Dynamics of rain blobs: fully and partially ionised plasmas

R. Oliver, R. Soler, J. Terradas, T. Zaqarashvili, M. Khodachenko

Physics Department, University of the Balearic Islands, Spain

Some of	servationa	lfacts			
Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
●○	0000	000000000	00000	0000	0

- Acceleration typically much smaller than that of gravity (projected along the blob trajectory).
- Blobs often reach a constant velocity, in the range 40–120 km s⁻¹.
- Obe Groof et al. (2005), using Hα and He 304 Å observations: blob made of neutral and ionised fractions that fall together. Strong (dynamical?) coupling between charged particles and neutrals.

We consider a simple configuration and perform hydrodynamic numerical simulations to investigate the kinematics and dynamics of coronal rain blobs.

Some ob	servationa	facts			
Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
○●	0000	000000000	00000	0000	O

- Height-distance diagram.
- Very common trajectory:
 - Antolin et al. (2010, 2012a, b).
 - Chae (2010, ApJ, 714, 618): descending knots in a hedgerow prominence.
 - Vissers's talk about flocculent flows this morning.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

00	●000	000000000	00000	0000	0
Model:	assumption	s (FIP)			

- Fully ionised plasma (FIP) made of H,
- hydrodynamic time evolution of a formed blob in the loop environment,
- vertical motions,
- adiabatic changes of state.

- The neutral fraction of the plasma,
- the blob formation process,
- path curvature,
- radiation, conduction, cooling,
- transition region and chromosphere,
- magnetic field.

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	●०००	000000000	00000	0000	O
Model:	assumptions	(FIP)			

- Fully ionised plasma (FIP) made of H,
- hydrodynamic time evolution of a formed blob in the loop environment,
- vertical motions,
- adiabatic changes of state.

- The neutral fraction of the plasma,
- the blob formation process,
- path curvature,
- radiation, conduction, cooling,
- transition region and chromosphere,
- magnetic field.

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	●○○○	000000000	00000	0000	0
Model:	assumption	s (FIP)			

- Fully ionised plasma (FIP) made of H,
- hydrodynamic time evolution of a formed blob in the loop environment,
- vertical motions,
- adiabatic changes of state.

- The neutral fraction of the plasma,
- the blob formation process,
- path curvature,
- radiation, conduction, cooling,
- transition region and chromosphere,
- magnetic field.

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	●○○○	000000000	00000	0000	O
Model:	assumptior	ns (FIP)			

- Fully ionised plasma (FIP) made of H,
- hydrodynamic time evolution of a formed blob in the loop environment,
- vertical motions,
- adiabatic changes of state.

- The neutral fraction of the plasma,
- the blob formation process,
- path curvature,
- radiation, conduction, cooling,
- transition region and chromosphere,
- magnetic field.

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	●○○○	000000000	00000	0000	O
Model:	assumptior	ns (FIP)			

- Fully ionised plasma (FIP) made of H,
- hydrodynamic time evolution of a formed blob in the loop environment,
- vertical motions,
- adiabatic changes of state.

- The neutral fraction of the plasma,
- the blob formation process,
- path curvature,
- radiation, conduction, cooling,
- transition region and chromosphere,
- magnetic field.

• Background: isothermal loop, vertically stratified by gravity:

$$p(z, t = 0) = p_0 e^{-z/H}, \quad \rho(z, t = 0) = \rho_0 e^{-z/H}, \quad H = \frac{2RT_0}{g}$$

- z-axis is vertical; T_0 is the loop temperature; $R=k_B/m_p$ is the gas constant.
- The blob is represented by a localised density enhancement.
- In the initial state the vertical speed is zero.

Parameter values:
$H = 120 \ \mathrm{Mm}$
$\rho_0 = 5 \times 10^{-12} \ \rm kg \ m^{-3}$
$ ho_{b0} = 10^{-10} \ {\rm kg} \ {\rm m}^{-3}$
$z_0 = 50 \text{ Mm}$

(日) (四) (日) (日) (日)

Results (PIP)

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	००●०	000000000	00000	0000	O
Model:	equations				

- Three unknowns ρ , p, v.
- The unknowns only depend on t and z.
- Mass continuity:

$$\frac{\partial \rho}{\partial t} = -v \frac{\partial \rho}{\partial z} - \rho \frac{\partial v}{\partial z}$$

• *z*-component of the momentum equation:

$$\rho \frac{\partial v}{\partial t} = -\rho v \frac{\partial v}{\partial z} - \frac{\partial p}{\partial z} - g\rho$$

• Energy equation:

$$\frac{\partial p}{\partial t} = -v \frac{\partial p}{\partial z} - \gamma p \frac{\partial v}{\partial z}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• The time-dependent PDEs are solved using the PDE2D code with Galerkin's method.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- We are interested in the height range $0 \le z \le 60$ Mm.
- Open boundaries at the top and bottom of the system.
- No artificial viscosity/dissipation added.
- Grid spacing \simeq 10 km.
- Simulation time: 1000 s.

