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Observations and Data processing

Hinode-IRIS-SST coordination (HOP 262), August 2014 observing campaign
⇒ SST, EIS, SOT data also available

Focus on AR 12151
⇒ event from the 25/08/2014:

Duration: 7:46 - 10:30
OBSID: 3820009453
Large sit-and-stare
Level 2 SJI in Si IV line (1400 Å)
Cadence: 19 s



Observations and Data processing

• Focus on coronal loop in the foreground - visible during most of the sequence,
coronal rain in the second third

• Visible flows - most of upward flow occurs in the remote leg, rain mostly in the
nearby leg

• Asymmetry in the rain flow direction arising when superimposed siphon flow and
coronal rain

• Other loops intersecting the axis - avoid contamination

Observation limited to
single vantage point
⇒ account for projection effects

Loop geometry estimates:
Loop radius: 41 Mm
Loop plane - LOS angle: 9◦



Observations and Data processing

Pre-processing:

• Level 2 data - basic wavelength calibration;
dark, flat field already subtracted

• Reduce noise by using Mexican Hat wavelet
filtering

• Set up 10 regularly spaced slits perpendicular
to the loop axis to trace oscillations at
different positions along the loop

• Stack data cuts along the slit at each time
step to extract time-distance plots

• Data in each slit superimposed over 30 pixels
in longitudinal direction to detect oscillations
of small blobs



Transverse Oscillations

• Multiple transverse oscillations visible along the whole loop length

• 150 oscillations observed in total

• Obtain detrended displacement time series for each oscillation

• Fit the time series with function ξ(t) = ξ0sin(ωt + Φ) to determine oscillation
parameters
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Transverse Oscillations
• No clear trend in amplitude as a function of distance along the loop - complicates

harmonic determination (large uncertainties due to strand thickness)
• Clear in-phase oscillation patterns for groups of condensations
• Two populations: small scale and large scale oscillations
• Estimated expected phase gradients for given period of oscillation if travelling

wave
• Large scale oscillations - phase shift too small to detect for given duration of

observed data set
• Small scale oscillations - no such trends show in the phase-distance plot ⇒

standing wave



Two different regimes of transverse oscillations:

Small scale oscillations traced by coronal rain observed previously (Antolin &
Verwichte, 2011):

• Average period: 3.4 min

• Amplitudes from 0.1 Mm (∼ resolution limit) to 0.6 Mm, decreasing near the
footpoints

• Characteristics similar to those reported in previously published work

• Observed along the whole loop length

• Most prominent near the loop apex

• No significant damping over the duration of the observation

• No phase shift observed - standing wave, in-phase oscillations of nearby strands -
kink mode (monolithic waveguide or multiple strands) or torsional Alfvén mode
scenario?

• Possible Sources:
• No events in AR12151 on the day of observation, C class flare in AR 12150, series of C

class flares in AR 12149, too far to have significant effect? Also event-excited
oscillations undergo rapid damping, which is not observed in this case?

• Decay-less low amplitude oscillations - loop response to continuously operating
non-resonant driver (Nisticò et al. 2013)

• Interactions with neighbouring loops?
• Condensations themselves triggering the oscillations?



Two different regimes of transverse oscillations:

Large scale oscillations:

• Average period: 24 min

• Amplitudes around 1 Mm

• Traced by upflowing material in remote loop leg

• Most pronounced near the footpoint and fading higher along the loop

• Most likely caused by a different (transient) mechanism operating near the
footpoints



Kinematics

• Tracked 18 blob paths in longitudinal direction

• Total of 115 plasma blobs were tracked, 18
blobs in upward flows, 97 condensations

• Extract individual blob paths from each
timeslice

• Get time-distance plots (spatial dimension =
projected longitudinal distance from the loop
apex), account for projection effects

• Determine velocity at the beginning and end of
path of each blob, deduce acceleration



Kinematics

Focus on falling condensations:

Broad distribution of velocities, individual velocity and acceleration profiles
⇒ both acceleration and deceleration processes

Average velocity: 44.91 km.s−1

Average acceleration: 94.96 m.s−2

〈geff 〉 = 2
π

∫ π/2
0 g�cosθ(s)ds

Average effective gravity along the loop: 〈geff 〉 =174 m.s−2

⇒observed values significantly lower - sub-ballistic fall rates previously reported
(eg. De Groof et al. 2004, Antolin & Verwichte 2011, Antolin & Rouppe van der
Voort 2012)



Kinematics

Focus on falling condensations:

Possible sources of deceleration:

• Gas pressure gradients?

• Helical magnetic fields (doesn’t seem so from the observations if assuming rain to
be a good tracer, also stability issues)

• Interaction with hotter and denser transition region plasma/shocks (but deviation
from free fall speed observed along whole loop length?)

• Can be explained by the presence of oscillations - ponderomotive force (most
likely)



Conclusions

• Analysed oscillations and kinematics of coronal rain observed in SI IV line by IRIS

• Detected 150 oscillations in total along the whole loop length

• Two regimes of transverse oscillations:
• Small scale oscillations - reported previously, typical periods 3 min, amplitudes below

0.6 Mm, most prominent near loop apex, no damping - continuously operating driver
• Large scale oscillations - periods around 24 min, amplitudes around 1 Mm, most

prominent near footpoints, transient driving mechanism

• Tracked 115 plasma condensations along their paths to analyse dynamics

• Broad distribution of velocities with mean 45 km.s−1

• Motion significantly sub-ballistic with mean acceleration 95 m.s−2

• Possible reason for the observed deceleration: ponderomotive force?

• Future work - modelling


