model loop, which represents a magnetic field line
across a filament thread. The gray rectangular region denotes the photosphere
and the chromosphere. Note that the vertical and horizontal axes are not to scale.

half is described as follows:

g∥(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−g⊙, s ! s1;

−g⊙ cos
(

π

2
s − s1

s2 − s1

)
, s1 < s ! s2;

g⊙
πD

2(L/2 − s2)
sin

(
π

s − s2

L/2 − s2

)
, s2 < s ! L/2,

(4)
where g⊙ = 2.7 × 104 cm s−2 is the solar gravity, s1 = 5 Mm,
s2 = s1 + 15.7 Mm, L = 260 Mm is the total loop length, and
D = 0.5 Mm is the dip depth. The value of the total loop length
L is suggested by the observations of Okamoto et al. (2007).
The dip is very shallow, so the coronal part of the loop is nearly
flat. The midpoint of the loop, which is the center of the dip, has
a height of 14.5 Mm above the bottom boundary.

The initial equilibrium state is obtained by numerically
solving Equations (1)–(3). We start with a temperature (T) versus
height (h) distribution of T = tanh(h − h0) with T = 106 K
in the corona and 6000 K in the photosphere, which is close
to the quiet Sun atmospheric model (Vernazza et al. 1981).
The density is determined by balancing the pressure gradient
with the gravity, with nH = ρ/(1.4mp) = 109 cm−3 at the
loop center. At this stage, only the background heating H0(s)
is included in the energy equation, namely, H (s) = H0(s) in
Equation (3). H0(s) is a steady term in order to maintain the
hot corona whose physics is still under debate. Considering that
the photospheric motions are the source of the energy that is
transported upward to heat the chromosphere and the corona,
somehow, it is generally conjectured that the heating rate decays
with height (Serio et al. 1981; Mok et al. 1990; Aschwanden
& Schrijver 2002). Similar to previous works, we assume that
H0(s) decreases exponentially with the distance away from the
nearest footpoint along the loop and remains constant in time,

H0(s) =
{
E0 exp(−s/Hm), s < L/2;
E0 exp[−(L − s)/Hm], L/2 ! s < L,

(5)

where the amplitude E0 = 3 × 10−4 erg cm−3 s−1 (Withbroe &
Noyes 1977) and the scale length Hm = L/2 (Withbroe 1988).
The prescribed distributions are in force equilibrium, but not in
thermal equilibrium, and will evolve to reach a new hydrostatic
state. Such a state, whose density and temperature distributions
are displayed in Figure 3, serves as the initial conditions for
our further simulations. In the initial state, the temperature is
highest at the midpoint of the loop, with T = 2.6 × 106 K
and nH = 3.2 × 108 cm−3. The thin transition layer between
the lower atmosphere and the corona is roughly at a height of
str = 6 Mm. In the lower atmosphere, T ranges from 13,000 K
to 18,000 K, which is closer to the quiet Sun atmospheric model
(Vernazza et al. 1981) than previous works (Karpen et al.
2001, 2006). The number density at the endpoints is about
2 × 1014 cm−3. The simulated chromosphere and photosphere
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Figure 3. Distributions of the temperature (solid line) and the number density
of hydrogen (dashed line) along the model loop in the initial hydrostatic state.

Table 1
Parameters and Results of Typical Cases

Case λ f E1 Mean Growth Rate Onset Time Segment
(Mm) (erg cm−3 s−1) (km hr−1) (s) Number

S1 10 1 0.01 1928 10340 1
S2 5 1 0.01 3228 7729 1
S3 10 1 0.02 1505 9618 1
A1 10 0.75 0.01 1842 10648 1
A2 5 0.4 0.01 3079 7900 2

are about twice as thick as those of the real Sun and serve as a
mass reservoir for the chromospheric evaporation.

For the boundary conditions, we fix the density, velocity,
and temperature at the two endpoints of the loop. Because the
density in the photosphere is more than four orders of magnitude
higher than that in the filaments and the corona, the coronal
dynamics has little effect on the photosphere, justifying these
fixed boundary conditions.

Similar to Antiochos et al. (1999), in order to simulate the
chromospheric evaporation, an extra localized heating Hl(s),
which might be due to chromospheric reconnection, is added
to the energy equation in addition to the background heating
H0(s), namely, H (s) = H0(s) + Hl(s) in Equation (3). As
described as follows, Hl(s) is uniform in the photosphere and
chromosphere and decays exponentially with the distance away
from the nearest chromosphere along the loop with a scale
length λ:

Hl(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E1, s ! str;
E1 exp[−(s − str )/λ], str < s ! L/2;
f E1 exp[−(L − str − s)/λ], L/2 < s ! L − str;
f E1, s > L − str ,

(6)
where the amplitude E1 = 10−2 erg cm−3 s−1 (cf. Withbroe &
Noyes 1977; Aschwanden 2001), str = 6 Mm is the height
of the transition region, and the factor f is the ratio of the
localized heating rate near the right footpoint to that near the
left. The localized heating Hl(s) is ramped up linearly over
1000 s and maintained thereafter. In this paper, we numerically
investigate two situations, with symmetric and asymmetric
heating, respectively. The parameters in several typical cases
are listed in Table 1. In the symmetric case, a parameter survey
is performed, including the effects of λ and E1.

Table 2
List of Parameters in Simulations of Radiative Condensation

Reference L D Vertical Leg str Cross Section
(Mm) (Mm) (Mm) (Mm) (Non)Uniform

Antiochos et al. (1999) 220 5 10 10 U
Antiochos et al. (2000) 320 5 60 50 U
Karpen et al. (2001) 340 no 60 60 U
Karpen et al. (2003) 420 15,10 75 60 U
Müller et al. (2003) 10 no 1 1.6 U
Müller et al. (2004) 100 no 1 1.6 U
Karpen et al. (2005) 405 20 60 60 N
Karpen et al. (2006) 405 20 75 60 U
Karpen & Antiochos (2008) 405 20 75 60 U
Klimchuk et al. (2010) 205 no 50 50 U
Our cases 260 0.5 5 6 U

Note. These relate to the overall assumed loop geometry, quantifying the loop
length, the presence of a dip, the length of the loop legs, and the height of the
chromosphere.

To better identify in which way our simulations augment
the knowledge of prominence formation gained over the last
decade, we list the most important parameters in similar works
on radiative condensation due to localized heating in Tables 2
and 3. These tables show that our work differs in a variety
of aspects connected to the overall loop geometry, to the
spatio-temporal prescription of the heating applied, and also
notably in the cooling table used to quantify radiative losses.
Motivated by observations of active region prominences by
Okamoto et al. (2007), our model loop shape represents a low-
lying, shallowly dipped loop with a more realistic scale for its
vertical legs and chromospheric height region. In this shallow
dip configuration, our parametric survey explores a wide range
of heating parameters.

3. NUMERICAL RESULTS

3.1. Symmetric Evolution

As the symmetric localized heating with λ = 10 Mm and
f = 1 is introduced in case S1, the chromospheric plasma
is heated and evaporated into the corona. As illustrated by
Figure 4, both the density ρ and temperature T in the coronal
portion increase accordingly. Near the midpoint of the loop, T
reaches the maximum value, 3.49 × 106 K, at t = 2664 s, then
starts to decline slowly, whereas ρ keeps increasing slowly from
the beginning. At t = 10013 s, the temperature and pressure
near the midpoint begin to collapse simultaneously, drastically
decreasing by nearly one and a half orders of magnitude within
1 minute, creating a low-pressure cold region, which expands to
a maximum length of 28.4 Mm. At this stage, the density is still
low, increasing gently as seen in the left and middle columns
of Figure 5. Since only the density was chosen to automatically
refine the mesh and at this stage the density is still smooth,
the grid resolution is 108 km per cell. Still, this cold region
contains 263 grid cells, which is sufficient to resolve the region.
Due to the large pressure gradient that forms at the edge of
this cold region, the coronal plasma outside the cold region is
driven to move rapidly toward this central cold region. After
time t = 10082 s, the density inside this cold well begins to
increase rapidly as the inflows from both sides converge toward
the midpoint and compress the cold region. The converging
velocity reaches 185 km s−1. These inflows are supersonic, with
a local Mach number up to 7.
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Figure 3. Distributions of the temperature (solid line) and the number density
of hydrogen (dashed line) along the model loop in the initial hydrostatic state.

Table 1
Parameters and Results of Typical Cases

Case λ f E1 Mean Growth Rate Onset Time Segment
(Mm) (erg cm−3 s−1) (km hr−1) (s) Number

S1 10 1 0.01 1928 10340 1
S2 5 1 0.01 3228 7729 1
S3 10 1 0.02 1505 9618 1
A1 10 0.75 0.01 1842 10648 1
A2 5 0.4 0.01 3079 7900 2

are about twice as thick as those of the real Sun and serve as a
mass reservoir for the chromospheric evaporation.

For the boundary conditions, we fix the density, velocity,
and temperature at the two endpoints of the loop. Because the
density in the photosphere is more than four orders of magnitude
higher than that in the filaments and the corona, the coronal
dynamics has little effect on the photosphere, justifying these
fixed boundary conditions.

Similar to Antiochos et al. (1999), in order to simulate the
chromospheric evaporation, an extra localized heating Hl(s),
which might be due to chromospheric reconnection, is added
to the energy equation in addition to the background heating
H0(s), namely, H (s) = H0(s) + Hl(s) in Equation (3). As
described as follows, Hl(s) is uniform in the photosphere and
chromosphere and decays exponentially with the distance away
from the nearest chromosphere along the loop with a scale
length λ:

Hl(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E1, s ! str;
E1 exp[−(s − str )/λ], str < s ! L/2;
f E1 exp[−(L − str − s)/λ], L/2 < s ! L − str;
f E1, s > L − str ,

(6)
where the amplitude E1 = 10−2 erg cm−3 s−1 (cf. Withbroe &
Noyes 1977; Aschwanden 2001), str = 6 Mm is the height
of the transition region, and the factor f is the ratio of the
localized heating rate near the right footpoint to that near the
left. The localized heating Hl(s) is ramped up linearly over
1000 s and maintained thereafter. In this paper, we numerically
investigate two situations, with symmetric and asymmetric
heating, respectively. The parameters in several typical cases
are listed in Table 1. In the symmetric case, a parameter survey
is performed, including the effects of λ and E1.

Table 2
List of Parameters in Simulations of Radiative Condensation

Reference L D Vertical Leg str Cross Section
(Mm) (Mm) (Mm) (Mm) (Non)Uniform

Antiochos et al. (1999) 220 5 10 10 U
Antiochos et al. (2000) 320 5 60 50 U
Karpen et al. (2001) 340 no 60 60 U
Karpen et al. (2003) 420 15,10 75 60 U
Müller et al. (2003) 10 no 1 1.6 U
Müller et al. (2004) 100 no 1 1.6 U
Karpen et al. (2005) 405 20 60 60 N
Karpen et al. (2006) 405 20 75 60 U
Karpen & Antiochos (2008) 405 20 75 60 U
Klimchuk et al. (2010) 205 no 50 50 U
Our cases 260 0.5 5 6 U

Note. These relate to the overall assumed loop geometry, quantifying the loop
length, the presence of a dip, the length of the loop legs, and the height of the
chromosphere.

To better identify in which way our simulations augment
the knowledge of prominence formation gained over the last
decade, we list the most important parameters in similar works
on radiative condensation due to localized heating in Tables 2
and 3. These tables show that our work differs in a variety
of aspects connected to the overall loop geometry, to the
spatio-temporal prescription of the heating applied, and also
notably in the cooling table used to quantify radiative losses.
Motivated by observations of active region prominences by
Okamoto et al. (2007), our model loop shape represents a low-
lying, shallowly dipped loop with a more realistic scale for its
vertical legs and chromospheric height region. In this shallow
dip configuration, our parametric survey explores a wide range
of heating parameters.

