Supersonic events in TR lines

Lucia Kleint

University of Applied Sciences and Arts Northwestern Switzerland (FHNW)

Northwestern Switzerland

Supersonic events in TR lines

Lucia Kleint

Introduction

- Capabilities of IRIS
- IRIS observations of coronal rain on disk

IRIS

IRIS Observing modes

IRIS Spectral lines

Ion	Wavelength [Å]	Dispersion [mÅ pix ⁻¹]	$\log T$ [log K]	Passband	CEB
Mg II wing	2820	25.46	3.7 - 3.9	NUV	2
ΙΟ	1355.6	12.98	3.8	FUV 1	1
Mg II h	2803.5	25.46	4.0	NUV	2
Mg II k	2796.4	25.46	4.0	NUV	2
Сп	1334.5	12.98	4.3	FUV 1	1
Сп	1335.7	12.98	4.3	FUV 1	1
Si IV	1402.8	12.72	4.8	FUV 2	1
Si IV	1393.8	12.72	4.8	FUV 2	1
O IV	1399.8	12.72	5.2	FUV 2	1
O IV	1401.2	12.72	5.2	FUV 2	1
Fe XII	1349.4	12.98	6.2	FUV 1	1
Fe xxi	1354.1	12.98	7.0	FUV 1	1

Table 4. Thermal coverage of IRIS spectrograph

n | ı

IRIS Science

Example: Coronal Mass Ejection

University of Applied Sciences and Arts Northwestern Switzerland

Open questions:

- Early observations have shown supersonic flows near sunspots (with low spatial resolution). What are they? Can IRIS resolve more?
- How fast? Faster than gravity?

 $\mathbf{n}|_{\mathcal{W}}$

Observation on 2013-07-19

"string of pearls" forms.

Observation on 2013-07-19, AIA 304.

Observation on 2013-08-30

Plasma flow along loops. Bright dots appearing.

N University of Applied Sciences and Arts Northwestern Switzerland

Introduction

O IV Si IV

N University of Applied Sciences and Arts Northwestern Switzerland

Faster than free fall?

Measured 50 Mm for half-baseline from AIA

$$v_s(s) = \sqrt{2\int_0^s g_{sun}\cos\theta(s')ds'}.$$

Case 1: twice as high as half-baseline => v_{max} = 180 km/s

Case 2: Half as high as half-baseline => v_{max} = 145 km/s

200 km/s is higher than gravity.

N University of Applied Sciences and Arts Northwestern Switzerland

August 30, 2013 event

- Supersonic downflows: coronal rain hitting the sunspot at speeds of ~200 km/s.
- Lasts for whole observation (2 hours) with bursts of ~20 s, corresponding to brightenings in SJI
- > No time lag between spectral lines (~5 s cadence)
- \succ Heating in the TR.
- faster than gravity

How frequent are supersonic downflows?

no trouble finding other examples, although limited number of suitable observations (fast cadence, ideally sit-and-stare, sunspots)

How frequent are supersonic downflows?

N University of Applied Sciences and Arts Northwestern Switzerland

AR 12192 – largest spot since 1990

Inside spot: barely any spectral lines – spot probably too cold

AR 12192 – largest spot since 1990

Some very broad profiles, but no clear flows

University of Applied Sciences and Arts Northwestern Switzerland

Conclusions

> Supersonic downflows:

- visible in several, but not all sunspots more statistics needed
- coronal rain hitting the sunspot at speeds of ~200 km/s.
- Can have bursts (in which case brightenings in SJI are visible) or be steady
- Can be faster than gravity.