2nd Aide mémoire for g-mode search

B.Andersen, T.Appourchaux, W.Chaplin, Y.Elsworth,
W.Finsterle, C.Frohlich, D.O.Gough, G.Isaak,
J.Provost, T.Toutain, T.Sekii & P.Scherrer

May 12, 1999

Abstract

This aide mémoire summarizes the joint effort of the SOI/MDI,
BiSON and VIRGO team for discovering g modes. The data sets
and their reduction are described. The different technique used for
detecting g modes are described. A list of g- and p-mode frequencies
are given for 2 different models. This aide mémoire shall be used as
a basis for writing papers on g-mode upper limit, g-mode detection
techniques and low frequency p-mode detection.

It is superficially unfortunate that we discovered no g modes. On the
brighter side, on which I always prefer to be, it shows that we have before us
a greater challenge which will yield [ ] greater satisfaction when we overcome
it.[...]. We are all now much more prepared to continue the search.

Douglas Gough, December 1997

1 Foreword

In the course of the development of the Phoebus workshops, it became ob-
vious during the 2nd workshop that we would need slightly more time to
detect g modes. The Boston meeting exemplified this fact by giving a detec-
tion time of 20 years (Frohlich et al., 1998). During the last workshop we
had 3 items on our paper production agenda:



e upper limit of g-mode amplitude
e low frequency p-mode detection
e g-mode detection technique

Of the three, the last item was not really discussed as it is still an ongoing
activity. The success of which would lie in the detection of of at least a pair
of g modes. The aide mémoire shows clearly the fragile status of some of the
detection techniques.

The first two items in terms of writing papers are still high on our agenda.
Two papers were published at the Boston meeting on this subject. Some time
since then has been wasted due to the physical condition of the secretary of
the group. During the week on May 7, 1999, W.Chaplin, D.Gough and
T.Appourchaux had a discussion on the writing of such papers. We agreed
that the writing of a paper on the upper limit of g-mode amplitude would
be timely and for which most of the work has already been performed.

The other paper on low frequency p modes may need some additional
work as it is rather clear that time will improve our detection limit and that
we would also benefit from the development of g-mode detection techniques.

2 Introduction

The aide mémoire is made of 3 sections. The first section describes the data
utilized. This section is almost completed and may require some additional
tuning to be used as such. The second section is about the g-mode detection
strategies. This section is still being worked and so are the strategies; obvi-
ously only part of it could be useful in the eventuality of writing an article
on the subject. The last section is about the p-mode amplitude and noise
levels. This section is mainly a description of the way the data are calibrated
to get the proper limit on g-mode amplitude. This would not probably go
directly into the paper. As a matter of fact, we already published a paper
for the Boston meeting without this preliminary work.



3 Data utilized

3.1 SOI/MDI velocity

MDI dataset is the level-1.4 LOI velocity proxy (180 pixels) from 1 May
1996 to 24 June 1998 (784 days). Data with bad quality flag are put to 0.
They are corrected from the satellite velocity and the offset due to tuning
of the MDI. Then they are detrended using a third order polynomial. This
is done in-between two changes of offset separately for each piece of signal.
An (I,m) spherical harmonic mask with B = 0 is applied to the data the
resulting timeseries is high-pass filtered using a box-car smooth with a 1-day
width. Data are then Fourier transformed.

3.2 VIRGO/SPM

The SPM data are based on the level 1 time series from 23 May 1996 and ends
on 31 December 1997 (588 days). A running mean detrending of triangular
shape and base width of two days was applied before computing the Fourier
transform.

3.3 VIRGO/PMO6

The PMOG6 data are based on the level 1 time series from 23 May 1996
and ends on 31 December 1997 (588 days). A running mean detrending of
triangular shape and base width of two days was applied before computing
the Fourier transform.

3.4 VIRGO/LOI

The LOI data are the level 1 data as reduced per VIR-SSD-GSE/L-001, (Ver
1.7, May 1996) from the level 0 data. It is available from the VIRGO home
page. The LOI data are reduced in the same way as the SOI/MDI data

except that there is no need to remove the 12-pixel average. The time series

starts on 1 May 1996 to 24 June 1998 (784 days).



3.5 BiSON
The BiSON time series starts on 23 May 1996 and ends on 31 December 1997

(588 days). Two time series were available optimized either for g-mode or
p-mode detection.

3.6 GONG
The GONG data time series start on 7 May 1995 and is 1080-day long. The

time series was generated for [ =1,2 and 3.

4 g-mode finding strategies

4.1 Patterns techniques and collapsogrammes

All the pattern techniques assume that the g modes are splitted by rota-
tion and/or that their frequencies are derived from an asymptotic formula
(Frohlich and Andersen, 1995; Frohlich and Delache, 1984). In order for these
techniques to be efficient, it is required that the splitted modes be present.
Unfortunately, it can happen that, due to beating with the noise, the modes
do not appear. As an example, Fig. 1 shows that sometimes not all of the
components of a p-mode multiplet are ‘excited’. As a matter of fact, the
modes are always excited but since the low-frequency p modes have a low
amplitude they beat with the noise; sometimes the noise enhances the mode
or suppresses it. Figure 2 shows a simulation for 140 days of data of such a
beating. This very simple simulation means that the detection of a ‘g-mode
peak’ in one time series may not be confirmed by another independent time
series. A proper statistical analysis of many independent time series would
be needed before confirming the detection of a g mode.