3. NUMERICAL RESULTS

3.1. Symmetric Evolution

As the symmetric localized heating with λ = 10 Mm and
f = 1 is introduced in case S1, the chromospheric plasma
is heated and evaporated into the corona. As illustrated by
Figure 4, both the density ρ and temperature T in the coronal
portion increase accordingly. Near the midpoint of the loop, T
reaches the maximum value, 3.49 × 106 K, at t = 2664 s, then
starts to decline slowly, whereas ρ keeps increasing slowly from
the beginning. At t = 10013 s, the temperature and pressure
near the midpoint begin to collapse simultaneously, drastically
decreasing by nearly one and a half orders of magnitude within
1 minute, creating a low-pressure cold region, which expands to
a maximum length of 28.4 Mm. At this stage, the density is still
low, increasing gently as seen in the left and middle columns
of Figure 5. Since only the density was chosen to automatically
refine the mesh and at this stage the density is still smooth,
the grid resolution is 108 km per cell. Still, this cold region
contains 263 grid cells, which is sufficient to resolve the region.
Due to the large pressure gradient that forms at the edge of
this cold region, the coronal plasma outside the cold region is
driven to move rapidly toward this central cold region. After
time t = 10082 s, the density inside this cold well begins to
increase rapidly as the inflows from both sides converge toward
the midpoint and compress the cold region. The converging
velocity reaches 185 km s−1. These inflows are supersonic, with
a local Mach number up to 7.
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Table 3
List of Parameters in Simulations of Radiative Condensation

Reference E0 E1 f λ Type Radiation
(erg cm−3 s−1) (erg cm−3 s−1) (Mm) S/I/Fa

Antiochos et al. (1999) 1.5e-5 1.e-3 1 10 S Oldb

Antiochos et al. (2000) 1.5e-5 1.e-3 0.75 10 S Old
Karpen et al. (2001) 1.5e-4 1.e-3 0.75 10 S Old
Karpen et al. (2003) 1.5e-4 1.e-2 0.75 10 S Old
Müller et al. (2003) no 1.2e-3 1 1.25 S IEc

Müller et al. (2004) no 1.2e-3 1 5,3,2 S IE
Karpen et al. (2005) 1.5e-4 1.e-2 0.75 10 S KR
Karpen et al. (2006) 1.5e-4 2.e-2,1.e-2 0.75 5,10 S KR
Karpen & Antiochos (2008) 1.5e-4 1.e-2 0.75 5,1 I KR
Klimchuk et al. (2010) 6.e-4 8.e-2 0.5,0.75,0.9 5 S KR
Symmetric cases 3.e-4 5.e-3 ∼ 0.2 1 3 ∼ 20 S/F Colgan
Asymmetric cases 3.e-4 1.e-2 0.4,0.75 5,10 S Colgan

Notes. These relate to the heating adopted and to the radiative cooling prescriptions.
a Steady/impulsive/finite heating.
b A simple piecewise radiative loss function that is an order of magnitude smaller than the updated Klimchuk–Raymond
version (i.e., KR seen below).
c Radiative loss included by solving ionization equations.
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Figure 4. Temporal evolution of the number density of hydrogen (left) and the
temperature (right) along the model loop in case S1. The two loop footpoints
are at s = 0 and 260 Mm, respectively, and the center of the loop dip is at
s = 130 Mm.
(A color version of this figure is available in the online journal.)

As a result, the inflows collide at the midpoint of the loop
where a high-pressure peak appears, exciting two rebound shock
waves launched from the midpoint toward the two sides. A small
cold condensation region (∼1 Mm in length) is left behind the
shocks near the midpoint at t ∼ 10382 s (see the right column
of Figure 5). To see the contributions of the various terms in
the energy equation, in Figure 6 we plot the absolute value
distribution of the energy source terms, including radiative
cooling, heat conduction, heating, and gravitational potential,
across the magnetic dip at t = 10382 s, when the condensation

happens. It is found that the radiative cooling dominates in the
coronal parts and the boundaries of the condensation segment,
but nearly vanishes inside the condensation. The heat conduction
is less important than the heating in most regions except at
the boundaries of the condensation. The gravitational potential
is always negligible. The pressure in the cold region recovers
due to the compression of the inflows from outside. Swept by
the outward-propagating rebound shock waves, the depressed
pressure outside the cold region also recovers, as illustrated by
Figure 7, which shows similar quantities at times later than
those of Figure 5. The shock waves are bounced back and forth
∼3 times between the loop footpoint and the loop center, as
revealed by the sinusoidal pattern in the right panel of Figure
4 between t = 3 hr and t = 4 hr. During their passage, they
dissipate their energy to compress and heat the local plasma. The
damping rate is enhanced by thermal conduction and radiation.
The plasma condensation remains near the midpoint, with a
temperature of 1.8 × 104 K and a density of 1.2 × 1011 cm−3.
In contrast, the corresponding values in the neighboring corona
are 2 × 106 K and 1.03 × 109 cm−3, respectively. Note that the
condensation temperature is just below 20,000 K, where the
radiative loss is set to vanish smoothly. Further tests indicate
that if the radiative losses vanished below a lower temperature,
the condensation would be cooler accordingly.

Figure 8 depicts the growth of the condensation segment
(or the filament thread). It is seen that the onset time of the
condensation is at t = 2.8 hr after the localized heating is in-
troduced in case S1. The growing process of the condensation
can be described as follows. Its length increases rapidly for
∼20 minutes as the onset of condensation drives fast evapora-
tion flows from the chromosphere, followed by a slight shrink-
age of the condensation for ∼10 minutes. As the evaporated
plasma flow becomes steady, the condensation length increases
linearly with time, with a growth rate of 1511 km hr−1. With
such a speed, it would take ∼6.6 hr to form a filament thread
with a typical length of 10 Mm. Observations show that active
region filaments form within a day (Wang & Muglach 2007). For
comparison, in Antiochos et al. (1999), it takes 8.3 hr for a con-
densation to grow to 10 Mm long. One reason is that they used
a deeply dipped magnetic loop, where the gravity scale height
was shorter, so that the condensation was strongly squeezed.
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Thermal instability in coronal loops

• Loss of pressure accompanied by loss of temperature!

• Strong radiative losses at ChTR boundary maintains the 
clump!

• Strong siphon flows are produced, feeding the clump
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Figure 5. Distributions of the temperature (solid line, top panel), the density (dashed line, top panel), the pressure (solid line, bottom panel), and the velocity (dashed
line, bottom panel) across the loop center in case S1 at three moments, namely, t = 10013 s (left column), t = 10082 s (middle column), and t = 10382 s (right
column).
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Figure 6. Absolute value distributions of various energy sources, including
radiative cooling (solid line), heat conduction (dotted line), heating (dashed
line), and gravity (dash-dotted line), near the midpoint of the loop at t = 10382 s
in case S1.

To investigate the effect of the heating scale length λ, we
change its value and perform a series of simulations in 17
runs, with other parameters being the same as in case S1. As
seen in Figure 9, the onset time of the condensation roughly
increases with λ, with a minimum of 2 hr. However, the growth
rate decreases with increasing λ, except for a drop down near
λ = 4 Mm. It is noted that if λ is larger than 9 Mm (i.e.,
1/28 of the total loop length L), the evolution is similar to
case S1 (where λ = 10 Mm) as described above, where only a
single condensation forms near the midpoint of the loop. When
3 Mm < λ < 9 Mm (i.e., 1/86 < λ/L < 1/28), two
condensation segments first form on the two shoulders of
the magnetic dip symmetrically about the midpoint. The two
segments move convergently toward the midpoint, during which
movement both T and p in the region between the two segments

drop down. Under this pressure gradient, the two condensation
segments are accelerated from ∼12 km s−1 to 75 km s−1, to
finally coalesce near the midpoint. Similar high-speed motion is
discussed by Karpen et al. (2006). As λ decreases, the two
segments form further away from each other and from the
midpoint of the loop. When 2.5 Mm < λ < 3 Mm, the two
condensation segments form in the loop legs and then drain
down rapidly to the nearby footpoints. When λ < 2.5 Mm (i.e.,
λ/L < 1/100), no condensation forms, and the loop relaxes to
a hydrostatic state in the end. Similar situations happen when
λ > 25 Mm (i.e., λ/L > 1/10), which is the same result as
mentioned by Klimchuk et al. (2010).

Müller et al. (2004) simulated the formation of condensations
in a semicircular coronal loop with a length of 100 Mm and a
loop-top temperature of 6.8 × 105 K. Their loops are shorter
and cooler than our dipped loops. They found that, when
λ/L = 1/20, only one condensation forms at the midpoint of the
loop and that two condensation segments form at the shoulders
of the loop when λ/L = 1/33 or λ/L = 1/50. The transition
between one condensation and two condensation segments is
somewhere between λ/L = 1/20 and 1/33, which is consistent
with our result, that is, 1/28. The transition can be understood as
follows. At the beginning, the plasma at the two shoulders of the
loop is cooler and denser than that at the midpoint, which means
the radiative loss is stronger at the shoulders. Meanwhile, if λ
is long enough, the heating at the shoulders is strong enough to
slow down the cooling, making the midpoint the fastest cooling
place, and only one condensation forms. When λ decreases, the
heating at the shoulders is reduced and becomes too weak to
obstruct the fast cooling there. Hence, two cold segments are
formed at the two shoulders before merging near the midpoint
of the loop.

Keeping λ = 10 Mm, we perform another series of sim-
ulations with different amplitudes of the localized heating,
E1, namely, 0.005–0.2 erg cm−3 s−1. The localized heating still
dominates compared to the weak background heating. The
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Figure 1. Radiative loss coefficient Λ(T ) vs. T calculated by Colgan et al. (2008)
(squares) and our interpolation (solid line). Note that the Klimchuk–Raymond
profile (dashed line) shows the piecewise continuous radiative loss function used
in previous works.

radiative timescale on the simulation timestep. It is also more
stable than the implicit schemes based on Newton–Raphson
iteration. Below 20,000 K, we set Λ(T ) to vanish since the
plasma then becomes optically thick and is no longer fully ion-
ized. The use of explicit, (semi-)implicit, and exact integration
methods in grid-adaptive simulations has been analyzed recently
by van Marle & Keppens (2011).

2.2. Discretization and AMR Settings

When using the AMRVAC code, the total Variation Dimin-
ishing Lax–Friedrichs scheme using linear reconstruction em-
ploying a monotonized central limiter (Tóth & Odstrčil 1996) is
chosen for the spatial differentiation, combined with a predictor-
corrector two-step explicit scheme for the time progressing. Six
levels of adaptive mesh refinement (AMR) in a block-based
AMR approach are applied, which leads to a minimum grid spac-
ing of 6.77 km, comparable to the 5–6 km seen in previous works
such as Klimchuk et al. (2010). The refinement/coarsening cri-
teria are based on numerical errors estimated using density and
its gradient following Löhner’s prescription (Löhner 1987). If
any error exceeds 0.1, the block is refined. If all errors in the
block are less than 0.0125, the block is then coarsened. To in-
clude the heat conduction source in the energy equation, we
separately solve the heat conduction term in each AMR grid
block using the implicit scheme where the central difference
is taken for the space derivative of the temperature. This leads
to a local tri-diagonal linear system per grid block, where the
temperature on the block boundaries is taken from neighboring
blocks at the previous timestep. To simulate 10 hr physical time,
our implementation uses ∼1.5 hr on four processors.

2.3. Initial and Boundary Conditions

We adopt a loop geometry with a magnetic dip, which is
symmetric about the midpoint. On each side, the loop has a
vertical leg 5 Mm in length above the footpoint and a quarter-
circular arc 15.7 Mm in length connecting the vertical leg and
the dip, which is 218.6 Mm in length, as shown in Figure 2.
Note that the geometry of the loop determines the distribution
of g∥(s), which is symmetric about the midpoint and whose left
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Figure 2. Geometry of our model loop, which represents a magnetic field line
across a filament thread. The gray rectangular region denotes the photosphere
and the chromosphere. Note that the vertical and horizontal axes are not to scale.

half is described as follows:

g∥(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−g⊙, s ! s1;

−g⊙ cos
(

π

2
s − s1

s2 − s1

)
, s1 < s ! s2;

g⊙
πD

2(L/2 − s2)
sin

(
π

s − s2

L/2 − s2

)
, s2 < s ! L/2,

(4)
where g⊙ = 2.7 × 104 cm s−2 is the solar gravity, s1 = 5 Mm,
s2 = s1 + 15.7 Mm, L = 260 Mm is the total loop length, and
D = 0.5 Mm is the dip depth. The value of the total loop length
L is suggested by the observations of Okamoto et al. (2007).
The dip is very shallow, so the coronal part of the loop is nearly
flat. The midpoint of the loop, which is the center of the dip, has
a height of 14.5 Mm above the bottom boundary.

