Observations of thermally unstable loops

An overview of observed (E)UV variations associated with coronal rain

Gregal Vissers

Institute of Theoretical Astrophysics University of Oslo

SOHO shows cool active region loops with substantial time variability

Mg IX 368 A

Kjeldseth-Moe & Brekke (1998): SOHO CDS and EIT, 14 September 1997

Wednesday, February 25, 15 (Week)

Ugarte-Urra et al. (2009)

Lightcurves show clear intensity variations, on shorter timescales for cooler lines

These variations have regularly been associated with thermal non-equilibrium

What are the relevant time scales?

To what extent are the instabilities complete?

Cooling progression

(E)UV dimming

Multi-thermal coronal rain

Cooling progression

(E)UV dimming

Multi-thermal coronal rain

Clear cooling progression is observed in TRACE channels

Schrijver (2001)

Lightcurves of hotter lines tend to peak first, followed by progressively cooler ones

Schrijver (2001)

Coronal loops show recurring episodes of sequential brightening

Ugarte-Urra et al. (2009)

The trend in sequential brightening is not always straightforwardly observable

Cooling progression

(E)UV dimming

Multi-thermal coronal rain

Loops remain visible in 171Å and 195Å while cool material slides down the loop legs

1216 26-MAY-00 13:21:56

Schrijver (2001)

Transition region and coronal line lightcurves show anti-correlation

O'Shea et al. (2007)

Hotter AIA channels show anti-correlated signal when compared to 304Å and Hα

Optical thickness of several coronal lines correlates with Ly-α, in turn correlates with Hα

Anzer & Heinzel (2005)

Positive correlations between EUV lines and Hα are also observed

Cooling progression

(E)UV dimming

Multi-thermal coronal rain

Coronal rain show a range of temperatures, hotter towards the downflow footpoint

Strongest downflows are observed in transition region and "cool" coronal lines

Downflows in hotter lines are more concentrated towards the loop tops

Tripathi et al. (2009)

The other footpoint shows predominantly upflows, especially in hotter lines

The other footpoint shows predominantly upflows, especially in hotter lines

Tripathi et al. (2009)

Coronal rain appears first in the IRIS channels, before showing in Ca II H

Antolin et al. (2015, submitted)

Coronal rain appears first in the IRIS channels, before showing in Ca II H

Cumulative lightcurves of IRIS diagnostics suggest a two-step cooling process

The progressive cooling from thermal instability predicts height-dependent emission

Antolin et al. (2015, submitted)

(E)UV variability could largely be explained through the multi-thermality of coronal rain

Antolin et al. (2015)

EUV dimming by coronal rain

O'Shea et al. (2007)

Complete thermal instability

Antolin et al. (2015)

Coronal rain is multi-thermal

Tripathi et al. (2009)