Keeping the statistical behaviour of the multiplet in mind, we have nev-
ertheless devised a new pattern technique for detecting g modes: the col-
lapsogramme. Each m spectrum is shifted from the m = 0 spectrum by
m§) (where Q represents the splitting of the mode), then each spectrum is
normalized by an estimate of the variance of the spectrum, and finally the
2l+1 spectra are added together. The advantage of this technique is that it
gets 1id of the instrumental harmonics (invariant), and produces a spectrum
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Figure 1: (m,r) diagram for the [ = 1, n = 8 as observed by SOI/MDI. The
frequency resolution is about 19nHz (610 days of data). The power spectra
from top to bottom are for m = +1, m = 0 and m = —1, respectively.

with a well defined statistics (nearly a y? with 4/ + 2 d.o.f.). The disadvan-
tage is that the g-mode splitting varies faster with frequency than for the
p modes; the technique should be restricted to frequency band where the
splitting varies slowly. Figures 3 and 4 show collapsogrammes in the p-mode
frequency range for [ = 1 and [ = 6, respectively. Lower-frequency p modes
can be detected showing the efficiency of the technique. Results by the Phoe-
bus group using this technique on low frequency p modes can be found in
the SOHOG6 proceedings (Appourchaux et al, 1998).

Using the GONG data, the collapsogram proved to be useful as Rabello-
Soares and Appourchaux (1999) (A&A, in press) were able to go to lower
frequencies that is currently possible with conventional fitting techniques
(around 1400 pHz with a l-year time series). At the time of the 2nd work-
shop, we could go even lower close to 1250 pHz.



10 - 10 *
8f B 8fF B
1l ~
) 9
E 6 E 6 9
[y [y
a4l
ol
0 L L I A
1315 1320 1325 1330 1335 1340 1315 1320 1325 1330 1335 1340
Frequency (in uHz) Frequency (in wHz)
12 12
10 — 101 —
8f y 8f §
£, £
H £ sl
5 8 5 6
o o
4 4r-
2 _Rr
oLk L L L 0 f L L L |
1315 1320 1325 1330 1335 1340 1315 1320 1325 1330 1335 1340
Frequency (in uHz) Frequency (in wxHz)
Figure 2: Simulated [ = 1, n = 8 with a signal-to-noise ratio of 6.25 in

the power spectrum. The resolution is about 80 nHz. The mean statistical
probability that the mode be higher than 7 ¢ is about 2 chances over 3.
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Figure 3: Collapsogramme for 610 days of SOI/MDI data for { = 1. Top:
unshifted; bottom: shifted by 412 nHz. The n = 8,[ = 1 mode gets out
better in the shifted collapsogramme, as expected.
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unshifted; bottom: shifted by 412 nHz.
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The central peak is an [ = 2, n = 8. The 2 peaks on either side

n=3=8,9.

4.2 Collapsoimage

The collapsoimage is technique derived from the collapsogramme. It is very
often useful to visualize the collapsogramme obtained for each splitting. By
scanning through a range of reasonable splittings, e.g. from 0 to 1 uHz, one
can obtain a 2-D image of the collapsogramme, i.e. a collapsoimage.

4.3 Overlapogram

The principle of the overlapogram is similar to that of the collapsogram.
Instead only one power spectrum is used and shifted from itself. This tech-
nique is mainly used by full-disk integrating instruments having only one

power spectrum at their disposal.

4.4 Phase analysis

This part to be written by Wolfgang Finsterle.
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Figure 6: Collapsoimage for LOI, MDI power spectra and for the LOI-MDI

cross spectrum

4.5 On Bayesian approach

The so-called Bayesian approach is yet to be worked out. The purpose of
this approach would be to help us detect additional p modes, and of course g
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Figure 7: Collapsoimage for LOI, MDI power spectra and for the LOI-MDI

cross spectrum

modes. In the framework of writing an article on the upper limit of g modes,
they may be procrastinated to the next workshop anyway.
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4.6 Line-crossing probability

The collapsoimage is a visual guide for seeking uniformly spaced peaks in
a power spectrum or a cross-correlation spectrum. To date it is being used
for uniform spacing (which is what rotational splitting would be were the
angular velocity of the Sun to be a function only of radius and if there is no
asphericity in the seismic structure), but it can evidently be generalized to
any given relative separation of peaks in a multiplet spectrum. The analysis
presented below would be essentially unchanged in the generalized case, so
for simplicity I use the language for the case of uniform spacing.

For dipole modes one has three components: in the collapsoimage the
modes with m = +1 are equally (in magnitude) inclined (but in opposite
direction) and m = 0 is vertical. The collapsoimage is an excellent device
for spotting uniformly spaced triplets, because the signature is three lines
meeting at a point. What is the probability of this occurring at random?

The vertical extent Av (or splitting range) of the collapsoimage is, in the
case of our example, 1 yHz = 1000 nHz. Any two lines inclined in opposite
senses and with frequencies differing by less than 2000 nHz are bound to
cross somewhere in the vertical range. Therefore, the only question to ask is
: what is the probability that a vertical line will pass within some tolerance
w of all such intersections in a collapsoimage?