The initial equilibrium state is obtained by numerically
solving Equations (1)–(3). We start with a temperature (T) versus
height (h) distribution of T = tanh(h − h0) with T = 106 K
in the corona and 6000 K in the photosphere, which is close
to the quiet Sun atmospheric model (Vernazza et al. 1981).
The density is determined by balancing the pressure gradient
with the gravity, with nH = ρ/(1.4mp) = 109 cm−3 at the
loop center. At this stage, only the background heating H0(s)
is included in the energy equation, namely, H (s) = H0(s) in
Equation (3). H0(s) is a steady term in order to maintain the
hot corona whose physics is still under debate. Considering that
the photospheric motions are the source of the energy that is
transported upward to heat the chromosphere and the corona,
somehow, it is generally conjectured that the heating rate decays
with height (Serio et al. 1981; Mok et al. 1990; Aschwanden
& Schrijver 2002). Similar to previous works, we assume that
H0(s) decreases exponentially with the distance away from the
nearest footpoint along the loop and remains constant in time,

H0(s) =
{
E0 exp(−s/Hm), s < L/2;
E0 exp[−(L − s)/Hm], L/2 ! s < L,

(5)

where the amplitude E0 = 3 × 10−4 erg cm−3 s−1 (Withbroe &
Noyes 1977) and the scale length Hm = L/2 (Withbroe 1988).
The prescribed distributions are in force equilibrium, but not in
thermal equilibrium, and will evolve to reach a new hydrostatic
state. Such a state, whose density and temperature distributions
are displayed in Figure 3, serves as the initial conditions for
our further simulations. In the initial state, the temperature is
highest at the midpoint of the loop, with T = 2.6 × 106 K
and nH = 3.2 × 108 cm−3. The thin transition layer between
the lower atmosphere and the corona is roughly at a height of
str = 6 Mm. In the lower atmosphere, T ranges from 13,000 K
to 18,000 K, which is closer to the quiet Sun atmospheric model
(Vernazza et al. 1981) than previous works (Karpen et al.
2001, 2006). The number density at the endpoints is about
2 × 1014 cm−3. The simulated chromosphere and photosphere
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Figure 12. Distributions of the temperature (solid line, top), the density (dashed line, top), the pressure (solid line, bottom), and the Mach number (dashed line, bottom)
along the loop near the midpoint, at three instants, namely, t = 10391 s (left column), t = 10820 s (middle column), and t = 11078 s (right column), in case A1.
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Figure 13. Temporal evolution of the number density of hydrogen (left) and the
temperature (right) along the model loop in case A2. The two loop footpoints
are at s = 0 and 260 Mm, respectively, and the center of the loop dip is at
s = 130 Mm.
(A color version of this figure is available in the online journal.)

of the condensation excites a shock wave, which is trapped to
propagate back and forth in the whole loop as indicated by the
right panel of Figure 13 near t = 5 hr. As time goes on, such
formation, coalescence, and drainage of condensations repeat
with a period of 3.6 hr, which is shorter than that in case A1.

As an extreme case, we perform a simulation with f = 0, that
is, the localized heating is introduced at the left footpoint only. It
is found that no condensation forms in the loop. Instead, we get
steady flows along the coronal loop, consistent with previous
works (e.g., Patsourakos et al. 2004).

4. DISCUSSION

4.1. Thermal Instability

Parker (1953) proposed that some solar features, such as
filaments, can be formed by thermal instability. He derived a
criterion for thermal instability on the basis of an analysis of the
energy equation alone. Field (1965) made a detailed study of the
thermal instability for an infinite, uniform, static plasma in initial
thermal equilibrium. He pointed out that the criterion given by
Parker is based on the isochoric assumption, that is, the density
is constant in the whole region, which is not compatible with the
force equation since the cooling would lead to a pressure deficit,
which would destroy the initial force balance. He derived an
isobaric criterion for thermal instability, which is consistent with
the force equation. Thermal instability was further studied by
many other colleagues (e.g., van der Linden & Goossens 1991;
Meerson 1996 and references therein). It was pointed out that
these modes are the marginal entropy modes that are advected
with the local flow velocity (Goedbloed et al. 2010), driven
unstable by non-adiabatic processes. The different criteria may
be applicable for different astrophysical environments.

According to our simulations, as mentioned in Section 3.1,
during the catastrophic cooling stage, the temperature and the
pressure drop rapidly, while the density increases only a little.
Significant density enhancement occurs ∼3 minutes after the
catastrophic cooling. Therefore, in the simulated coronal loop,
the thermal catastrophe is more isochoric than isobaric. So, we
use the isochoric thermal instability criterion derived by Parker
(1953) as follows:

C ≡ k2 − 1
κ

(
∂H (s)
∂T

− ∂R

∂T

)
< 0, (7)

where k is the wave number of the perturbations, κ is the heat
conduction coefficient, and R = nHneΛ(T ) is the radiative
loss. The heat conduction introduces a stabilizing effect. We
numerically calculate ∂R/∂T , using the central difference
scheme. ∂H (s)/∂T is zero since the heating depends only on
distance in our simulations. Perturbations with any resolvable
wavelength exist in the simulations. According to Figure 5,
the cool region has a width of ∼10 Mm, therefore, we take the
wavelength of the temperature perturbation as 20 Mm in order to
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• Isochoric condition follows closely the 
runaway catastrophic cooling: sharp 
temperature decrease, roughly constant 
density!

• Condensation (high density) takes a few more 
minutes (kinematic timescale driven by 
pressure gradient)!

• Isobaric condition may not be appropriate
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Figure 14. Temporal evolution of the temperature, the density, the pressure, the isochoric criterion C, and the isobaric criterion Cisobaric at the midpoint (solid lines),
as well as the time derivative of the temperature (dashed line, top panel). Note that the vertical dotted dashed line denotes t = 10013 s when the thermal instability
begins, and the vertical dotted line denotes the end of catastrophic cooling, t = 10070 s.

quantify k. For small k, the occurrence of the thermal instability
is mainly determined by the sign of ∂R/∂T .

Taking case S1 as an example, we plot the temporal evolution
of the temperature, the density, the pressure, and the isochoric
criterion C at the loop midpoint in Figure 14. Since the initial
temperature is 2.63 MK, which corresponds to a negative
∂R/∂T , C = −1.4 × 10−15 cm−2 is negative, but very close
to 0. Besides, the cooling timescale at this stage is ∼104 s.
Therefore, the early evolution is dominated by the localized
heating and chromospheric evaporation. As more mass fills the
corona, radiation is enhanced gradually, which overwhelms the
heating after t = 2664 s. The temperature then keeps decreasing
slowly. From t = 9850 s to t = 9994 s, C becomes positive
for a short interval since T falls in the range where ∂R/∂T
is positive. After t = 10013 s, C drops down drastically to
−1.2 × 10−9 cm−2. Simultaneously, the temperature T, along
with the gas pressure, begins to decrease catastrophically, as
indicated by the time derivative of T (the dashed line in the top
panel of Figure 14). That is to say, thermal instability occurs.
The temperature drops from 3.4 × 105 K to 20,000 K in 60 s.
However, the density increases by only 20% during this time.
Note that C becomes positive out of the plotting range after the
catastrophic cooling, corresponding to a thermally stable state.
Three minutes later (i.e., at t = 10282 s), the density increases
drastically, and a condensation is then formed. We conclude that
the isochoric thermal instability may explain the catastrophic
cooling. Such a delay is probably due to the difference between
the kinematic timescale and the radiative timescale. It takes an
extra 3 minutes for the plasma, driven by the pressure gradient,
to accumulate in the cooling region.

It might be interesting to check the criterion of isobaric
thermal instability. According to Equation (25) of Field (1965,

see also van der Linden & Goossens 1991), the criterion for
thermal instability in the isobaric case is expressed as

Cisobaric ≡ ρ

(
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ρ
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(
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T

+ k2κ < 0, (8)

where L = (nHneΛ(T ) − H (s))/ρ is the generalized heat-loss
function. For perturbations with a wavelength of 20 Mm, we
calculate Cisobaric at the midpoint of the loop and plot its temporal
evolution in the bottom panel of Figure 14. The time at which
it turns from positive to negative is well before the onset time
of the catastrophic cooling. We tried many other perturbation
wavelengths and found that the isobaric criterion is crucially
dependent on the perturbation wavelength while the isochoric
criterion is not. Therefore, we conclude that isobaric thermal
instability is not appropriate to explain the catastrophic cooling
during condensation formation in the solar corona.

4.2. Is Continued Heating Necessary?

As mentioned in Section 1, it has been demonstrated that
the extra heating localized in the lower atmosphere would
drive chromospheric evaporation flows, leading to the plasma
condensation in the corona due to thermal instability or loss of
thermal equilibrium. In previous studies, the localized heating is
either continuous (Antiochos et al. 1999) or intermittent (Karpen
& Antiochos 2008). In the steady heating case, the condensation
can form and grow rapidly, as also demonstrated in this paper.
In the successive impulsive heating case, it was found that a
condensation can also form steadily when the average interval
between heating pulses is less than the coronal radiative cooling
time (∼2000 s; Karpen & Antiochos 2008). From the theoretical
point of view, the localized strong heating may be due to lower
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Figure 14. Temporal evolution of the temperature, the density, the pressure, the isochoric criterion C, and the isobaric criterion Cisobaric at the midpoint (solid lines),
as well as the time derivative of the temperature (dashed line, top panel). Note that the vertical dotted dashed line denotes t = 10013 s when the thermal instability
begins, and the vertical dotted line denotes the end of catastrophic cooling, t = 10070 s.
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The multiphase nature of the ICM is physically analogous to
the well-studied multiphase ISM. The ISM has three dominant
phases: a molecular phase at ∼100 K, an atomic phase at
∼104 K, and the hot phase at 106 K. The cooling function
in the ISM is thermally bistable with thermally stable phases at
∼100 K and ∼104 K. The hot phase is thermally unstable but
is probably maintained at its temperature by supernova heating
(McKee & Ostriker 1977). The same physical considerations
apply for the ICM, except that the hot phase is maintained by a
still poorly understood heating process (e.g., AGN feedback).

This paper is organized as follows. Section 2 summarizes our
model equations and the results of a linear stability analysis
including conduction along field lines, cosmic rays, and mag-
netic fields (see the Appendix). Section 3 presents the numerical
set-up and the results of our numerical simulations. Section 4
discusses the astrophysical implications of our results.

2. GOVERNING EQUATIONS AND NUMERICAL
METHODS

A magnetized plasma with cosmic rays can be described by
the following two-fluid equations:

dρ

dt
= −ρ∇ · v, (1)

ρ
dv

dt
= −∇

(
p + pcr +

B2

8π

)
+

(B · ∇)B
4π

, (2)

∂B
∂t

= ∇ × (v × B), (3)

de

dt
− γ e

ρ

dρ

dt
= −neniΛ(T ) − ∇ · Q + H (t), (4)

and
dpcr

dt
− γcrpcr

ρ

dρ

dt
= −∇ · Γ, (5)

where d/dt = ∂/∂t + v · ∇ is the Lagrangian time derivative,
Λ(T ) is the cooling function,

Q = −κ∥ b̂(b̂ · ∇)T (6)

is the heat flux along magnetic field lines,

Γ = −D∥ b̂(b̂ · ∇)pcr (7)

is the diffusive cosmic-ray energy flux (multiplied by [γcr − 1]),
ρ is the mass density, ne and ni are the electron and ion number
densities respectively, v is the common bulk-flow velocity of
the thermal plasma and cosmic rays, B is the magnetic field,
b̂ = B/B, p and pcr are the thermal-plasma and cosmic-ray
pressures, κ∥ is the parallel thermal conductivity, D∥ is the
diffusion coefficient for cosmic-ray transport along the magnetic
field, and γ = 5/3 and γcr = 4/3 are the adiabatic indices of
the thermal plasma and cosmic rays, respectively. We assume
one-third solar metallicity so that the mean molecular weights
are µ = 0.62 and µe = 1.18. We do not include gravity in
the momentum equation (Equation (2)) in order to focus on
the thermal physics. Note that our model equations also do not
include the streaming of cosmic rays relative to the thermal
plasma, which provides a mechanism for heating the thermal
plasma (e.g., Loewenstein et al. 1991; Guo & Oh 2008). This is

numerically subtle to include (Sharma et al. 2009c) and will be
studied in future work.

