MODELLING OF CORONAL RAIN

Xia Fang

Chun Xia & Rony Keppens CmPA, KU Leuven, Belgium

MPI-AMRVAC

http://homes.esat.kuleuven.be/~keppens/Contents.html

MPI-parallelized Adaptive Mesh Refinement Versatile Advection Code

Conservation laws, with shock-dominated problems

Dimensional independent notation (based on the Loop Annotation Syntax, or LASY)

WHAT WE DON'T KNOW

- Link to coronal heating?
 - Footpoint heating?
- Morphology of magnetic field structure?

2.5D thermodynamic MHD model (AMRVAC)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \tag{1}$$

$$\frac{\partial(\rho \mathbf{v})}{\partial t} + \nabla \cdot \left(\rho \mathbf{v} \mathbf{v} + p_{tot} \mathbf{I} - \frac{\mathbf{B} \mathbf{B}}{\mu_0}\right) = \rho \mathbf{g},\tag{2}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot \left(E \mathbf{v} + p_{tot} \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{B}}{\mu_0} \mathbf{B} \right) = \rho \mathbf{g} \cdot \mathbf{v} + \nabla \cdot \left(\vec{\kappa} \cdot \nabla T \right) - Q + H, \tag{3}$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v}\mathbf{B} - \mathbf{B}\mathbf{v}) = 0, \tag{4}$$

Linear force-free magnetic field (B_0=12 G, theta=30 degree)

$$B_{x} = -B_{0} \cos\left(\frac{\pi x}{L_{0}}\right) \sin\theta_{0} \exp\left(-\frac{\pi y \sin\theta_{0}}{L_{0}}\right),$$

$$B_{y} = B_{0} \sin\left(\frac{\pi x}{L_{0}}\right) \exp\left(-\frac{\pi y \sin\theta_{0}}{L_{0}}\right),$$

$$B_{z} = -B_{0} \cos\left(\frac{\pi x}{L_{0}}\right) \cos\theta_{0} \exp\left(-\frac{\pi y \sin\theta_{0}}{L_{0}}\right).$$
 (1)

A **background** heating decaying exponentially with height, c0=10^-4 erg cm^-3 s^-1 and, lambda=50 Mm

Extra heating is localized near the chromopheres CI=10^-2 erg cm^-3 s^-1 and yc=0.3 Mm x1=26 Mm, x2=14 Mm, a=0.8 Mm^2, b=1.2 Mm^2 $H_1 = \begin{cases} c_1 & \text{if } y < y_c \text{ and } A(x_1, 0) < A(x, y) < A(x_2, 0) \\ c_1 \exp(-(y - y_c)^2 / \lambda^2) & \text{if } y \ge y_c \text{ and } A(x_1, 0) < A(x, y) < A(x_2, 0) \end{cases}$ $A(x,y) = \frac{B_0 L_0}{\pi} \cos\left(\frac{\pi x}{L_0}\right) \exp\left(-\frac{\pi y \sin\theta_0}{L_0}\right),$ $\lambda^{2} = \frac{a \left(A(x, y) - A(x_{2}, 0) \right)}{A(x_{2}, 0) - A(x_{1}, 0)} + b \quad (Mm^{2}),$

MULTIDIMENSIONAL EFFECT

- The perturbed force field
 over I Mm in width
- Dominant about equal
 pressure and Lorentz force
- Induces field variation on neighbouring field lines
- Similar condensation arise on both ends of this one

The signed vertical total force with gravity, Lorenz force and pressure gradient in a zoomed view on the first blob forming.

Prominence-Corona-Transition-Region

Prominence-Corona-Transition-Region

CONDENSATION RATE

CONDENSATION RATE

Faster growth in size in the perpendicular direction !

LIMIT CYCLES OF RAIN

Temporal evolution of mass (left) and number (right) of blobs

Interpreted as 'limit cycles of loop evolution' by Mueller et .al (2003)

BLOB SIZE

Width and Length of blobs from simulations (top), compared with observational results (bottom) by Antolin et al. 2012

SHEAR FLOWS

SHEAR FLOWS

SHEAR FLOWS

CONCLUSION

3D Prominece Formation with a Coronal Cavity

Chun Xia¹, Rony Keppens¹, Patrick Antolin², Oliver Porth³

¹Centre for mathematical Plasma Astrophysics, KU Leuven ²National Astronomical Observatory of Japan ³Department of Applied Mathematics, University of Leeds

Nanjing, June 27, 2014

Initial conditions

- restart from the isothermal flux rope with the additional variable of total energy
- Cartesian 3D box, horizontal axes x (-120,120) Mm and y (-90,90) Mm, vertical axis z (3, 123) Mm
- create a chromosphere: rewrite temperature T(z) (10000 K) and density p(z) according to hydrostatic stratification in the bottom layer with thickness of 4 Mm

200

First 3D prominence formation

Time: 115 mins; Density threshold for condensation: 3×10^9 cm⁻³

size: 30 Mm length, 16 Mm tall, 4.5 Mm thick, extends to 26 Mm height

Conclusions and Discussion

Dynamic condensation in AIA synthetic views

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Conclusions and Discussion

AIA synthetic views of the prominence and cavity

- The PCTR is bright all four EUV bands
- Protruding tail ('barb') extends to lower altitude
- "horns" extend from the top of the prominence to the upper cavity in 193 and 211 bands
- density depletion in the cavity (20–30 %), 2 MK temperature

Magnetic topology of cavity

- prominence-loaded field lines maintain denser coronal plasma than prominence-free field lines
- magnetic structure changes smoothly from the prominence to the cavity

THANKYOU FOR ATTENTION

1D Filament Formation

2.5D Prominence Formation

Summary and Future Work

Governing Equations of Radiative Hydrodynamics

ID radiative hydrodynamic equations:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial s} (\rho v) = 0, \qquad (1)$$

$$\frac{\partial}{\partial t}(\rho \mathbf{v}) + \frac{\partial}{\partial s}(\rho \mathbf{v}^2 + \mathbf{p}) = \rho g_{\parallel},\tag{2}$$

$$\frac{\partial E}{\partial t} + \frac{\partial}{\partial s} (Ev + pv) = \rho g_{\parallel} v + H - R + \frac{\partial}{\partial s} \left(\kappa \frac{\partial T}{\partial s} \right).$$
(3)
(4)

•
$$E = \rho v^2/2 + p/(\gamma - 1), p = 2.3 n_{\rm H} k_{\rm B} T, R = n_{\rm H} n_{\rm e} \Lambda(T), \gamma = 5/3, \kappa = 10^{-6} T^{5/2}$$

▲□▶▲□▶▲□▶▲□▶ □ ⑦�?

Introduction

1D Filament Formation

2.5D Prominence Formation

Summary and Future Work

Evidence of thermal instability

Evolution of loop center in case S1

isochoric thermal instability criterion

(Parker 1953): $C \equiv k^2 \kappa - \frac{\partial H}{\partial T} + \frac{\partial R}{\partial T} < 0$

- The criterion turns to significantly negative when catastrophic cooling.
- Isobaric criterion (Field 1965) is not appropriate.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Introduction

1D Filament Formation

2.5D Prominence Formation

Summary and Future Work

Details of the Condensation

▲□▶▲□▶▲□▶▲□▶ □ シペ⊙

1D Filament Formation

2.5D Prominence Formation

Summary and Future Work

Propagating Shocks

▲□▶▲□▶▲□▶▲□▶ = つへで

 $dy <<1, \rho_0/\rho_1 \sim 1, v_0 \sim v_1$