Let the mean density of positively inclined lines be n per 1000 nHz in-
terval. The distribution is assumed to be random, with uniform probability
density. For simplicity I assume that the mean density of negatively inclined
lines i the same (this seems to be borne out by observation). Then the den-
sity of intersections is n?%, and is also uniformly distributed. If the vertical
lines are also uniformly distributed, with density N per 1000 nHz, then the
probability p...ss of there being no intersection within the tolerance w in a
1000 nHz interval is:

Peross = e—n2Nw/Al/ (1)

The horizontal extent of a collapsoimage is 5000 nHz (=5 Av). Suppose
also we accept as ‘reasonable’ only splittings in a range oAy — Takashi sug-
gests starting with a«=0.2 — then the probability of at least one intersection
of 3 lines within the tolerance is

Pl -1 €—5om2Nw/A1/ (2)
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From typical diagrams, n and N are not uniform, but the values n = N=5
are not atypical. In that case:

P =1 — ¢ 012w (3)

For a year of observation one might set w=30 (some might say 45), Then
Py =1 —¢e73™=0.98. Thus, it is extremely likely that a diagram with pure
noise has at least one intersection of three lines.

In the case of a quadruple mode, with 5 lines, we need to calculate the
probability that, in addition, two lines with half the slope also intersect within
the tolerance. If the density of m = £2 is also n per Av, the probability of
three being no intersections of the five lines is:

Pross = €—5om3Nw2/(Au)2 (4)

with the same parameters as before, the probability of at least one intersec-
tion of 5 randomly distributed in a collapsoimage is P, = 1 — ¢795%=0.43.

The conclusion is that although the collapsoimage provides a good visual
aid for finding mode candidates, on its own it is not a means of identifying
modes.

4.7 Effect of core rotation on g-mode splittings

Figures 8 to 10 are results that were left on the homefred directory of Janine.
The figures represent the effect of various core rotation: 433, 866 and 1732
nHz, with a core radius 0.2Rg (TBC). These kind of information is useful
when we will detect g modes in various frequency bands. I would appreciate
that Janine give me slightly more information on how these splittings were
obtained.

5 low-order p modes

5.1 Improvement in solar internal structure

A short note should be written by D.Gough on this subject.

13
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5.2 How low can we go: power sliding strategies

These strategies aimed at detecting lower frequency p modes. At the time
of the 2nd workshop, various ideas were blossoming. The main idea was to
use theoretical models to look for low frequency p modes. Using these aids
to detect these modes would obviously have a small impact on the ‘observed’
solar model.

5.3 Detection limit of these p modes

For computing the time needed to detect a given n mode, we need to know
the background noise, the amplitude of the mode and its linewidth. As for
the latter, the paper we published in Boston (Frohlich et al, 1998) gives for
the linewidth the mean power law as follows:

=01 (:—F)7 (5)

where I' is the mode linewidth, v is the frequency in mHz and v is the
reference frequency, 1.600 mHz. Most of the modes at low frequency, say
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below 1100 pHz will not be resolved before a decade or so.

Already with the time series we have (2-3 years long) we cannot resolve
modes below 1200 pHz. It means that with such narrow linewidth, longer
time series are likely to help us detect low frequency p modes. We took after

Chaplin et al. (1998) (MNRAS, 298, L.7) the amplitude dependence (i.e. the

total power under the profile) which is given as:

A =2 (L)TSS (6)

VA

where A, is the total power and v4 is the reference frequency, 2.230 mHz.
This dependence was derived for mode frequency between 1.680 mHz and

2.230 mHz. This will be used for extrapolating below 1.680 mHz.
Below 1.5 mHz down to 0.1 mHz, the solar background in velocity varies

like:
B=04 (1) e (7)

0

where B is in (cm/s)?/uHz, v is the frequency in pHz, v is the reference
frequency, 1 mHz.

Therefore the time needed Ty (in years) for detecting low frequency p
modes with a given detection level o4y = 10 is given by:

2O-dm‘B

Ther = — 54,756 (8)

P

During the last meeting, we detected modes with a signal-to-noise ratio
smaller than 10 at 1200 gHz with a 2-year time series (The formula above
would give 1.1 years!). For detecting modes at 1000 pHz, from the formula
above we would get 5.4 years. Clearly we have not detected mode at this
frequency range which means that our p-mode amplitude frequency depen-
dence is not so bad after all. So this simple formula explain why it is so
difficult to ge below the magical frequency of 1 mHz.

5.4 Occurrence of 2 visible modes in an [ =1 mode

This section was derived after the writing of Douglas. The formula have been
significantly corrected but the spirit was kept. The following computation
tries to determine the probability to see only a pair of mode in an [ = 1 mode,

16



since it seems sometimes that not all modes can be visible in an (m, v) spectra
of MDI.

We assume that the statistical distribution of the power spectra is a y*
with 2 dof. The probability p of having a peak due to noise above a given
detection level z; for mode ¢ is given by:

p=e s/ (9)

where < p > is the mean power in a frequency bin where the mode 7 is
located, 1.e < p >=< A > 4+ < B > where < A > is the amplitude of
the mode in the power spectra and < B > is the background noise. If we
express x; in unit of this background noise as a we can rewrite the previous
expression as a function of the signal-to-noise ratio as:
p = e /3IN+D) (10)

This simple expression shows that when the modes are detected with a very
high S/N, the probability of detection above some level is close to 1. Of
course when the S/N is low, the probability of detection is zero. These are 2
very obvious deductions. ..