It is difficult to study the problem of thermal instability
without a well-defined equilibrium state. In order to ensure
that we have such a state, at each time step the heating term
H (t) in Equation (4) is updated so that the volume-averaged
heating and cooling in our computational domain balance each
other. Without such heating, the plasma as a whole cools to
very low temperatures on a cooling time (the same timescale on
which the thermal instability is developing). Since the source
of heating and its functional form are not that well understood
in the ICM, we choose a constant heating per unit volume for
simplicity. Calculations with a constant heating per unit mass,
i.e., H (t) ∝ ρ, yield very similar results because cooling (∝ n2)
dominates in the cold phase and heating dominates in the hot
phase in both cases.

2.1. Linear Stability

In the Appendix we study the linear thermal stability of a
uniform plasma with magnetic fields, cosmic rays, and thermal
conduction along magnetic field lines. To isolate the physics
of interest in this paper, we focus on the “condensation mode,”
i.e., the entropy mode. This calculation is a straightforward
generalization of previous results (e.g., Field 1965), but we
include it for completeness. Here we quote the final results.

When the cosmic-ray and magnetic pressures are negligible
compared to the plasma pressure, and the cooling time tcool is
long compared to the sound-crossing time, the growth rate for
the thermal instability (σ ) is given by

σγ = −χ∥k
2
∥ − t−1

cool
d ln(Λ/T 2)

d ln T
, (8)

where t−1
cool ≡ (γ − 1)neniΛ/p. Note that the thermal conduc-

tivity, κ∥, in Equation (6) is related to the diffusivity used here,
χ∥, by κ∥ = nekBχ∥. The first term on the right-hand side of
Equation (8) describes the conductive stabilization of modes
with short wavelengths parallel to the local magnetic field (large
k∥). This implies that the fastest growing modes will be elon-
gated along the magnetic field lines and hence filamentary. The
critical parallel length scale at which σ = 0 (the Field length)
is given by

λF ≡ 2π
[

χ∥tcool

d ln(T 2/Λ)/d ln T

]1/2

. (9)

When the cosmic-ray and/or magnetic pressure is large
compared to the plasma pressure, the isochoric growth rate
applies, i.e.,

σ = −χ∥k
2
∥ − t−1

cool
d ln Λ
d ln T

. (10)

This is also applicable when the cooling time is shorter than the
sound-crossing time, irrespective of the magnetic and cosmic-
ray contributions to the total pressure. However, for typical ICM
conditions, the cooling time in the hot plasma is longer than the
sound-crossing time.

2.2. Thermal Conductivity and the Cooling Function

The thermal conductivity of a fully ionized plasma is gov-
erned by electron collisions with the background ions and elec-
trons. We are interested in plasmas hotter than 104 K, so that

κ∥ = 1.84 × 10−5

ln λ
T 5/2erg s−1 K−7/2 cm−1, (11)
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ABSTRACT
The short answer: No.

Subject headings: Sun: chromosphere— Sun: corona— Sun: prominences
On-line material: mpg animations

1. INTRODUCTION

For the past 50 years, one major assumption has character-
ized all theoretical models for solar prominences: there must
be dips in the local magnetic field—regions of upward con-
cavity—where the massive prominence plasma can collect,
condense, and be supported against gravity (Kippenhahn &
Schlüter 1957; Kuperus & Raadu 1974). If such condensations
persist in the corona for timescales of order prominence life-
times, then field line dips would indeed be essential. Direct
observational evidence for these supposedly essential features
is conspicuously absent, however (Martin & Echols 1994; Mar-
tin & McAllister 1997; Démoulin & Klein 2000).
We propose that two recent developments can resolve this

long-standing conflict between theory and observation. First,
observers now agree that all prominence material is in constant
motion, in the form of highly structured counterstreaming flows
(Zirker, Engvold, & Martin 1998; Martin 1998). This is a cru-
cial new result; if cool prominence material continually forms,
flows, and disappears, then stable gravitational support might
not be necessary. Second, we have demonstrated that heating
localized near the footpoints of a long, dipped, coronal loop
yields condensations large enough to account for prominence
masses (Antiochos & Klimchuk 1991; Dahlburg, Antiochos,
& Klimchuk 1998; Antiochos et al. 1999; see also Mok et al.
1990). When the heating at both footpoints of a long dipped
loop is not identical, as generally occurs on the Sun, then this
process of “thermal nonequilibrium” drives an intrinsically dy-
namic cycle of condensation formation, drift, and destruction,
reproducing the observed flows (Antiochos, MacNeice, & Spi-
cer 2000, hereafter AMS).
The magnetic dip clearly plays no role in the initial conden-

sation formation in our model, although it might affect the later
development. The only requirement is that the heating must be
localized on a scale short compared to the loop length. This
raised the intriguing possibility that thermal nonequilibrium also
might produce prominences in long undipped loops, thereby
reconciling the empirical and theoretical models. An earlier sim-
ulation confirmed that a condensation can begin forming in an
undipped, asymmetrically heated loop but could not proceed
further because of the numerical limitations of our code at that
time (Antiochos & Klimchuk 1991). We present here the first
definitive proof that thermal nonequilibrium in long arched (un-
dipped) loops also yields dynamically evolving condensations
consistent with observed prominence characteristics.

2. NUMERICAL MODEL

The one-dimensional hydrodynamic equations for conserva-
tion of mass, momentum, and energy were solved usingARGOS,
our adaptively refined, high-order Godunov solver (for further
details of the methodology see Antiochos et al. 1999). Two cases
will be presented here in depth and compared with a dipped loop
studied by AMS: a shallowly arched, long loopwith peak coronal
height Mm, equal to the maximum depth of the dip inH p 5m
earlier calculations, and a much shorter semicircular loop with
peak coronal height Mm. Both simulation geometriesH ! 19.1m
are symmetric initially: the long loop has a total length of
340 Mm including a 60 Mm chromospheric region at each end,
so the total coronal length is 220 Mm; the short loop has the
same chromospheric regions joined by a 60Mm corona, yielding
a total length of 180 Mm. We also performed additional simu-
lations in which the apex height of the long loop was increased
to 20, 50, and 100 Mm, without altering its other initial prop-
erties; the results of these simulations are consistent with the
case presented here but will not be shown because of space
limitations. Figure 1 shows the initial plasma temperature and
density as functions of distance along these long and short loops.
Rigid-wall, fixed-temperature boundary conditions were im-
posed at the two endpoints, located many gravitational scale
heights deep in the chromosphere/photosphere.
As in AMS, the heating has two components: a spatially

localized component at each footpoint that is uniform in the
chromosphere ( ergs cm!3 s!1) and falls off ex-!3E p 10max
ponentially above with a predetermined scale Mm, plusl p 10
a small, spatially uniform, background heating rate of 1.5#

ergs cm!3 s!1. Note that the location and scale height for!410
the localized energy deposition are consistent with the coronal
heating location and scale height deduced independently from
Transition Region and Coronal Explorer observations (Asch-
wanden, Nightingale, & Alexander 2000; Aschwanden, Schrij-
ver, & Alexander 2001). In all cases, the localized heating was
ramped up over 1000 s and remained steady thereafter; the
ratio of the localized heating rate at the right to that at the left
footpoint was fixed at 0.75. Hence, except for the brief turn-
on phase, all of the dynamics produced by our simulations are
due to an intrinsic nonequilibrium of the system rather than a
temporally varying external driver.
Although these one-dimensional hydrodynamic calculations

do not directly depend on the three-dimensional magnetic to-
pology of prominences, we assume that the model flux tubes
are long, low-lying, highly sheared field lines created through

• Thermally unstable corona produced when heating scale length is small compared 
to loop length & heating timescale small compared to radiative cooling timescales 
(Müller+ 2003-4, Mendoza-Briceño+ 2005, Susino 2010, Peter+ 2011)

Relation to coronal heating?

➡Important information about the spatial 
(and temporal) heating scales

• Complex parameter space: Spatial and temporal heating distribution, volumetric 
energy, loop geometry (length and area)

• Non-uniformity and asymmetry in area and 
heating can lead to incomplete thermal 
instability (condensations do not reach 
chromospheric temperatures): Lionello+ 
2013, Mikiç+ 2013
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Solution Along a Magnetic Field Line from AR 7986 (August 1996)
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Figure 19. Evolution of the temperature and velocity from a 1D simulation along the magnetic field line extracted from the 3D simulation (Case 11). This solution is
qualitatively similar to that shown in Figure 14, with incomplete condensations and persistent siphon flows. An animation (Case11.mpg) of the profiles of T, ne, v,
and p during a cycle can be viewed in the online version of this article.

(An animation and a color version of this figure are available in the online journal.)

temperatures. The attractive feature of these solutions is that
they have properties that agree with observations (Lionello
et al. 2013) and may not suffer from the drawbacks that led
Klimchuk et al. (2010) to conclude that thermal nonequilibrium
is not consistent with observations. These solutions tend to
have sizable siphon flows that act to interrupt condensation of
chromospheric material in one of the loop legs, as discussed in
Section 6. In particular, we found that asymmetries in the heating
length scale tend to promote the appearance of such solutions. It
should be noted that such solutions with persistent siphon flows
fundamentally require asymmetry to manifest themselves. We
also demonstrated that a loop extracted from a 3D active-region
simulation (Lionello et al. 2013) showed a qualitatively similar
behavior, as described in Section 7. Indeed, our experience has
been that these incomplete condensations are very typical of
our solutions for realistic configurations without symmetry, for
the coronal heating functions we have considered. Our work
suggests that the argument against the consideration of thermal
nonequilibrium to explain coronal loop observations (Klimchuk
et al. 2010) may need to be revisited.

At the moment we do not fully understand the conditions
that produce incomplete condensations as opposed to complete
condensations. Our results indicate that the length scale of the

heating, and perhaps its asymmetry, is an important effect. A
more detailed analysis of the differences between the simula-
tions with the heating profiles specified by Models 1 and 2, and
the nonsymmetric heating profile, might provide an answer. We
intend to explore this issue in future work. This theoretical ex-
ploration of the properties of coronal loop solutions is not meant
to be exhaustive, nor does it imply that all, or even most, closed
loops in the corona are in a state of thermal nonequilibrium.
In Paper II (Lionello et al. 2013), we compare the properties
of a set of loops extracted from a 3D active-region simulation
with observations. We find that they have characteristics that are
similar to observed loops (including the evolution of the light
curves, the variation of temperature along the loops, the den-
sity profiles, and the absence of small-scale structures). These
indications suggest that thermal nonequilibrium may play an
important role in the behavior of coronal loops.

We are grateful to Drs. Jim Klimchuk and Judy Karpen for
many helpful discussions. This work was supported by NASA’s
LWS and Heliophysics Theory Programs, NSF’s Strategic
Capabilities Program and the Center for Integrated Space
Weather Modeling, and AFOSR. This paper is an outgrowth

13

The Astrophysical Journal, 773:94 (16pp), 2013 August 20 Mikić et al.

Simulated EIT 171 Å Emission from AR 7986 (August 1996)

Figure 15. Simulated emission in the EIT 171 Å line from a 3D simulation of
Active Region 7986 from 1996 August (Lionello et al. 2013). A thin loop with a
uniform cross-section appears, despite the fact that the corresponding flux tube
expands by a factor of 36 (13) with respect to the left (right) footpoints.
(A color version of this figure is available in the online journal.)

