Implications for coronal heating and magnetic fields from coronal rain observations and modelling

2nd Meeting - ISSI Team in Space Sciences

ISSI Team - coronal rain

11-15 July 2016

corona

chromosph.

The team

19 members - 14 institutions - 9 countries

Core members	Institute / University	Country	
Patrick Antolin (coordinator)	University of St Andrews	UK	
Philip Judge	HAO	USA	
Lucia Kleint	FHNW	Switzerland	
Wei Liu	Stanford-LMSAL	USA	
Juan Carlos Martinez Oliveros	Berkeley	USA	
Ramon Oliver	UIB	Spain	
Luc Rouppe van der Voort	UIO	Norway	
Tom Van Doorsselaere	KU Leuven	Belgium	
Erwin Verwichte	Warwick	UK	
Gregal Vissers	UIO	Norway	
Kyoko Watanabe	NDA	Japan	
Teimuraz Zaqarashvili	SRI	Austria	
Young participants	Institute	Country	
Xia Fang	KU Leuven	Belgium	
Petra Kohutova	Warwick	UK	
Tom Schad	IFA	USA	
Self-supported external members	Institute	Country	
Eamon Scullion	Northumbria	UK	
Fabio Reale	Palermo	Italy	
Roberto Soler	UIB	Spain	
Sven Wedemeyer	UIO	Norway	

Updates - 1st ISSI Meeting

1st Meeting: 23-27 February 2015

• 14 (+3) participants, 29 talks

1. Observations of coronal rain in the solar atmosphere

- The "standard model" of coronal rain (non-flaring regions) (*Petra, Luc, Gregal, Teimuraz, Tom S., Lucia, Patrick*)
- Observations: Associated phenomena (return flows from prominence eruptions, flocculent flows) (*Wei, Gregal, Fabio*)
- Observations: Coronal rain in post-flare loops (*Fabio, Kyoko, Juan C.*)
- 2. Physics of coronal rain
 - Instabilities & waves (2 sessions) (Xia, Ramón, Patrick, Fabio, Erwin, Phil, Tom V., Roberto)
- 3. Workshop tools for rain analysis
 - IRIS, CRISPEX (Lucia, Gregal)
- 4. Future prospects
 - DKIST, ALMA, SOLAR-C (Tom S., Sven, Kyoko)

Calendar

- Talks
- Discussion sessions

Talks: 45 min (30+15)

	Mon 11 Tue 12		We	d 13	Th	u 14	Fi	ri 15		
l-day	2nd ISSI meeting - coronal rain@Bern									
9:00										
0:00	Update	Intro	Lucia		Gregal		Wei - 1		Wei - 2	
11:00	Nabil (via	Ramon)	Erwin - 2		Vaibhav (v	ia Patrick)	Kyoko (via	Patrick)	Patrick	
2.00	Erwin - 1	Break	Petra	Break	Ramon	Break	Xia (vi	Break	Final	Break
12:00	12:15 (11:15 Lunch	5 BST)	12:00 (11:0 Lunch	0 BST)	12:00 (11:00 Lunch	0 BST)	12:00 (11:00 Lunch) BST)		
4:00	13:30 (12:3 SSRv pape	0 BST) er - 1	Roberto (v 14:00 (13:0 DKIST pro	ia Patrick) 0 BST) posal &	13:15 (12:15 SSRv pape	5 BST) • r - 3	13:15 (12:15 SSRv pape	5 BST) r - 4		
5:00			SSRv pape	er - 2						
6:00										
7:00	Welcome of	drinks								
8:00										
9:00										
							Meeting di	nner		

Selected recent work in the field

- 1. ALMA Proposal
- 2. Selected papers:
 - 1. Froment C. et al., ApJ. 807 (2015)
 - 2. Straus et al., A&A 582 (2015)
 - 3. Jing J. et al. Nat. Phys., 6:2319 (2016)
 - 4. Scullion E. et al. ApJ (accepted)
 - 5.Soler R. et al. (in prep) -> Tuesday afternoon

ALMA proposal - The Cool Alter-Ego of the Solar Corona -

100

1400

1200

1000

800

600

400

200

280

Measure thermal inhomogeneity of the solar corona: → characterise thermodynamic state and amount of coronal rain

Table 1: Su	mmary of requireme	nts
	Large FOV mode	High Cadence Mode
pointing	mosaic	single
FOV for band 3	$60 \times 120 \ \mathrm{arcsec}^2$	$60 \times 60 \ \mathrm{arcsec^2}$
FOV for band 6	$60 \times 120 \ \mathrm{arcsec^2}$	$25 \times 25 \text{ arcsec}^2$
# of C40 pointings in band 3	11	1
# of C40 pointings in band 6	57	1
cadence	$<\!15 \min$	$2 \sec$
duration	$2 \text{ hrs} \times 2$	$2 \text{ hrs} \times 2$

- ALMA Cycle 4: band 3 & 6
- 2 obs modes: Large FOV & High cadence
- Target: off-limb AR, Rain showers
- T_b: 5000 K (100 GHz), 2200 K (230 GHz),
 - Opt. thick.: 0.6 (100 GHz) and 0.3 (230 GHz)

Evidence for evaporation-incomplete condensation cycles in warm solar coronal loops

Froment C. et al., ApJ. 807 (2015)

- Context / Motivation
 - Spatial and temporal distribution of heating of coronal loops: impulsive heating scenarios ("nanoflare" heating, uniform or footpoint) vs. quasicontinuous heating at footpoints
 - Quasi-continuous heating easily leads to thermal instability (thermal nonequilibrium) -> prominences & coronal rain, evaporation-condensation cycles
 - Cycles have a complete or incomplete character (*Mikic*+ 2013). Simulations show that such solutions match well the observations.
- Results

Evidence for widespread cooling & evaporation-condensation cycles (long period pulsations in intensity & DEM: thermal cycles), some incomplete?