Then the probability of seeing a pair of peaks in an [ = 1 spectra for
mode 1 is given by:

P, =3p*(1 —p) (11)

Then the probability of never seeing one pair for any mode is given by:

Py =[I(1 = P) (12)

K3

Then the probability of seeing at least one pair is given by:

Prair =1 = J[(1 = P) =1 = JI(1 = 3(1 — e=%)e~2%) (13)

K3 K3

The signal-to-noise ratio can be deduced from the previous section as :
SIN = 1.77Tv*° (14)

where T' is in years and v in mHz. Figure 11 shows the probability of seeing
a pair of peaks in an [ = 1 spectra, deduced from Eq. 11 and 14. The proba-
bility of detecting at least one pair given by Eq. 13 is about typically 0.8. We

17
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Figure 11: Probability of seeing a pair of peaks in an [ = 1 spectra as a
function of mode frequency. The detection level & = 10 and the observing
time is 2 years. The probability of seeing at least one pair in this range can
be deduced from this graph using Eq. 13. For this set of parameters it is
about 0.8; other set of parameters give roughly similar values.

must point out that the location of maximum probability is right where the
double mode mentioned by Appourchaux (1998) in the MDI data is. When
the observing time increases, the peak moves down to lower frequency as
one can expect. This is a confirmation of D.Gough calculation that a double
mode is not indeed a rare occurrence.

5.5 Monte-Carlo simulations of a low S/N doublet

These simulations were undertaken in an effort to address the issue of whether
the reluctance of the m = —1 component of the / = 1, n = 8 mode in the
MDI spectrum to reveal itself was in any way unusual, given: (i) an assumed
stochastic excitation mechanism; (ii) the length of, and S/N in, the data set;
and (iii) the probable characteristics, e.g., line width, of the mode.

18



5.5.1 The model

The model which has been applied here to generate artificial p-mode-like
residuals in the time domain is discussed in more detail elsewhere (Chaplin
et al., 1997, MNRAS, 287, 51-56).

Assuming the solar p-modes to be stochastically excited, a simple and
appropriate model is a damped, harmonic oscillator, i.e.,
thth cx(t) = Ad(t —t 15

Boel0) 20 0(1) (1) = AT~ to). (15)
In the above: x(t) is the displacement of the oscillator; wy is its natural
angular frequency; n is the damping constant; and A is the amplitude of
the “white” forcing function (¢ — to), which is applied to the oscillator at
time t5. We note here that the imparting of a force to the oscillator via
an infinitesimal kick is physically unrealistic — studies of impulsive events at
the top of the convection zone appear to indicate that the forcing may be
sustained over many seconds.

The oscillator’s displacement, x(t), and velocity, dx(t)/dt, can be derived
by taking Laplace transforms of both sides of the oscillator equation. The
solution of the equation, and its first derivative can then be applied in the
form of an algorithm to produce a synthetic time series of “p-mode-like”
residuals. Here, a time series in dx(t)/dt is generated for subsequent Fourier
analysis.

Given a chosen frequency wy, and damping rate n, the initial displacement
and velocity of the oscillator are chosen at the start of the first excitation (o
and dxg/dt). The oscillator is then allowed to “run” according to solutions
of the oscillator equation. Here, the simulated data were generated with a
cadence of 40s. The simulated mode was then “re-excited” at an interval of
every 40-s sample, i.e., giving ?excite << Tmode-

At each re-excitation, the final displacement and velocity of the oscillator
during the previous excitation are used as initial input values, xg and dzq/dt,
for the next excitation. The amplitudes of each re-excitation are drawn
randomly from a normal distribution with a chosen mean value. In addition,
the sense of the “kick” provided by the forcing term, i.e., either with or
against the current direction of motion of the oscillator along the arbitrary =
axis, is given equal probability, and is chosen by an unbiased random number
generator.
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5.5.2 Construction of the time series

Each time series constructed here consisted of the sectoral components of the
¢ =1 mode only (i.e., simulating a “full-disc” view). The frequency of the
oscillator was set at 1329.6 puHz. The damping constant was fixed according
to the FWHM line width Av (i.e., n = mAv) expected at this frequency from a
power-law extrapolation at slightly higher n. (The selected Ar was 26 nHz.)
[ assumed a splitting of 400nHz (i.e., for A|m| = 1) for the doublet. This is
roughly the raw, synodic value that we measure in real data. The frequency
of the oscillator used to generate each m component was therefore fixed by
adding or subtracting 400 nHz.

Each independently generated m component was given a random phase
shift before being co-added to give the final time series. In addition, a small
amount of normally-distributed “white” noise was added in the time domain
to give signal-to-noise ratios which were similar to those observed in the
MDI spectrum. Once generated, each composite time series — of simulated
length 16 months — was Fourier analyzed to give the power spectrum, and
various “house-keeping” statistics characterizing the resultant spectrum in
the vicinity of the £ = 1 multiplet were stored to file.