NLFFF Model of AR 7986, August 1996
Field Line from a 3D Active Region Simulation

Case 979, seq # 263, Loop 113, (8,8)

L = 137 Mm

s = 0

s = L

Figure 16. Magnetic field line extracted from the 3D simulation of Active
Region 7986. The image shows the vertical component of the magnetic field,
with red (blue) indicating positive (negative) fields.
(A color version of this figure is available in the online journal.)

described such comparisons for steady solutions previously
(Mok et al. 2005), where we found excellent agreement between
the models.

We now analyze a loop extracted from a 3D active-region
simulation (Lionello et al. 2013) which used a nonlinear
force-free magnetic field corresponding to AR 7986 of late
1996 August, which was previously studied by Mok et al.
(2005, 2008). The heating model was inspired by the scaling
laws of Rappazzo et al. (2007, 2008), in which the heating
rate depends on the local magnetic field strength, the plasma
density, and the loop length. When heated to the level at which
simulated EUV and X-ray emissions match observed values,
many of the coronal loops experience thermal nonequilibrium
(Mok et al. 2008), similar to the results we have presented
in this paper. Figure 15 shows the simulated EUV emission
in the 171 Å channel of Solar and Heliospheric Observatory
EIT at one instant in the simulation, where we see loops that
resemble coronal observations of active regions. At this moment,
one particular loop with a remarkably uniform cross-section
stands out, even though the flux tube that it corresponds to has
a very significant cross-sectional area expansion from footpoint

Table 1
Summary of Cases

Case Area Geometry Heating Profile Behavior

1 U S U Static
2 NU, S S U Static
3 U S S, M1 Static
4 NU, S S S, M1 IC*
5 U S S, M2 CC
6 NU, S S S, M2 CC
7 U NS S, M2 CC
8 NU, S NS S, M2 CC
9 U S NS, M2* Steady
10 NU, S S NS, M2* IC
11 NS NS NS IC

Notes. U: uniform; NU: nonuniform; S: symmetric; NS: nonsymmetric; M1:
Model 1 heating profile with a background value H0 = 6 × 10−4 erg cm−3 s−1;
M2: Model 2 heating profile with a reduced background value H0 = 2 ×
10−4 erg cm−3 s−1; M2*: Model 2 heating profile modified to be nonsymmetric;
Static: steady solution with no flow; Steady: steady solution with steady flow;
IC: incomplete condensations; IC*: incomplete condensations near the loop
legs; and CC: complete condensations.

to apex. The flux tube apex area is 36 times that at the left
footpoint, and 13 times that at the right footpoint. Note that the
emission changes in time over a few hours as a result of the
evolution caused by thermal nonequilibrium.

Lionello et al. (2013) analyze in detail the emission charac-
teristics of the simulated loops and compare them with observa-
tions. Here, we shall briefly relate the behavior on one magnetic
field line to the idealized 1D results discussed above. Figure 16
shows the shape of the selected magnetic field line and its posi-
tion within the active region. Note that this is not the same loop
that appears in Figure 15. This field line is typical of the loops
in the core of the active region. The magnetic field strength B(s)
and the cross-sectional area A(s) along the magnetic field line
are shown in Figure 17, where it can be seen that this 137 Mm
long loop has a quite asymmetric B(s) profile. The loop shape is
slightly asymmetric in its coronal part, with a significant asym-
metry near the footpoints. The loop apex area is ∼15 times that
at the left footpoint, and ∼6 times that at the right footpoint.

For this simulation (Case 11), we used the CHIANTI radiative
loss function with coronal abundances. The heating profile
is similar to that employed in the 3D simulation (Lionello
et al. 2013), except that we made the density dependence of
the heating time independent to make sure that any thermal
instability observed was not due to the time dependence of the
heating. (We find that the behavior of the solution is quite similar
for both cases since the dependence on the density is weak.)
The static heating profile used in the 1D simulation is shown in
Figure 18. Note that this heating is quite similar to that used for
the nonsymmetric heating case described in Section 6, shown in
Figure 12. In particular, it has a length-scale asymmetry between
the two legs of the loop. Not surprisingly, these similarities
produce a behavior of the solution, as shown in Figure 19,
that resembles that of the nonsymmetrically heated loop of
Section 6 (Case 10), as depicted in Figure 14. The solutions
experience thermal nonequilibrium characterized by incomplete
condensations, albeit with a different period of oscillation, and
the flows have a similar character, including a persistent siphon
flow of about 3–5 km s−1 that increases during the more dynamic
phase of the cooling cycle.

The solutions from the 1D code are very similar to those
extracted from the 3D code along this magnetic field line.
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Alfvén wave heating
• Heating mechanism

torsional Alfvén 
waves

non-linear 
effects

slow/fast modes

develop into 
shocks

shock heating



Relation to coronal heating?

footpoint heating

Important information about the heating mechanism

nonlinear Alfvén waves: uniform heating 

• Heating mechanisms may have characteristic spatial and temporal scales

(Moriyasu+ 2004, Antolin+2008, Antolin+ 2010, Antolin & Shibata 2010)
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!
Detailed study of one case 

✦   3-Jun-2012 to 10-Jun 2012 : more than 150 hours of observations 
✦   Pulsations observed in all 6 EUV bands  
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!
Cooling observations (3/4) 

!
✦   Time lag maps  (peak cross correlation values)

!
✦   Cooling observed in all the active region, not just in 
the pulsating region ! 
   
 A unique process of heating in the active region in 
a different mode in the pulsating region ? 
!
    A different process of heating where we detected 
long period intensity pulsations ? 
!
!
!

 Periodicity in the occurrence of coronal rain: link to heating parameters

(Antiochos+ 1999, Karpen+ 2001, Müller+ 2003, 
2004, Antolin+ 2010, Susino+ 2010, Mikiç+ 2013)

Limit cycles 

What is the observed periodicity for coronal rain? !
Schrijver (2001): once each 2 days for an AR, !

Antolin & Rouppe van der Voort (2012): once each 5-20 hrs

Relation to coronal heating?

(Antolin+ 2010)

Froment+ (in prep.): long 
period intensity pulsations 

in loops (2-16 hrs)



Alfvén wave heating

• No thermal instability in this case due to uniform heating 
from the waves

Loop reaches 
thermodynamic 

equilibrium: 
attractor in the 

temperature-density 
diagram

Temperature vs. density in the corona



If Alfvén wave heating is significant the loop is thermally 
stable ➝ marker of coronal heating mechanisms

Footpoint heating + Alfvén waves

Antolin, Shibata & Vissers, ApJ 716, 2010



Match with observations?
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3.6. Remarks on Rayleigh-Taylor instability

Loop configurations with a density inversion at the center are
unstable against Rayleigh-Taylor instability if ∇ρ · g < 0. The
question is: would a Rayleigh-Taylor instability inhibit the con-
densation of plasma in the upper part of a coronal loop? To es-
timate the importance of Rayleigh-Taylor instability compared
to the dynamic time scale of our model loop, we follow the
work of Chandrasekhar (1961) and calculate the growth rate,
ω, of the amplitude of normal modes of the form A(x, t) ∝
exp[i(kxx + kyy) +ωt] as a result of a density perturbation near
the boundary between two incompressible, inviscid fluids of
uniform densities, ρ2 and ρ1 (ρ2 > ρ1), permeated by a uni-
form magnetic field parallel to the direction of the gravitational
force. One finds that an upper limit for the growth rate, ω, of
the perturbation is given by

ωmax =

√
4πµg∥
B0

(√
ρ2 −

√
ρ1

)
. (7)

Inserting typical values for the formation of a condensation
region of ρ1 = 3 × 10−12 kg m−3, ρ2 = 4 × 10−11 kg m−3,
g∥ = 0.04 · g⊙ (corresponding to a width of the condensation
region of 0.2 Mm), and B0 = 10 G, we obtain a time scale of
T = 2π

ω ≈ 22 000 s, which is more than an order of magnitude
larger than the time scale over which the condensation region
evolves. We thus conclude that the onset of Rayleigh-Taylor
instability does not fundamentally affect the formation of the
condensation region. It might eventually lead to a dissolution
of the condensation region, but at that stage, this region is al-
ready moving towards the loop footpoint, which would also
happen if the condensation were split up in pieces.

Moreover, we have checked that the perturbation of the
loop geometry due to the accumulation of mass in the center
of the loop is negligible.

3.7. Spectral signature of condensation in transition
region lines

The fact that our numerical code self-consistently solves the
non-equilibrium ionization rate equations not only for hydro-
gen and helium, but also for the atomic species C, O (and Fe,
Mg, N, Ne, and Si, if desired) offers the possibility of synthe-
sizing optically thin transition region lines. The inclusion of
non-equilibrium ionization effects is of vital importance when
studying the spectral signature of a plasma in a dynamic state
like in the present case.

Figure 8 displays the intensity variations of
the lines C IV 1548 Å (formed at T ≈ 1 × 105 K), O V 630 Å
(T ≈ 2.2 × 105 K), and O VI 1032 Å (T ≈ 3.2 × 105 K) during
the evolution of the loop. The spectral lines are calculated by
integrating the emission of the entire loop as seen vertically
from the top, the line widths are given in velocity units. All
three lines show periodic brightenings which have their origin
in the condensation process. In the case of the C IV line, the
strong increase in density at the beginning of the condensa-
tion results in high radiative losses and hence an intensity
maximum. A second maximum of slightly smaller amplitude
is attained when the condensation region has grown to its

Fig. 8. From left to right: space-time plot of the loop temperature and
the corresponding variations of the lines of C IV 1548 Å, O V 630 Å,
O VI 1032 Å for a damping length of Hm = 1.25 Mm.

maximum, shortly before draining down the loop leg. Right
after the condensation region has left the loop, the intensity
is minimal as the loop is devoid of plasma at this stage. In
the following evolution, the intensity gradually increases as
chromospheric evaporation sets in again. In contrast to this,
the intensity of the O VI line is maximal when the temperature
is highest as the line is formed around T ≈ 3.2 × 105 K. When
the condensation sets in and the maximal loop temperature
temporarily sinks below T = 2 × 105 K, the intensity in
O VI almost drops to zero. The O V line, formed around
T ≈ 2.2 × 105 K, can be considered as an intermediate case.

For a damping length of Hm = 1.25 Mm, the C IV to-
tal intensity varies between 1.1 W/(m2 sr) and 3.8 W/(m2 sr),
the O V total intensity varies between 2.0 W/(m2 sr) and
6.9 W/(m2 sr), while the O VI total intensity varies between
0.1 W/(m2 sr) and 4.8 W/(m2 sr). The observed Doppler shifts
are small as the chosen viewing angle is largely perpendicu-
lar to the direction of motion in the loop and the velocities
are small. For shorter damping lengths, the maximum tem-
peratures of the loop are lower which results in a decreased

H. Peter et al.: Catastrophic cooling and cessation of heating in the solar corona

After 5min, when the peak in 211 Å is reached, the
density has dropped already by a factor of 2. In contrast,
during the first peak in 211 Å for the catastrophic cooling
(t≈105min, Fig. 3), the density has increased by some 60%
to 70%. Thus at the time of the (first) 211 Å peak the den-
sity in the catastrophic cooling case is higher by a factor
of slightly more than 3 as compared to the case of shutting
off the heating. This leads to the difference by a factor of
about 10 in 211 Å count rate during the first 211 Å peak
(compare lower right-hand panels of Figs. 3 and 4). The
same arguments hold for the 193 Å channel, which shows
an even larger difference because it peaks later.

Because the density drops so rapidly, the secondary
maximum of the temperature response function at low tem-
peratures does not play a role here. Thus, unlike the catas-
trophic cooling there there is only a single peak in each of
these “hot” channels.

“Cool” channels, 131 Å and 171 Å. For the same reason as
the “hot” channels these “cool” ones show much lower
count rates than in the case of catastrophic cooling, only
now the difference is even greater, up to a factor 1000, be-
cause they peak later when even more material has drained.
At this very low count rate level, they show a more com-
plex light curve, because of the multi-peak structure of the
temperature response at higher temperatures (cf. Fig. 1).