• Method

DEM analysis + time-lag analysis + Fourier analysis. Automatic detection (*Auchère*+2014) for 6 days of AIA data (13 min cadence). 3 AR analysed in detail: >50% of detections are in AR, of which 50% are associated with loops

Evidence for evaporation-incomplete condensation cycles in warm solar coronal loops

- Power peak at 9 hrs (other 2 ARs: 5.6 hrs & 3.8 hrs)
- Present in intensity, DEM, peak temperature & X^2
- -> periodical changes in thermal structure

Froment C. et al. (2015)

Observations - cooling

similar result as in Viall & Klimchuk 2012

50

-50 -100

-150

-200 -250 -300

Pairs of channels	Time lag (min)	Time lag (min)	
	from cross-correlations (Fig. 9)	from differences of phase Fig .(11)	
335-211	113	122	
211-193	26	20	
335-193	145	142	
94-335	-115	-114	
335-171	142	155	
171-131	-1	-51	

A steady-state supersonic downflow in the transition region above a sunspot umbra

Straus T. et al., A&A 582 (2015)

- Context / Motivation
 - Sunspot upflows/downflows linked to heating activity
 - High-speed downflows (~80 km/s) often observed in TR lines (HRTS: Dere'82; Nicolas+'82; UVSP: Gurman'93; SUMER: Brynildsen+'01,'04)
 - IRIS: Kleint+'14 -> broad lines, no distinct 2nd component, intermittent (~20s bursts)
- Results

IRIS obs in Si IV & O IV of a high-speed (~90 km/s), steady (~80 min), dense $(10^{10.6} \text{ cm}^{-3} \text{ -> } 5 \text{x} 10^{-7} \text{ g cm}^{-2} \text{ s}^{-1})$ downflow into sunspot umbra. Interpreted as stationary termination shock of siphon flow in cool loop

Method

IRIS SJI & SG 80 min obs; density estimates: Si IV & O IV. Also co-alignment with AIA.

A steady-state supersonic downflow in the transition region above a sunspot umbra

Straus T. et al., A&A 582 (2015)

redshift in chromospheric lines

- Downflow location coincides with source of umbral running waves (*Yurchyshyn+'15*) and location of strongest field
- stable over 80", most pronounced in O IV, 70-90 km/s, Gaussian profiles, C II & O IV optically thin line ratios (~2) but moderately thick in Si IV for satellites, broader than main components

Straus T. et al., A&A 582 (2015)

- Ratio: OIV 1399.77/1401.16
- Mean main: log Ne~10.95±0.2, satellite: 10.6±0.25

- Anti-correlation between satellite and main intensities
- Satellite component shows less pronounced shock pattern, opposite behaviour: slow rise followed by faster decrease -> downward shock?
- supersonic -> subsonic siphon flow: shock
 & modulation by 3-min wave

• Brighter satellite when main component passes through 0 (redshift to blueshift)

Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

Jing J. et al. (2016)

Context / Motivation

- Fine-structure of flare ribbon, post-flare loops (rain) & associated energy transport in flares not well constrained.

Results

Similar cross-sectional widths of are ribbons, post-flare loops and footpoint brighenings, (80–200) km. Emission area strongly constrained: influence for non-thermal electron estimation

Method

Observation of a M-class flare with VIS/NST (1.6 m), H α @ BBSO + IRIS

Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

Unprecedented Fine Structure of a Revealed by the 1.6 m New Solar Telescope

- (post-flare loops) ≠ SCBs
- Energy budget? Collision or shock wave?
- Size of ribbons, rain blobs and FP brightening very similar
- -> true spatial scale of energy transport mechanism?

ectio

Observing the formation of flare-driven coronal rain

Scullion E. et al., ApJ (Accepted)

- Context / Motivation
 - Rapid cooling and fine-scale structure of plasmas in post-flare loops
- Results

- Detail investigation of coronal rain formation in post-flare loops. 4 phases: conduction to radiation dominated

- Acceleration of cooling at final stage in chromospheric coronal rain formation (7300 K/s -> 22700 K/s).

• Method

SST/CRISP + SDO/AIA

DEM inversion

Observing the formation of flare-driven coronal rain

Source and sink of coronal rain

H-alpha (+ 1.032 nm) 15:43:33 UT H-alpha (+ 1.032 nm) 16:15:06 UT

Observing the formation of flare-driven coronal rain

Detecting the onset of the loop-top thermal instability [1] leading to mass condensations [2] and at last catastrophic cooling with detectible chromospheric coronal rain [3]

Space Science Review on Coronal Rain

Major deliverable of ISSI Team in Space Sciences

Space Science Review on Coronal Rain

Structure - main topics

- Definition: thermal instability
- Kinds (quiescent & flare-driven), visibility across spectrum
- Methods: Observations & Simulations
- Relation with similar phenomena (prominences & flocculent flows)
- Interdisciplinary (Solar & Stellar)
- Main target problems