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	0000	●00000000	00000	0000	O
Density					

- The condensation keeps its density and shape as it falls.
- If the blob were to fall with the acceleration of gravity, it would reach z = 0 at $t \simeq 540$ s.

イロト イヨト イヨト

э

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	0000	○●0000000	00000	0000	O
Blob hei	ght				

- Height-time diagram of density (colour scale in units of 10^{-10} kg m⁻³).
- Initial acceleration phase followed by constant speed phase.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	0000	○●0000000	00000	0000	0
Blob heigl	ht				

- Height-time diagram of density (colour scale in units of 10^{-10} kg m⁻³).
- Initial acceleration phase followed by constant speed phase.

590

• Initial acceleration phase lasts $\simeq 200~{\rm s.}$

• Blob then attains a roughly constant speed $\simeq 15$ km s⁻¹.

(日)

э

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	0000	○○○●○○○○○	00000	0000	O
Pressure					

- Sound wave generated at the initial blob position (sound speed $\simeq 235$ km s⁻¹).
- A strong pressure gradient is generated at the blob position.
- Established pressure gradient travels with the blob (its position is given by the green line).

(日)

• Pressure structure under and above the blob is rearranged.

- Inertial term is negligible.
- Pressure gradient builds up and counteracts gravity at $t\simeq 200~{\rm s.}$

(日)

э

Similar dynamics are obtained for other parameter values.

- The density ratio (initial blob density to local loop density) determines the maximum falling speed.
- The local loop density depends on
 - initial blob height (z_0) ,
 - density at base of loop (ho_0),
 - the vertical scale height $(H \propto T_0)$.

$$\rho(z,t=0) = \rho_0 e^{-z/H}$$

イロト 不得 トイヨト イヨト

-

• Observed blob velocities require blob to loop density ratios as large as 500 or more.

- Blob density is 10 times larger.
- Height-time diagram is much more parabolic.

- Initial acceleration phase lasts much longer ($\simeq 800$ s compared to $\simeq 200$ s).
- Maximum falling velocity is much higher ($\simeq 100$ km s⁻¹ compared to $\simeq 15$ km s⁻¹)

- Oscillations in the inertial term acceleration: $v \frac{\partial v}{\partial z}$.
- Wavelet diagram of $\frac{\partial v}{\partial z}$.
- Periods: $\simeq 75$ s, $\simeq 42$ s, $\simeq 28$ s.

(日)

э

- Blob density and velocity also display damped oscillations.
- These oscillations in ρ and v are revealed after fitting and subtracting a third degree polynomial + wavelet analysis.
- Horizontal lines: theoretical periods of leaky sound waves of static blob with g = 0.

Blob velocity

Blob density

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	0000	000000000	●○○○○	0000	O
Model: as	ssumptions	(PIP)			

- The blob is partially ionised.
- The loop also contains a small fraction of neutrals (to avoid numerical problems).
- Hydrodynamic equations for the time evolution of two fluids (charged particles and neutrals) coupled by friction.

We do not include:

Ionisation and recombination.

• Red = charged particles, black = neutrals.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction Model (FIP) Results (FIP) Model (PIP) Results (PIP) Conclusions of the second se

• Background: isothermal loop, vertically stratified by gravity:

$$p_{ie}(z,t=0) = p_{ie0}e^{-z/H_i}, \quad \rho_i(z,t=0) = \rho_{i0}e^{-z/H_i}, \quad H_i = \frac{2RT_0}{g}$$

$$p_n(z,t=0) = p_{n0}e^{-z/H_n}, \quad \rho_n(z,t=0) = \rho_{n0}e^{-z/H_n}, \quad H_n = \frac{RT_0}{g}$$

• Parameter values:

$$\begin{split} H_i &= 120 \ \mathrm{Mm} & H_n = 60 \ \mathrm{Mm} \\ \rho_{i0} &= 4.5 \times 10^{-12} \ \mathrm{kg} \ \mathrm{m}^{-3} & \rho_{n0} = 0.5 \times 10^{-12} \ \mathrm{kg} \ \mathrm{m}^{-3} \\ \rho_{bi0} &= 10^{-10} \ \mathrm{kg} \ \mathrm{m}^{-3} & \rho_{bn0} = 10^{-10} \ \mathrm{kg} \ \mathrm{m}^{-3} \\ z_0 &= 50 \ \mathrm{Mm} \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	0000	000000000	○○○●○	0000	O
Model: ed	quations				

• Six unknowns ρ_i , p_{ie} , v_i and ρ_n , p_n , v_n .

