Spectropolarimetry and Stereoscopy of Coronal Rain

Tom Schad Institute for Astronomy - University of Hawaii 23 - 27 February 2015 ISSI workshop on Coronal Rain Bern, Switzerland

Remote sensing of the coronal magnetic field.

- Measuring the hot coronal magnetic field is difficult!
 - Gyroresonance iso-Gauss maps from radio observations.
 - Forbidden M1 transitions (Fe Complicates XIII 1074.7 nm, etc.)
 - Coronal seismology (i.e. MHD wave dispersion relation)
- The "newly" quantified abundance of cool "chromospheric-like" material found in the corona offers an new opportunity.
 - Problem 1: Chromospheric magnetic fields are hard too!
 - Problem 2: Rain is dynamic! Large Doppler shifts on disk; fast translation on limb.
 - Problem 3: Weak signals!
- No silver bullet!

Chromospheric Magnetic Field Diagnostics

- Longitudinal Zeeman Effect proportional to g*lambda
- Transverse Zeeman Effect 2nd order (generally weak)
- Hanle Effect Atomic-level "pumping" + inclined fields; UV lines better due to saturation.
- Ca II IR Triplet (e.g. 854.2 nm)
- Mg h & k
- Na D
- He D₃ (orthohelium)
- He I 1083 (orthohelium)
- Lyman Alpha (CLASP)
- H Alpha
- Others: Paschen series. Mid-IR lines?

He I Triplet Advantages:

- 1. Formation limited to narrow regions
- 2. Atomic pol. radiatively controlled
- 3. Spectrally flat triplet system
- 4. He I 1083 nm brighter in prominence

material than Ca II 854.2 and He D3

Comparison of Optical/IR Chromospheric Lines

IBIS Ca II 854.2 nm QU Polarization

Schad, Penn, & Lin (2013)

He I Atomic Level Polarization Spectra

Schad, Penn, & Lin (2013)

He I Vector Field Maps (Schad et al. 2015, in press.)

* He I inversions using pHAZEL (Asensio Ramos et al. 2008)* Simple AZAM-like disambiguation

And now, on to coronal rain observations...

High-speed He I Spectra (DST/FIRS) 19 September 2011

CRISPEX illustration of FIRS data cube....

- 23 channels identified in the FIRS data set.
- Thanks CRISPEX!
- Now, what is this flow?

Associated with the formation of a coronal cloud filament...

Show SDO/AIA 171 and 211 movies...

What about a stereoscopic view?

	STEREO-B	Earth	STEREO-A
Heliocentric distance (AU)	1.073496	1.004564	0.966648
Semidiameter (arcsec)	893.927	955.267	992.738
Heliographic (HEEQ) longitude	-96.294	-0.000	103.402
Heliographic (HEEQ) latitude	0.254	7.130	-3.074
Roll from ecliptic north	0.031		-0.028
Roll from solar north	-7.201		6.596
Light travel time to Earth (min)	12.872		12.892
Separation angle with Earth	96.213		103.669
Separation angle A with B		160.114	

Show SDO/AIA 171 and STEREO/A 171 movie...

He I Polarimetry...

Observation notes..

- 0.3" sampling by FIRS, 218 slit positions
- $\lambda/\delta\lambda \sim 280000$; $\delta\lambda = 38.4$ milliAngstrom
- 1 sec total integration time
- Scan time of the full region ~ 32 minutes
- [Q,U,V] noise level \rightarrow [1, 0.92, 1.3] x 10⁻³ I_c

Every He I spectra inverted 50 times by Helix + (Lagg et al. 2007; Trujillo Bueno & Asensio Ramos 2007)

1500

1000

500

0

10

20

Magnetic Field [G]

Impacting the lower atmosphere...

Summary

- Cooled coronal material may be our best means to probe the finescaling of the coronal magnetic field in the near future.
- He I 1083 is a good tool, but signal is going to be challenging for small scale coronal blobs.
- What diagnostics do we need? Any prediction for the magnitude of electric fields?