He II channel, 304 Å. When employing the AIA temperature
response, this channel shows only one single peak early on.
This is because of the side maximum of the 304 Å tempera-
ture response near logT [K]≈6.2. Consequently this peak ap-
pears almost simultaneously with the 193 Å channel peak.
Later in the evolution of the cooling loop, the density is
simply too low to produce a noticeable signal in this chan-
nel.

Switching on the heating again. After switching on the heat-
ing rate again at t≈57min, the temperature almost imme-
diately resumes its original temperature (Sect. 3.2). During
the subsequent filling of the loop with material through
evaporation, the count rates in all channels creep up mono-
tonically until they reached the initial values at t=0 (not
fully shown in Fig. 4). In particular, no other peaks are
found in the count rates.

5. Comparison to observations

One conclusion from the discussion in Sect. 4 is that a sim-
ple shut-down of the heating rate cannot produce signifi-
cant observable signatures above the limb that would be
detectable with AIA/SDO, simply because the expected
count rates would be too low. Even if one increased the den-
sity of the initial loop (to unrealistically higher values), the
quick draining would prevent significant count rates. This
rules out that simply shutting off the heating rate could re-
produce the cooling structures seen in condensations above
the limb.

Catastrophic cooling provides a mechanism that pro-
duces high count rates in the AIA bands and gives complex
(not single-peaked) light curves. In the following we com-
pare the synthesized count rates of the catastrophic cooling
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Fig. 5. Comparison of synthesized (top) and observed (bot-
tom) emission of catastrophic cooling in SDO/AIA bands.
The count rates for the AIA bands are scaled using the
factors listed in the top panel in order to fit better in a
single plot. Both synthesized and observed rates are scaled
by the same factors. The synthesized count rates are for
an edge-on observation of the loop near the apex averaged
over 1.3Mm (≈3 AIA pixels). See Sect. 5.

model to a recent AIA observation by Kamio et al. (2011)
of a condensation above the limb.

The bottom panel of Fig. 5 shows the light curves in a
single AIA pixel of the same structure above the limb as al-
ready discussed by Kamio et al. (2011) and shown in their
Fig. 5. While Kamio et al. (2011) show the normalized pro-
file, we now give the actual count rates (with some scaling
so that all curves fit into the same panel). To subtract the
background contribution, we corrected for the count rates
found after the condensation event (in our plot the average
after time t≈320min). The light curves clearly reveal single
peaks in the “cool” 131 Å and 171 Å channels. The “hot”
channels show multi-peaked structures, with 193 Å having a
broad maximum with maybe two or three peaks, and 211 Å
a clear double peak and some indication of a third peak
in-between, co-temporal with the 131 Å and 171 Å peaks.

In the top panel of Fig. 5 we show the count rate syn-
thesized from the model looking horizontally at the apex
edge on. This is similar to Fig. 3, but now we have averaged
over a region corresponding to three AIA pixels in height
(equivalent to 1.3Mm). This is done to get a better match
to the actual AIA resolution, which is (predicted to be) of
the order of 1.6′′ corresponding to roughly three pixels in
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Fig. 3.—Time evolution of predicted Ha, O v l629, andMg x l625 emission
intensities projected onto a plane for the long arched loop with peak height

Mm.h p 5

CHIANTI database (Dere et al. 1997), which peak around 0.25
and 1.1 MK, respectively, with the Arnaud & Raymond (1992)
ionization balance. Because Ha is optically thick in most sit-
uations and the coolest temperature permitted by our radiation
function is ∼30,000 K (see Antiochos et al. 1999), we simply
set the Ha intensity to a constant whenever K andT ≤ 35,000
to zero at higher temperatures. Although this means that the
energy balance in the optically thick chromosphere is not mod-
eled correctly (see, e.g., Anzer & Heinzel 2000 for a more
realistic approach), the essential processes and timescales of
condensation formation, flow, and destruction should be un-
affected, while the condensation lengths and temperature pro-
files rely more heavily on the details of the radiation transport.
We assume that the loops are infinitely thin and that the ob-
serving instrument has a Gaussian point spread function with
a 1/e half-width of 2! (1.5 Mm).
The sequences of events outlined in § 3 are reflected clearly

in these animations. For the long dipped and arched loops (see
animations 4 and 5, respectively), the evaporation process
causes steady brightening in O v l629 and Mg x l625; the
resulting formation of a condensation near the right leg of the
loop is marked by the abrupt appearance of a small emission
gap in Mg x, two bright, adjoining knots (transition regions)
in O v, and a single bright knot in Ha. These primary signatures
of the condensation, as well as the shocks generated by the
initial collapse of the condensation, are clearly visible in Fig-
ure 3, which shows a single frame taken from the animation
of emissions from the long arched loop at hr. Sub-t p 12.71
sequent features displayed in the animations include the os-
cillation and fall of the condensation, the depletion and refilling
of the loop as the steady localized heating continues, and the
similar formation and evolution of a second condensation.
In contrast (see animation 6), the short loop initially exhibits

the brightening in O v and Mg x characteristic of steady evap-
oration but ultimately becomes quasi-static as the loop achieves
a new equilibrium with a slow siphon flow driven by the im-
balance between the left and right heating rates (e.g., Mariska
& Boris 1983). The density in the coronal portion of the short
loop exceeds that of the long loop by factors of 2–10 at all
times except for several minutes immediately before the con-
densation forms, when the density around the condensation
roughly equals that of the short loop’s corona. Consequently,
the relatively weak Mg x emission from long low-lying loops,
compared with short overlying loops subjected to the same
footpoint heating, accounts for the well-observed soft X-ray
coronal cavity surrounding many prominences (Priest 1989;
Tandberg-Hanssen 1995).

5. CONCLUSIONS

Our results call for a fundamental change in long-standing
assumptions about prominence magnetic fields. Magnetic dips
are not necessary for either the formation or the suspension of
cool, dense prominence material, as long as a prominence is
a dynamic entity. Note that dips are not only possible but, in
fact, are very likely to form in a sheared three-dimensional
field surrounding a neutral line (Antiochos et al. 1994; Devore

& Antiochos 2000). Our calculations show that cool material
will occupy a much larger magnetic volume than simply the
dips, in contrast to models that assume that a prominence only
occupies the loci of all field line dips (e.g., Aulanier & Dé-
moulin 1998).
We conclude that solar prominences are straightforward con-

sequences of just two observed properties of the Sun’s corona:
heating concentrated near the chromosphere on scales on the
order of 10 Mm (Aschwanden et al. 2000, 2001) and magnetic
shear localized near neutral lines (e.g., Schmieder et al. 1996).
The first observation implies that only sufficiently long loops
can develop condensations, while the second implies that long
loops can occur in narrow regions surrounding neutral lines.
Note that the only significant geometrical property of a field
line is its length, in our model, and not its height or shape.
Prominences lie above sheared neutral lines simply because the
longest field lines are there. Adjacent field lines farther from
the neutral line are unsheared and, hence, too short to develop
thermal nonequilibrium.
A key assumption in this picture is that the spatial structure

of the footpoint heating does not depend on field line length.
A likely candidate for producing such localized heating is re-
connection at the base of coronal loops, a process that can drive
chromospheric eruptions such as explosive events and spicules
(Karpen, Antiochos, & DeVore 1995, 1996; Karpen et al.
1998). Thus far, we have modeled only steady footpoint heat-
ing, which produces condensations with the correct general
dynamic behavior but with lower flow speeds and shorter travel
distances than are observed in prominences. We expect that
episodic heating due to bursty reconnection, for example, will
yield more chaotic behavior and more vigorous flows.

This work has been supported in part by NASA and the
Office of Naval Research. We thank the referee for insightful
suggestions that improved this Letter and the PROM team for
lively and informative discussions.
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PLATE 1

Fig. 6.—Time sequence of the temperature and density at a vertical cross section that approximately cuts through the prominent loop. The sequence covers approximately
one complete period of the oscillation. The emitting loop can be seen to coincide with the temperature depression. The width of each frame is 0.85 R,.
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Fig. 9. Three difference images taken at 16:27, at 17:09 and at
17:58 UT, in which seven propagating blobs with enhanced intensity
can be identified.

different blobs which have been identified. In the upper part of
the loop, the measured speeds are closely related to the theoret-
ical free-fall speed from a height of 100 Mm, especially when
taking into account the uncertainties concerning the projection
angle, the curvature of the loop and the exact loop height. In the
lower part of the loop, on the other hand, the speeds clearly de-
viate from the free-fall curve. In the lower panel of Fig. 10 we
plot the speeds of the fast blobs from our catastrophic cooling
models. It turns out that the exact location where a conden-
sation region forms depends very sensitively on the radiative
losses. In the simulations where the non-equilibrium ioniza-
tion of hydrogen, helium, carbon and oxygen were explicitly
included in the calculations, the blobs formed at around 60 Mm
height, while they appeared at greater heights when a priori
radiative loss curves as functions of electron temperature for
elements other than hydrogen and helium were used. The sub-
sequent evolution of the plasma is very similar, therefore the
blob speeds for both cases are plotted in Fig. 10, together with
the velocity curves for free fall from heights of 60 Mm and
100 Mm, respectively.

Despite the fact that the accurate measurement of blob
speeds is difficult, especially in the lower part of the loop, we
find at least a qualitative agreement between the observed blob
speeds and those derived from the model. In their early phases
the blobs are accelerated to nearly free-fall speeds as the main
force acting on the plasma is the field-line projected compo-
nent of the solar gravitational acceleration. As the blobs fall
towards the solar surface, however, the speeds deviate more
and more strongly from free fall since the blob is decelerated
by the underlying plasma. In contrast to the model, most of
the measured blob speeds do not show a significant decrease
towards the solar surface, but only a strong deviation from
free-fall speed. For two blobs, indicated by the rectangles and

Fig. 10. Top: measured blob speeds as a function of height over the so-
lar surface, together with the free-fall speed from a height of 100 Mm.
The different symbols mark the different observed blobs. Bottom:
speed of the fast blob in the simulation with Hm = 2 Mm. Crosses
and asterisks correspond to two runs with slightly different radiative
losses (cf. text). The solid line indicates a free fall from a height of
100 Mm, the dotted line corresponds to 60 Mm height.

diamonds in Fig. 10, the speeds indeed decrease slightly in the
last data points, but the number of blobs tracked is too low to
make any general statement. Apart from possible shortcomings
of the model, the lack of observations of decreasing speeds to-
wards the solar limb may also be due to the fact that the loop’s
footpoints lie behind the limb or due to the difficulty of correct
background subtraction which is described by De Groof et al.
(2004). However, this is to our knowledge the first model which
provides a simple physical mechanism leading to propagating
intensity enhancements which reach velocities of the order of
100 km s−1.

Time-slice diagrams of the EIT data set indicate events
where fast blobs catch up with blobs at lower speeds, but fur-
ther analysis of more data sets is needed to confirm or reject this
hypothesis. High-cadence observations of active regions above
the limb in the He II (30.4 nm) band, Hα or C IV (154.8 nm)
would help to shed more light onto the distribution of blob
speeds as a function of height above the limb. Observations
of blobs speeds which are increasing during the first phase of
the fall and then decreasing when the blob approaches the solar
limb would strengthen our concept of falling plasma conden-
sations that are decelerated by the pressure of the transition
region. On the other hand, observations of blobs close to the
limb at speeds significantly above 100 km s−1 would indicate
that the part of the loop underneath the falling blob has been
previously evacuated by a different process.

Müller+ 2005

Dynamics

How fast can coronal rain be under effects of gravity alone?



                                                     ~(0.13, 0.21) km s-2 for elliptic path with 
semi-axes ratio between 0.5 and 2

Dynamics

➞ Other important forces exist inside loops

off-limb on-discThe Astrophysical Journal, 745:152 (21pp), 2012 February 1 Antolin & Rouppe van der Voort
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Figure 4. Normalized histograms for the total velocity vtot (a), Doppler velocity vDop (b), and projected velocity vproj (c) of the condensations, where vtot =
√

v2
Dop + v2

proj.
The solid and dashed lines correspond to off-limb and on-disk blobs, respectively. The total number of measurements is specified in each panel. The dotted line
corresponds to the average over all measurements. The black histogram in panel (b) denotes the measurements that have a standard deviation larger than 5 km s−1.
See Section 2.3 for more details.

in Figure 3, suggesting that the Hα condensations generally trace
the inner structure of the coronal loops observed in Figure 3,
despite their neutral character. We discuss this scenario in
Section 4.1.