• Mass continuity equations:

$$\frac{\partial \rho_i}{\partial t} = -v_i \frac{\partial \rho_i}{\partial z} - \rho_i \frac{\partial v_i}{\partial z} \qquad \qquad \frac{\partial \rho_n}{\partial t} = -v_n \frac{\partial \rho_n}{\partial z} - \rho_n \frac{\partial v_n}{\partial z}$$

• *z*-component of the momentum equations:

$$\rho_{i}\frac{\partial v_{i}}{\partial t} = -\rho_{i}v_{i}\frac{\partial v_{i}}{\partial z} - \frac{\partial p_{ie}}{\partial z} - g\rho_{i} \qquad \rho_{n}\frac{\partial v_{n}}{\partial t} = -\rho_{n}v_{n}\frac{\partial v_{n}}{\partial z} - \frac{\partial p_{n}}{\partial z} - g\rho_{n}$$
$$-\alpha_{in}(v_{i} - v_{n}) \qquad \qquad + \alpha_{in}(v_{i} - v_{n})$$

• Energy equations:

$$\begin{aligned} \frac{\partial p_{ie}}{\partial t} &= -v_i \frac{\partial p_{ie}}{\partial z} - \gamma p_{ie} \frac{\partial v_i}{\partial z} & \qquad \frac{\partial p_n}{\partial t} = -v_n \frac{\partial p_n}{\partial z} - \gamma p_n \frac{\partial v_n}{\partial z} \\ &+ (\gamma - 1) Q_i^{in} & \qquad - (\gamma - 1) Q_i^{in} \end{aligned}$$

• Q_i^{in} = heating of ions due to collisions with neutrals.

$$Q_i^{in} = \alpha_{in} \left[\frac{1}{2} (v_n - v_i)^2 + 3R(T_n - T_i) \right]$$

 The temperatures of ions and neutrals are obtained from the perfect gas law

$$p_{ie} = 2\rho_i R T_i \qquad p_n = \rho_n R T_n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 The friction coefficient α_{in} depends on the density and temperature of charged particles and neutrals.
 It must be computed at each position at each time step.

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	0000	000000000	00000	●०००	O
Density					

- No friction force ($\alpha_{in} = 0$).
- The neutral fraction of the blob (black line) falls faster than the ionised fraction because of its larger density ratio.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

 Introduction
 Model (FIP)
 Results (FIP)
 Model (PIP)
 Results (PIP)
 Conclusions

 0000
 0000
 0000
 0000
 0000
 0000
 0

Black = neutrals; red = ions.

 $\alpha_{in}=0$

<ロト <回ト < 注ト < 注ト

æ

 Introduction
 Model (FIP)
 Results (FIP)
 Model (PIP)
 Results (PIP)
 Conclusions

 No
 0000
 00000
 0000
 0000
 0000
 0000

 Height vs. time and velocity
 0000
 0000
 0000
 0000
 0000

Black = neutrals; red = ions.

 $\alpha_{in}=0$

• Friction with neutrals gives rise to downward force that accelerates ions.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э.

Black circles = fully ionised plasma. Blue squares = partially ionised plasma.

• The density ratio still determines the maximum falling speed.

(日) (四) (日) (日) (日)

Black circles = fully ionised plasma. Blue squares = partially ionised plasma.

• The density ratio still determines the maximum falling speed.

(日) (四) (日) (日) (日)

Introduction	Model (FIP)	Results (FIP)	Model (PIP)	Results (PIP)	Conclusions
00	0000	000000000	00000	0000	•
Conclusio	ons				

- Strong dynamical coupling of charged particles and neutrals. Main results do not change when going from FIP to PIP.
- Presence of mass condensation leads to a pressure gradient that opposes gravity.
- "Small" density ratio: acceleration phase followed by more or less constant speed.
- "Large" density ratio: acceleration phase lasts much longer.
- Maximum falling speed increases with density ratio. Very good correlation between the two quantities.
- Damped oscillations because of sound wave emission. Detectable as periodic changes of the blob density and velocity?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●