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m In ideal MHD, the entropy mode is a solution of the linearized MHD
equations. It represents nonpropagating perturbations of density
that remain static, neither decaying nor growing.

(e.g., Goedbloed & Poedts 2004)

m When nonadiabatic mechanisms are taken into account (e.g.,
radiative cooling, thermal conduction, heating), the entropy mode is
then called thermal mode and can be unstable.

(e.g., Parker 1953; Field 1965; Heyvaerts 1974)

m Thermal instability occurs due to imbalance between
temperature-independent energy gains (heating) and
temperature-dependent radiative losses. The amplitude of the
thermal mode grows in time and can lead to catastrophic cooling.

m This mechanism allows the formation of cool condensations in the
high-temperature coronal medium (e.g., prominences, coronal rain).
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Are the observed spatial scales of coronal rain blobs related with
the expected length scales of thermal modes in the corona? J




Nonadiabatic MHD equations
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m Radiative losses: L(T,p)
m Thermal flux: =V . (kx-VT)
m Arbitrary heating: H



Thermal conduction

m Highly anisotropic in the magnetized coronal plasma
m Parallel conduction caused by electrons

m Perpendicular conduction caused by ions
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Radiative losses

m Semi-empirical approximation for optically thin plasma
m Piecewise function of temperature
m Losses computed from the CHIANTI database assuming coronal

abundances
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Adapted from Soler, Ballester, & Parenti (2012)



Linear perturbations

m Simplest scenario: homogeneous coronal plasma with a straight and
constant magnetic field
m We linearize the nonadiabatic MHD equations

m Temporal dependence: exp(st), with s the growth rate
m Fourier modes in space: k| and ki with respect to the magnetic field

Dispersion relation of compressible modes
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m Alfvén and nonadiabatic sound velocities: vp = T Vs 0

m Effective adiabatic index (Soler et al. 2008):
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Magnetoacoustic waves (complex s) and the thermal mode (real s) are
coupled even in a homogeneous plasma




Thermal mode

m Approximations to decouple the thermal mode:
Low-f3 plasma: fast waves decouple from slow + thermal modes
Nonadiabatic terms small compared to ideal terms: slow waves
decouple from the thermal mode

Approximate thermal mode growth rate
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m Instability criterion: s > 0

Thermal conduction has a stabilizing effect for short length scales

Critical lengths or Field's lengths: longest lengths that are stable,
LF,H and LF‘J_

m In the corona, Lp || > Lr 1 due to the highly anisotropic nature of
thermal conduction



Field's lengths in the corona
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Dependence on temperature
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m Lp | is strongly dependent on temperature
m [y | is very weakly dependent on temperature

m Jumps are artificial and are caused by the piecewise form of the
radiative loss function, L

The values of Ly | seem to small to explain the observed
transverse size of coronal rain blobs




Additional ingredient: magnetic twist

® In a twisted loop, a new family of thermal modes can appear

m They are called “discrete thermal modes”
Van der Linden & Goossens (1991); Van der Linden (1991, PhD Thesis)

m The transverse length scale of these modes is not related to the
Field's length and can be much larger

P

Density perturbations of three “discrete thermal modes” in a twisted flux tube
From Van der Linden (1991, PhD Thesis)



Additional ingredient: partial ionization

m The plasma in cool coronal rain blobs is only partially ionized

m The Saha equation for a hydrogen plasma:
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Neutral thermal conduction

m In a partially ionized plasma, thermal conduction by neutrals can be
very efficient

m In the first approximation, conductivity by neutrals can be taken as
isotropic

Ky, = 2.24 x 1072¢, TY/?

m Effective conductivities in a partially ionized plasma should be
modified as follows:

K| = K| + Kn
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m Perpendicular conduction governed by neutrals

m The perpendicular Field’s length may increase as the plasma
gets partially ionized!




m Thermal modes in the solar corona can be unstable and may lead to
catastrophic cooling (seed for condensations)

m Very different parallel and perpendicular Field's lengths due to the
highly anisotropic nature of thermal conduction

m Effects as, e.g., partial ionization and magnetic twist may be
necessary to explain the observed scales of coronal rain blobs
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Work for the future

m Role of neutral thermal conduction on the dynamics of partially
ionized condensations

m Role of magnetic twist on the perpendicular scales associated with
“discrete thermal modes”
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