2.3. Methods

Due to the constant change in shape of the blobs during their
fall their tracking was performed manually in order to avoid
possible errors that an automated procedure may deliver. Only
the clearly discernible blobs were selected. By tracing the blobs
during their fall we can construct space-time diagrams such as
shown in Figures 7 and 11, where the spatial component traces
the length along the blob’s path. The full spectral profile is then
retrieved at each position along the trajectory, from which the
Doppler velocity can be calculated. Fitting piecewise segments
along the trajectory we estimate the projected velocity at
different locations along the path, and the resulting acceleration.
With this method, the standard deviation for projected velocities
and accelerations is estimated to be 5.1 km s−1 and 0.03 km s−2,
respectively.

The calculation of the Doppler velocity of the condensations
requires subtraction of the average spectral profile of the back-
ground, especially for the cases having a bright chromospheric
or photospheric background. Given the path of a condensation,
its spectral profile at a specific time was calculated with the
help of time slice diagrams. By tracing the x − t trajectory of
condensations in diagrams such as those in Figure 7, the spec-
tral profile at a specific time and position along the trajectory is
calculated averaging over an interval along the trajectory con-
taining the point of interest. The average spectral profile of the
background was calculated in the same way but over a time in-
terval in which the trajectory does not exhibit any coronal rain.
Only measurements (specific segments in the x–t diagram) with
a high enough intensity contrast between the blob and the aver-
age background were then selected. The Doppler velocity for a
blob at a given position and time was calculated with the first
moment with respect to wavelength, a method used by Rouppe
van der Voort et al. (2009) to calculate the velocities of the disk
counterparts of type II spicules:

vDoppler,1 = c

λ0

∫ λmax

λmin
(λ − λ0)|Iλ − Iλ,avg|dλ

∫ λmax

λmin
|Iλ − Iλ,avg|dλ

, (1)

where c is the velocity of light, λ0 is the wavelength at the line
center, Iλ is the calculated spectral profile of the condensation,

and Iλ,avg is the average spectral profile of the background.
The integration range is set by the minimum and maximum
wavelengths for which Iλ −Iλ,avg > 0 for emission profiles, and
Iλ − Iλ,avg < 0 for absorption profiles. In order to estimate the
error involved in this calculation we performed the integration
varying both end points by various amounts dl: λmin + dl,
λmax − dl. The Doppler velocity with this method was then set
as the mean over the resulting values, and the standard deviation
gives us an estimation of the error.

The obtained velocities were checked with two other methods.
The first involves a single Gaussian fit of Iλ − Iλ,avg for an
emission profile (and Iλ,avg − Iλ for an absorption profile).
The wavelength interval where the Gaussian fit is made is
basically the same as the [λmin, λmax] range defined above
and is allowed to vary in the same way in order to estimate
the errors involved. The Doppler velocity with this method is
taken as vDoppler,2 = (c/λ0)(λgauss − λ0), where λgauss is the
maximum of the Gaussian fit. The second check is simply
vDoppler,3 = (c/λ0)(λmax − λ0), where λmax is the location of
the maximum of |Iλ − Iλ,avg| in the range [λmin, λmax]. While all
three methods deliver similar results we note that the Gaussian
method generally delivers slightly lower velocity magnitudes,
and the maximum method normally delivers larger values.

In Figure 4(b) the histogram in black denotes the number of
cases having a standard deviation larger than 5 km s−1, where the
standard deviation is the maximum of the standard deviations
obtained with the first two methods. We can clearly see that the
errors involved in the Doppler velocity calculation are generally
small.

For the determination of the heights of the blobs above the
solar surface, the projected distance of each pixel in the image
from the disk center was first measured. By tracing a blob down
to the lower atmosphere the location of the footpoint of the
loop was estimated, and its distance to the disk center was
determined. The difference in the two measured distances was
taken as the height for the blob. Since this method is strongly
sensitive to projection effects the heights were only estimated
for the blobs observed off-limb. Another source of error is
the correct determination of the falling location of the blobs.
Figure 2 shows a good correspondence between the later and
the bright faculae. We have estimated the error in heights to be
∼ ± 2 Mm.

The lengths of the blobs were calculated in the following
way. Given a blob at a particular time and spatial position we
first select the wavelength position of maximum brightness.
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(a) (b) (c)

Figure 4. Normalized histograms for the total velocity vtot (a), Doppler velocity vDop (b), and projected velocity vproj (c) of the condensations, where vtot =
√

v2
Dop + v2

proj.
The solid and dashed lines correspond to off-limb and on-disk blobs, respectively. The total number of measurements is specified in each panel. The dotted line
corresponds to the average over all measurements. The black histogram in panel (b) denotes the measurements that have a standard deviation larger than 5 km s−1.
See Section 2.3 for more details.

in Figure 3, suggesting that the Hα condensations generally trace
the inner structure of the coronal loops observed in Figure 3,
despite their neutral character. We discuss this scenario in
Section 4.1.

2.3. Methods
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van der Voort et al. (2009) to calculate the velocities of the disk
counterparts of type II spicules:

vDoppler,1 = c

λ0

∫ λmax

λmin
(λ − λ0)|Iλ − Iλ,avg|dλ

∫ λmax

λmin
|Iλ − Iλ,avg|dλ

, (1)
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The integration range is set by the minimum and maximum
wavelengths for which Iλ −Iλ,avg > 0 for emission profiles, and
Iλ − Iλ,avg < 0 for absorption profiles. In order to estimate the
error involved in this calculation we performed the integration
varying both end points by various amounts dl: λmin + dl,
λmax − dl. The Doppler velocity with this method was then set
as the mean over the resulting values, and the standard deviation
gives us an estimation of the error.

The obtained velocities were checked with two other methods.
The first involves a single Gaussian fit of Iλ − Iλ,avg for an
emission profile (and Iλ,avg − Iλ for an absorption profile).
The wavelength interval where the Gaussian fit is made is
basically the same as the [λmin, λmax] range defined above
and is allowed to vary in the same way in order to estimate
the errors involved. The Doppler velocity with this method is
taken as vDoppler,2 = (c/λ0)(λgauss − λ0), where λgauss is the
maximum of the Gaussian fit. The second check is simply
vDoppler,3 = (c/λ0)(λmax − λ0), where λmax is the location of
the maximum of |Iλ − Iλ,avg| in the range [λmin, λmax]. While all
three methods deliver similar results we note that the Gaussian
method generally delivers slightly lower velocity magnitudes,
and the maximum method normally delivers larger values.

In Figure 4(b) the histogram in black denotes the number of
cases having a standard deviation larger than 5 km s−1, where the
standard deviation is the maximum of the standard deviations
obtained with the first two methods. We can clearly see that the
errors involved in the Doppler velocity calculation are generally
small.

For the determination of the heights of the blobs above the
solar surface, the projected distance of each pixel in the image
from the disk center was first measured. By tracing a blob down
to the lower atmosphere the location of the footpoint of the
loop was estimated, and its distance to the disk center was
determined. The difference in the two measured distances was
taken as the height for the blob. Since this method is strongly
sensitive to projection effects the heights were only estimated
for the blobs observed off-limb. Another source of error is
the correct determination of the falling location of the blobs.
Figure 2 shows a good correspondence between the later and
the bright faculae. We have estimated the error in heights to be
∼ ± 2 Mm.

The lengths of the blobs were calculated in the following
way. Given a blob at a particular time and spatial position we
first select the wavelength position of maximum brightness.
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Figure 5. Normalized histogram for the acceleration of condensations. The
solid and dashed lines correspond to off-limb and on-disk blobs, respectively.
The total number of measurements is specified in the top left corner. The dotted
line corresponds to the average over all measurements and the dot-dashed line
corresponds to the solar gravity value at the solar surface, 0.274 km s−2. For
further details see Section 2.3.

We then subtract to the intensity profile along the blob’s path
the average spectrum of the background corresponding to that
path, time, and wavelength position, where the average spectrum
is calculated as explained previously. Next we fit a Gaussian to
the resulting intensity profile along the blob’s path. The length
interval over which the Gaussian fit is performed is calculated
in such a way as to ensure the correct covering of the blob’s
intensity profile. A Gaussian fit on the average spectrum at the
same location of the blob is also performed and the resulting
FWHMs of the two fits are compared in order to avoid unwanted
background intensity features contaminating the blob’s profile.
For achieving this we set the condition that the FWHM of the
blob’s profile intensity (with background subtracted) must be
bigger than the FWHM of the background profile. If this is
satisfied we take the FWHM value as a measure of the length
at that time. The procedure is repeated along the blob’s path
providing averages and standard deviations for the lengths of
the blob at different heights. The method for calculating widths
is similar with the difference that the Gaussian fit is performed
over the orthogonal direction to the path of the blob (selecting
again the wavelength position of maximum blob brightness at
each time).

3. RESULTS

3.1. Dynamics

Many blobs are observed falling along one path. Selecting
the most clearly discernible cases, a total of 2552 blobs in
242 paths could be traced, leading to a large statistical pool
from which dynamics and thermodynamical properties were
derived. In Figures 4 and 5, we show histograms of velocities
and accelerations resulting from the individual tracing of the
blobs.

The total velocities of coronal rain blobs could be calculated
from Doppler and projected velocities (since they constitute an
orthogonal system in the velocity space), combining the spectral
and imaging information provided by CRISP. Figures 4(a)–(c)
show, respectively, normalized histograms of the total, Doppler,

Figure 6. Scatter plot of height vs. the corresponding total velocity for off-
limb measurements. The heights and velocities are calculated as explained in
Section 2.3. For illustration purposes, the solid curve denotes the path that a
condensation would follow if falling from a height of 50 Mm (an estimation of
the height of a loop appearing in the Hinode/EIS field of view, see Section 2.2)
and subject to an acceleration of 0.132 km s−2, the average effective gravity for
a loop whose height to half baseline ratio is 0.5. The dashed curve denotes the
same case but subject to the observed mean acceleration of 0.0835 km s−2.

and projected velocities. The determination of the Doppler ve-
locities is explained in Section 2.3. As the condensations fall
more than one measurement of the velocity is made (Doppler
and projected velocities, as explained in Section 2.3), allowing
estimates of the acceleration along the paths. The histogram for
the accelerations is shown in Figure 5. We obtain a broad distri-
bution of total velocities, from slow motions of a few km s−1 to
high velocity downflows of more than 150 km s−1, and a mean
around 70 km s−1. The resulting accelerations are on average
small with respect to the solar surface gravity (0.274 km s−2),
with a mean of 0.0835 km s−2. Tails indicating strong acceler-
ation (>0.5 km s−2) and deceleration <−0.5 km s−2 are also
found. It is important to note, however, that material in loops
will be subject to the effective gravity only, i.e., the gravity
component along the loop. The change of the average effec-
tive gravity along an ellipse with respect to its ellipticity can
be calculated easily as ⟨geff⟩ = 2/π

∫ π/2
0 g⊙ cos θ (s)ds, where

θ (s) is the angle between the vertical and the tangent to the path
and s is a variable parameterizing the path. It is found that for
a ratio of loop height to half baseline between 0.5 and 2, ⟨geff⟩
varies roughly between 0.132 km s−2 and 0.21 km s−2, values
that are significantly larger than the observed average value.
Similar values for velocity and acceleration have been reported
from limb observations with TRACE (Schrijver 2001), with
SOHO/EIT and in Hα from Big Bear Solar Observatory (de
Groof et al. 2005), and with Hinode/SOT (Antolin et al. 2010;
Antolin & Verwichte 2011).