5.5.3 Results

In all, 100 independent time series segments were generated. Fig. 12 shows
the result of co-adding the resulting power spectra, which were generated
before the white-noise component was added in the time domain. Were more
such spectra to be co-added, the resulting summation would tend to the
Lorentzian limit expected for this model.

Fig. 13 displays an example of an individual power spectrum: the left-
hand plot is the spectrum generated from the pure mode, without the addi-
tion of noise in the time domain; while the right-hand plot shows the spec-
trum generated with the white-noise component added in the time domain.

In order to assess whether or not the mode would be detectable in a given
spectrum, we use the 1/10th probability criteria. That is: over a reasonable
range — say 100 uHz — what S/N is required in a peak for there to be only a
10-per-cent chance of it appearing by chance (assuming a Boltzmann distri-
bution of powers in the frequency domain)? For the resolution in a 16-month
spectrum, the required S/N — which we take to be the maximum height in
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Figure 12: The result of co-adding 100 independent realizations of a simu-
lated ¢ = 1 doublet at n = 8. Here, power spectra generated without the
addition of white noise in the time domain have been used.
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Figure 13: An example of an individual power spectrum. Left-hand plot —
spectrum generated from the pure mode, without the addition of noise in the
time domain. Right-hand plot — spectrum generated with white noise added
in the time domain.
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for each of the 100 independent simulated spectra.

the peak, divided by the 1o power level of the spectrum over the investigated
range — is ~ 10.6. Fig. 14 shows the observed S/N for the lower-frequency
component of the simulated / = 1 mode in each of the 100 generated realiza-
tions.

Form the 100 simulations — admittedly a somewhat restricted population
from which to draw any definitive conclusions regarding probabilities — one
finds that one or other of the sectoral components lies below the 1/10th
threshold about 20 per cent of the time. Further, the chances of one of the
components lying above the threshold, while the other lies below it, are about
40 per cent. On only 2 out of the 100 simulations did both components lie
below the threshold.

So, I think one can conclude that, given the S/N in the data and the
assumed nature of the excitation, the appearance of the / = 1, n = 8 mode
in the MDI spectrum is not that unexpected.

6 p-mode amplitude and noise levels

6.1 Scale on the ordinate of the GOLF spectrum —
comparison with 32-month BiSON spectrum

In order to facilitate proper mode-power and noise-power comparisons be-
tween frequency spectra generated by different analyses of different data,
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one must be sure about the scaling used on the ordinate. This briefly sum-
marizes how the scaling was deduced for the 2-year GOLF spectrum shown
in the SOHO6/GONG’98 conference proceedings; In addition, I give mean
power levels and a rough detection threshold for the 32-month BiSON spec-
trum. I have also taken the opportunity to indulge myself — for the sake of
completeness — with a few general comments about scaling. This is where |
begin.

6.1.1 Mean-square (MS) and Power-Spectral-Density (PSD) scal-
ing

Here, I consider scalings where power in the time domain appears only in the
real-frequency side of the FF'T — this is often referred to as a “single-sided”
transform. The mean-square (MS) scaling is nicely illustrated by considering
the power spectrum one expects from a normally distributed noise source in
the time domain. Let the sample standard deviation of the “white” noise
source be . Its magnitude is determined by the distribution of noise-source
velocities v;: for NV points in the time series

o’ = Z(UZ —0)?/(N —1).

If the time series of white noise possesses a zero mean level, then for
N >> 1, the right-hand side of the above is simply the sum of the powers
P; in each real bin of the frequency domain of the Fourier transform of the
data. Therefore, the average power per bin in the frequency domain — due
to the Gaussian noise source — is given by

N/2

S_ RN/ = (N2,

(Note the factor N/2, i.e., all power appears in the real side of the transform.)
So:

e The mean power per bin is Pys = o0?/(N/2) — this I refer to as a
Mean-Square (MS) scaling.
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o Let t be the sampling cadence of the data, such that the total length
of the time series is T' = Nt. Each bin in the frequency domain will
have width 1/Nt. Therefore, the mean power per Hz will be given by:

o*[(N/2)
Ppsp = ————2 = 20% - 1.
PSD /Nt a

This is what I refer to as Power-Spectral-Density (PSD) scaling.

If the time series consists of several breaks in the data stream, such that
the fractional duty cycle is F, then the above expressions must be modified
to correct for the missing power. They will now be:

Pys = (0*/(N/2))/ F,

and

PPSDZQ'O'Q't/f.

Now consider a sine wave — with zero-to-peak amplitude A — forced through
a time series. If F = 1, the MS scaling will recover a height hys = A?/2.

6.1.2 Equivalent-Sine-Wave (ESW) Scaling

Consider a periodic signal forced through a time series with diurnal breaks.
Let the height of the peak in the power spectrum — given a Mean-Square (MS)
scaling — again be hys. Now, since power will be re-distributed into the first
diurnal sidelobes and their higher harmonics, this will actually underestimate
the true power in the signal. If A is the signal’s true, zero-to-peak amplitude,
then the true “mean-square” power we would expect is A?/2. The degree to
which hyg underestimates this will depend upon the fill, i.e.,

has = F - A2)2.

So, in order to get a proper estimate of the “true” power in the signal —
an Equivalent-Sine-Wave (ESW) scaling — we must correct for the fill twice
(i.e., once more than for the MS and PSD scaling). We can use either a
zero-to-peak or mean-square ESW scaling. The mean-square ESW scaling is
defined according to:
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sw = Pus/F = A%/2,
while the zero-to-peak ESW scaling is defined by:

Clearly, for F =1, P&y = Pus.