Since the velocities are generally height dependent, in
Figure 6 we show a scatter plot of height versus total velocity for
off-limb measurements. Heights were determined according to
the method described in Section 2.3. For illustration purposes,
the solid curve in the plot denotes the path that a condensation
would follow if falling from a height of 50 Mm (an estimation of
the height of a loop appearing in the Hinode/EIS field of view,
see Section 2.2) and subject to an acceleration of 0.132 km s−2,
the average effective gravity for a loop whose height to half
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Fig. 9. Three difference images taken at 16:27, at 17:09 and at
17:58 UT, in which seven propagating blobs with enhanced intensity
can be identified.

different blobs which have been identified. In the upper part of
the loop, the measured speeds are closely related to the theoret-
ical free-fall speed from a height of 100 Mm, especially when
taking into account the uncertainties concerning the projection
angle, the curvature of the loop and the exact loop height. In the
lower part of the loop, on the other hand, the speeds clearly de-
viate from the free-fall curve. In the lower panel of Fig. 10 we
plot the speeds of the fast blobs from our catastrophic cooling
models. It turns out that the exact location where a conden-
sation region forms depends very sensitively on the radiative
losses. In the simulations where the non-equilibrium ioniza-
tion of hydrogen, helium, carbon and oxygen were explicitly
included in the calculations, the blobs formed at around 60 Mm
height, while they appeared at greater heights when a priori
radiative loss curves as functions of electron temperature for
elements other than hydrogen and helium were used. The sub-
sequent evolution of the plasma is very similar, therefore the
blob speeds for both cases are plotted in Fig. 10, together with
the velocity curves for free fall from heights of 60 Mm and
100 Mm, respectively.

Despite the fact that the accurate measurement of blob
speeds is difficult, especially in the lower part of the loop, we
find at least a qualitative agreement between the observed blob
speeds and those derived from the model. In their early phases
the blobs are accelerated to nearly free-fall speeds as the main
force acting on the plasma is the field-line projected compo-
nent of the solar gravitational acceleration. As the blobs fall
towards the solar surface, however, the speeds deviate more
and more strongly from free fall since the blob is decelerated
by the underlying plasma. In contrast to the model, most of
the measured blob speeds do not show a significant decrease
towards the solar surface, but only a strong deviation from
free-fall speed. For two blobs, indicated by the rectangles and

Fig. 10. Top: measured blob speeds as a function of height over the so-
lar surface, together with the free-fall speed from a height of 100 Mm.
The different symbols mark the different observed blobs. Bottom:
speed of the fast blob in the simulation with Hm = 2 Mm. Crosses
and asterisks correspond to two runs with slightly different radiative
losses (cf. text). The solid line indicates a free fall from a height of
100 Mm, the dotted line corresponds to 60 Mm height.

diamonds in Fig. 10, the speeds indeed decrease slightly in the
last data points, but the number of blobs tracked is too low to
make any general statement. Apart from possible shortcomings
of the model, the lack of observations of decreasing speeds to-
wards the solar limb may also be due to the fact that the loop’s
footpoints lie behind the limb or due to the difficulty of correct
background subtraction which is described by De Groof et al.
(2004). However, this is to our knowledge the first model which
provides a simple physical mechanism leading to propagating
intensity enhancements which reach velocities of the order of
100 km s−1.

Time-slice diagrams of the EIT data set indicate events
where fast blobs catch up with blobs at lower speeds, but fur-
ther analysis of more data sets is needed to confirm or reject this
hypothesis. High-cadence observations of active regions above
the limb in the He II (30.4 nm) band, Hα or C IV (154.8 nm)
would help to shed more light onto the distribution of blob
speeds as a function of height above the limb. Observations
of blobs speeds which are increasing during the first phase of
the fall and then decreasing when the blob approaches the solar
limb would strengthen our concept of falling plasma conden-
sations that are decelerated by the pressure of the transition
region. On the other hand, observations of blobs close to the
limb at speeds significantly above 100 km s−1 would indicate
that the part of the loop underneath the falling blob has been
previously evacuated by a different process.

Acceleration << effective gravity along loops 
(Wiik+ 1996, De Groof et al. 2004, 2005, Müller+ 
2005, Antolin+ 2010, 2012)

Müller+ 2005

Antolin & Rouppe van der Voort (2012)
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Figure 5. Contour plots showing log10|B| (magnitude of the magnetic field strength; left) and log10|v| (magnitude of the velocity; right) for the fiducial run at 0.95 Gyr.
The arrows in the velocity plot show the direction of the velocity unit vector.
(A color version of this figure is available in the online journal.)

Figure 6. Mass (dM/d log10 T ; left) and volume (dV/d log10 T ; right) fractions occupied by plasma of a given temperature T for the fiducial run (MWC) at different
times. The normalization is such that the total mass/volume under the curve is unity. The initial cooling time is ≃0.1 Gyr and the simulations begin to saturate after
≃0.8 Gyr. The hottest plasma in the box becomes hotter with time.
(A color version of this figure is available in the online journal.)

hottest plasma becomes hotter with time and the conductivity
is a strong function of temperature (Equation (11)), it becomes
difficult to run the simulations for long times.

4.2. Simulations with Isotropic Thermal Conduction

To assess the importance of including anisotropic thermal
conduction, we carried out simulations identical to the fiducial
run in every way except that the conductivity is isotropic at
the Spitzer value (MWIC in Table 2). Figure 7 shows the
temperature contour plots at 0.475 Gyr (left panel) and 0.95 Gyr
(right panel). In the linear state the modes are isotropic and
on relatively large scales, irrespective of the magnetic field
direction. By contrast, with anisotropic conduction, the cold
plasma is filamentary even in the linear state (Figure 4).2

2 The Field length perpendicular to the magnetic field is much smaller in the
simulation with anisotropic conduction than in the simulation with isotropic
conduction. This is why there is much more small-scale structure, and more
cold “filaments,” in Figure 4 than in Figure 7. In addition, because we initialize
power primarily at ≈0.8 kpc (Section 2.3), the amplitude of the initial
perturbations that can actually grow (! the Field length) is larger in the
simulation with anisotropic conduction. These perturbations thus evolve
somewhat more rapidly.

Nonlinearly, the orientation of the cold plasma in simulations
with isotropic conduction is unrelated to—or even somewhat
perpendicular to (see the dotted line in Figure 8)—the local
magnetic field direction, unlike in simulations with anisotropic
conduction, where the filaments develop along the magnetic
field (Figure 4). Although the morphology of the cold gas is
different in the two cases, the evolution of the phase structure is
qualitatively similar; there is significant mass in the cold phase,
but the volume is dominated by the hot phase. The differences
between Figures 4 and 7 emphasize the critical importance of
including anisotropic thermal conduction when studying the
thermal physics of galaxy cluster plasmas.

4.3. Convergence of Two-dimensional Simulations

As described previously, in multi-dimensional simulations,
the Field length must be resolved both along and perpendicular
to the direction of the magnetic field in order for the numerical
results to converge. Figure 9 shows temperature contour plots
at 0.95 Gyr for runs including perpendicular conduction, with
2048 and 512 grid points, respectively. The temperature contour
plots are reasonably similar, and are similar to the results for

2D sims from 
Sharma+ 2010

Oliver+ 2014
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Figure 3. Temperature profiles for one-dimensional simulations with conduction
at t = 1.43 Gyr for different resolutions: HWCll (256), HWCl (512), HWC
(1024), and HWCh (2048). Convergence is achieved for > 512 grid points.

majority of the cold filaments are oriented along the direc-
tion of the local magnetic field even in the nonlinear regime.
Some of the filaments at 0.95 Gyr are quite small and relatively
isotropic because of small and nearly isotropic conduction in
the cold phase. However, at later times (e.g., 1.425 Gyr) the
small filaments coalesce to form large ones. The nonlinear de-
velopment of the thermal instability proceeds in two phases:
in the first phase nonlinear filaments aligned along field lines
condense from the hot ICM, becoming shorter in time because
of a smaller conductivity in the cold phase; in the second stage
these cold filaments with large velocities (primarily along them-
selves) merge to form longer filaments. This is clearly seen in
Figure 11 as an increase in L∥/L⊥ after an initial dip at ∼1 Gyr.

Figure 4 shows that the direction of the magnetic field is
only moderately perturbed from its initial direction even in the
fully nonlinear regime. However, the magnetic field strength
increases by a factor of !3–8 in the cold filaments (see the left
panel of Figure 5), to the point where the magnetic pressure
is important in the filaments. The regions over which the
field is enhanced are coincident with, but significantly longer
than, the location of the cold filaments. The field enhancement
occurs via flux freezing as the cooling plasma is compressed
perpendicular to the initial field direction in the nonlinear state

of the thermal instability; analogous compression along the field
lines is suppressed because of thermal conduction. In the hot
diffuse gas between the filaments, the magnetic field decreases
by a factor ≃2–3 from its initial value of ≈ 5 µG. Note that
for a realistic cooling function, the density contrast between the
filaments and the diffuse medium will be larger than is found in
our simulations, and so the magnetic field compression in the
filaments will also be stronger.

The right panel of Figure 5 shows that the velocities driven
by the thermal instability can reach 30–100 km s−1, comparable
to the sound speed in the cold filaments, but much less than the
sound speed in the hot phase. Such high velocities can disrupt
the tendency of buoyancy instabilities in the hot phase of the
ICM to reorient the magnetic field (e.g., Sharma et al. 2009b;
Parrish et al. 2010). The high velocities are spatially coincident
with the magnetic field enhancements and the cold filaments.
The velocity vectors generally point toward the cold filaments in
the hot phase, showing that mass from the hot thermally unstable
medium is condensing into the cold phase. This flow of mass
is, however, transient. The thermal instability reaches a steady
state in which cooling from the dense, cool ICM is balanced by
conductive heating from the hot ICM, which is in turn heated
(artificially) by our external heat source H (t) in Equation (4).
Once this steady state is established, mass flow between the
phases is significantly reduced. Although mass flow across the
phases is reduced, the cold filaments retain large velocities along
themselves and the volume-averaged velocity is ∼20 km s−1

(see the right panel of Figure 11 discussed later).
Nonlinearly, the plasma exists in two phases, with very little

plasma at the intermediate temperatures. Figure 6 shows the
mass (left panel) and volume (right panel) distribution of plasma
at different times for the fiducial run. The plasma is at ≈107 K
initially but evolves into a two-phase structure. The phase
structure evolves rapidly at early times (before ∼1 Gyr), but
the evolution is slower at later times. The mass and volume
occupied by the plasma at intermediate temperatures decrease
in time. The “mass dropout rate,” (i.e., the rate at which plasma
cools below a given temperature) at 107 K is large initially, but
once a two-phase medium is established, the mass and volume
of the hot and cold phases are roughly constant in time, with very
little mass dropout. While there is significant mass in the cold
filaments, most of the volume is occupied by the hot phase (see
fm and fV in Table 2). The hottest plasma in the domain slowly
becomes hotter with time in the two-dimensional simulations;
by contrast, in one dimension the plasma reaches a steady state
at 1.43 Gyr (Figure 2). It takes longer to reach a quasi-steady
state in two dimensions because it is easier for hot isothermal
regions to become thermally isolated from the cold plasma
(because of the small perpendicular conductivity). Since the

x(kpc)

t=1.425 Gyr

0 20 40

−1

−0.5

0

0.5

x(kpc)

t=0.95 Gyr

0 20 40

−1

−0.5

0

x(kpc)

z(
kp

c)

t=0.475 Gyr

0 20 40
0

20

40

−0.13

−0.12

−0.11

−0.1

Figure 4. Contour plots of log10 temperature (in keV) for the fiducial run (MWC) at linear (0.475 Gyr; left) and nonlinear (0.95 Gyr, center; 1.425 Gyr, right) stages
of the instability. The arrows show the magnetic field direction.
(A color version of this figure is available in the online journal.)
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• Magnetic driven - transverse 
MHD waves? 

In phase oscillations!
Periods: 100 - 200 s!
Amplitudes:  <500 km

Antolin & Verwichte 2011
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→ dynamic effect from ponderomotive 
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Verwichte 2011)
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Verwichte, Antolin+, in prep.

Radius: 41 Mm,  !
Period: 154 s,  !
Amplitude <2 Mm, !
loop plane angle ~30°
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