6.1.3 Scaling in the GOLF spectrum

Here, we refer to the low-frequency analysis of a 2-year GOLF power spec-
trum presented in the proceedings of the SOHO6/GONG 98 Workshop
(Gabriel et al., pp. 61-66). There is sufficient information given to allow
one to deduce that a MS scaling has been employed on the ordinate of the
spectrum shown in Fig. 2 of the paper.

Here, seven sine waves of slightly different frequency, but the same zero-
to-peak amplitude of A = 0.8cms™!, have been injected into the GOLF
time series. The resulting signals have peak powers in the range ~ 1100 to
~ 2800m?s ? Hz™!. Given the frequency resolution appropriate to a two-
year spectrum, these correspond to powers of ~ 0.44 and ~ 0.17 cm?s™2 per
bin. For these levels to be consistent with the statement:

..All 7 [peaks] can be clearly seen in the spectrum, but with a

dispersion of velocities, between 0.6 and 1.0 cms™"...

the spectrum must be scaled to give A%/2, i.e., it is MS scaled. (A MS
power level of ~ 0.17m?s™2 gives A ~ 0.6 mms™'; while ~ 0.44m?s™? gives
A~1.0mms™')

A crude estimate of the 1o power level in the GOLF spectrum — for the
presented range of 225 to 235 uHz — is about ~ 150m?*s™2 Hz~!'. This gives
a 100 threshold for A of ~ 7Tmms™.

6.1.4 Power levels in the 32-month BiSON spectrum

In addition to the 60-s cadence BiSON time series placed on the OSLO
account, [ have also generated a 32-month, 40-s-cadence time series that is
optimized for the low-frequency range (i.e., for 200 to 1000 Hz).
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A fair question to ask here would be: what do you mean by “optimized
for 200 to 1000 xHz”? In a time series constructed from data collected at
several sites, the spectral noise performance characteristics of the collected
data will differ, both between sites and with time, e.g., due to variations
in instrumental performance. If there is a noticeable frequency dependence,
then the data collected from certain network sites may be better suited to,
say, the study of low-frequency phenomena, than those collected at others.

This clearly prompts the question: in order to generate the highest-quality
power spectrum over a certain frequency range, which data should be used
and which rejected when constructing the corresponding time series? Clearly,
this demands data selection criteria that take into account the targeted fre-
quency range of a particular study, and the corresponding quality of the
observations made at each site over this range. The need to maximize the
duty cycle of the network implies that data should be used, where available,
from a given station. However, there is a trade-off between: (i) the intro-
duction of these data to the final data set; and (ii) the possibility that — if
they are of poor quality — their use may drive up the noise power level of
the combined network set to such an extent that this negates the apparent
advantage of using the data in the first place. I have used a formalism that
encapsulates the above in a quantitative manner to make (hopefully!) sensi-
ble choices about which data to keep in order to build the best time series
from the available data.

Here, L ask: (i) what is the mean power level near 220 yHz in the 32-month
BiSON spectrum, where one of the tentative GOLF detections lies; and (ii)
would the 0.8-centimetre-per-second sine waves injected into the GOLF time
series be detectable in the BiSON spectrum, were the same procedure to be
followed?

The 1o level between 218 and 222 pHz in the BiSON spectrum is ~
0.03cm?s™2 per bin (MS scaling). Now, if we inject a sine wave with am-
plitude A, we expect — for a commensurate signal — to recover FA%/2 (see
Section 6.1.2). To get the optimum trade off (see above) for this frequency
range, | chose to neglect a not-insubstantial fraction of available data — this
left a duty cycle for the 32-month BiSON time series of about 60 per cent.
So, we would expect our commensurate sine wave to give a peak with height
~ 0.19cm?s™2 per bin in our MS-scaled spectrum. This corresponds to a
S/N of about ~ 7.

1

To reach the 100 level would require a signal of amplitude A ~ 10 mms™".
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So, we conclude that, very roughly, an upper limit to the detection threshold
from this 32-month BiSON spectrum is about ~ 10mms~!. Were the duty
cycle of the time series to have been 100 per cent — with data of similar

quality — this would have been reduced to about ~ 8 mms™*.

6.2 Scale in the MDI spectrum

The scaling of the MDI data seemed to have been correctly done as we can
judge from the Frolich et al paper published in Boston. ThierryA performed
the scaling using the amplitude A as the output. The scaling performed by
ThierryT is yet to be known.

6.3 Noise level in GOLF

According to paper by Henney et al (1999) (submitted to A&A) | it seems
that the level computed in the previous agrees with the computation of
GOLF, i.e. about about ~ 150m?s™2 Hz™! in the range 225 to 235 uHz.

6.4 Reduction of noise in the MDI data

P.Scherrer invented new techniques for reducing the noise in the spectra.
One technique is to follow the solar rotation thereby reducing the effect of
granules coming in and coming out of the field. The other technique is to
use only the central part of the disk where the super- and meso-granulation
noises are smaller than at the limb. The latter technique was tried but did
not give any result due to the lack of time; we will try again.
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7 Appendix B: Mode frequencies

27



Table 1: Mode frequency for Nice model (S13-1-4406). [ = 0,1

[ mode type-n Frequency (in pHz) Splitting (in nHz)
0 ol 25761

0 p2 403.93

0 p3 535.38

0 pd 680.17

0 po 825.09

0 D6 972.59

0 7 1118.05

0 D8 1263.44

0 P9 1407.59

0 10 1548.44

0 b1l 1686.77

0 pl2 1822.23

0 pl3 1957.49

1 o5 107.67 212.
1 g4 125.96 210.
1 g3 151.26 210.
1 g2 189.00 213.
1 gl 259.75 242,
1 pl 284.21 396.
1 p2 448.31 433.
1 p3 596.84 429.
1 p4 746.56 427.
1 po 893.63 427.
1 p6 1039.45 428.
1 p7 1185.59 428.
1 P8 1329.69 429.
1 P9 1473.00 430.
1 pl0 1612.83 430.
1 pll 1749.48 431.
1 pl2 1885.26 431.
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Table 2: Mode frequency for Nice model (S13-1-4406). [ = 2

[ mode type-n Frequency (in pHz) Splitting (in nHz)
2 gl0 100.97 365.
2 g9 110.12 365.
2 g8 120.85 365.
2 g7 133.68 363.
2 g6 149.29 360.
2 g5 168.36 354.
2 o4 191.70 346.
2 o3 219.75 345.
2 g2 253.54 373.
2 gl 293.89 409.
2 f 352.14 366.
2 pl 382.44 348.
2 p2 514.29 391.
2 p3 664.34 411.
2 p4 811.71 420.
2 po 959.85 425.
2 p6 1105.12 427.
2 p7 1250.67 430.
2 P8 1394.67 431.
2 P9 1535.91 432.
2 p10 1674.66 433.
2 pll 1810.32 434.
2 pl2 1945.89 434.
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Table 3: Mode frequency for Nice model (S13-1-4406). [ = 3

[ mode type-n Frequency (in pHz Splitting (in nHz)
3 gl4 102.42 400.
3 gl3 109.07 401.
3 gl?2 116.57 401.
3 gll 125.06 401.
3 gl0 134.89 401.
3 g9 146.32 401.
3 g8 159.55 401.
3 o7 175.08 400.
3 g6 193.49 396.
3 g5 214.69 385.
3 g4 236.20 373.
3 g3 258.90 399.
3 g2 293.06 416.
3 gl 336.68 422.
3 f 392.17 406.
3 pl 415.66 384.
3 p2 564.60 403.
3 p3 718.47 416.
3 p4 866.94 423.
3 po 1015.00 427.
3 p6 1161.72 429.
3 p7 1306.79 432.
3 p8 1451.09 433.
3 P9 1591.56 434.
3 p10 1729.20 436.
3 pll 1865.30 436.
3 pl2 2001.16 436.
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Table 4: Mode frequency for Nice model (S13-1-4406). [ =4

[ mode type-n Frequency (in pHz) Splitting (in nHz)
4 gl8 102.74 414.
4 gl7 107.89 414.
4 gl6 113.54 414.
4 glh 119.77 414.
4 gl4 126.73 414.
4 gl3 134.54 415.
4 gl?2 143.27 415.
4 gll 153.08 415.
4 gl0 164.29 416.
4 29 177.25 416.
4 g8 192.06 416.
4 g7 209.13 415.
4 g6 228.85 410.
4 g5 248.51 385.
4 g4 262.89 398.
4 g3 288.16 422.
4 g2 324.09 424.
4 gl 364.64 429.
4 f 410.83 420.
4 pl 441.54 397.
4 p2 603.20 414.
4 p3 761.13 423.
4 p4 913.21 427.
4 ph 1062.11 431.
4 p6 1210.60 432.
4 p7 1356.37 434.
4 P8 1500.41 436.
4 P9 1641.00 436.
4 p10 1778.10 437.
4 pll 1914.83 438.
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Table 5: Mode frequency for Nice model (S13-1-4406). [ =5

[ mode type-n Frequency (in pHz) Splitting (in nHz)
5 g22 102.77 420.
5 g2l 106.95 420.
5 g20 111.46 420.
5 g19 116.36 421.
5 gl8 121.70 421.
5 gl7 127.54 421.
5 gl6 133.92 421.
5 glh 140.92 421.
5 gl4 148.68 421.
5 gl3 157.34 422.
5 gl?2 166.95 422.
5 oll 177.66 4929,
5 a10 189.77 423,
5 g9 203.63 423.
5 g8 219.29 423.
5 o7 237.08 4922,
5 g6 257.18 417.
5 g5 271.06 380.
5 g4 285.13 422.
5 o3 312.71 427,
5 g2 346.63 428.
5 gl 381.86 431.
5 f 420.57 425.
5 pl 467.75 407.
5 D2 637.84 421,
5 p3 798.92 428.
5 p4 954.33 430.
5 po 1104.88 433.
5 p6 1254.57 435.
5 p7 1401.64 436.
5 p8 1545.32 437.
5 P9 1685.97 438.
5 pl0 1823.40 438.
5 pll 1960.61 439.
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Table 6: Mode frequency for Nice model (S13-1-4406). [ = 6

[ mode type-n Frequency (in pHz) Splitting (in nHz)
6 225 106.23 424.
6 g24 109.99 424.
6 g23 114.00 424.
6 g22 118.31 424.
6 g2l 122.96 424.
6 g20 127.95 424.
6 g19 133.35 425.
6 gl8 139.21 425.
6 gl7 145.60 425.
6 gl6 152.55 425.
6 glh 160.13 425.
6 gl4 168.48 425.
6 ol3 177.73 426.
6 gl?2 187.93 426.
6 gll 199.20 426.
6 gl0 211.82 426.
6 g9 226.13 426.
6 g8 24211 427.
6 g7 260.04 427.
6 g6 280.09 421.
6 g5 288.25 387.
6 g4 305.29 428.
6 g3 331.93 429.
6 g2 362.97 430.
6 gl 393.00 432.
6 f 426.74 427.
6 pl 493.12 415.
6 D2 670.05 425,
6 p3 834.21 431.
6 pd 992.27 433.
6 ph 1145.00 435.
6 p6 1295.54 437.
6 D7 1443.77 437,
6 P8 1587.46 438.
6 9 1727.86 439.
6 pl0 1866315 439.




Table 7: Mode frequency for GONG model computed at Nice. [ = 0,1

[ mode type-n Frequency (in pHz) Splitting (in nHz)
0 ol 253.01

0 D2 404.48

0 p3 535.94

0 pd 60.57

0 po 825.36

0 p6 972.74

0 7 1118.15

0 D8 1263.51

0 P9 1407.62

0 10 1548.51

0 b1l 1686.80

0 pl2 1822.21

0 pl3 1957.45

1 g5 109.27 214.
1 g4 127.89 212.
1 g3 153.39 211.
1 g2 191.88 214.
1 gl 262.98 253.
1 pl 285.11 385.
| D2 448 AT 433,
1 p3 596.94 429.
1 p4 746.66 427.
1 po 893.71 427.
1 p6 1039.56 428.
1 p7 1185.62 428.
1 P8 1329.69 429.
1 D9 1472.97 430.
1 pl0 1612.72 430.
1 pll 1749.38 431.
1 pl2 1885.09 431.
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Table 8: Mode frequency for GONG model computed at Nice. [ = 2

[ mode type-n Frequency (in pHz) Splitting (in nHz)
2 gl0 102.60 365.
2 g9 111.85 365.
2 g8 122.75 364.
2 g7 135.74 363.
2 g6 151.48 359.
2 g5 170.70 353.
2 g4 194.36 345.
2 g3 222.32 346.
2 g2 256.51 376.
2 gl 296.53 408.
2 f 355.78 361.
2 pl 384.16 352.
2 p2 514.47 391.
2 p3 664.40 411.
2 p4 811.76 420.
2 po 959.87 425.
2 p6 1105.17 427.
2 7 1250.72 430.
2 P8 1394.70 431.
2 P9 1535.98 432.
2 p10 1674.67 433,
2 pll 1810.27 434.
2 pl2 1945.81 434.
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Table 9: Mode frequency for GONG model computed at Nice. [ = 3

[ mode type-n Frequency (in pHz) Splitting (in nHz)
3 gl4 104.13 400.
3 gl3 110.85 401.
3 gl?2 118.46 401.
3 gll 127.12 401.
3 gl0 137.05 401.
3 g9 148.58 401.
3 g8 162.01 401.
3 o7 177.72 399.
3 g6 196.24 395.
3 a5 217.34 334.
3 g4 238.68 374.
3 g3 261.65 402.
3 g2 296.84 416.
3 gl 340.11 422.
3 f 396.98 403.
3 pl 416.35 386.
3 D2 564.71 103.
3 p3 718.51 416.
3 p4 866.95 423.
3 po 1015.01 427.
3 D6 1161.69 429,
3 p7 1306.79 432.
3 p8 1451.05 433.
3 9 1591.54 434,
3 10 1729.20 436.
3 pll 1865.24 436.
3 pl2 2001.08 436.
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Table 10: Mode frequency for GONG model computed at Nice. [ =4

[ mode type-n Frequency (in pHz) Splitting in nHz
4 gl8 104.46 414.
4 gl7 109.68 414.
4 gl6 115.42 414.
4 glh 121.77 414.
4 gl4 128.82 415.
4 gl3 136.70 415.
4 gl?2 145.56 415.
4 gll 155.55 415.
4 gl0 166.90 416.
4 o9 179.93 416.
4 g8 194.94 416.
4 g7 212.22 414.
4 g6 231.93 408.
4 g5 250.62 382.
4 g4 265.42 404.
4 g3 291.73 422.
4 g2 328.39 424.
4 gl 368.25 429.
4 f 416.24 420.
4 pl 441.66 397.
4 p2 603.23 414.
4 p3 761.14 423.
4 p4 913.17 427.
4 ph 1062.09 431.
4 p6 1210.52 432.
4 p7 1356.29 434.
4 P8 1500.34 436.
4 P9 1640.89 436.
4 p10 1778.01 437.
4 pll 1914.71 438.
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Table 11: Mode frequency for GONG model computed at Nice. [ =5

[ mode type-n Frequency (in pHz) Splitting (in nHz)
5 g22 104.51 420.
5 g2l 108.74 420.
5 g20 113.33 420.
5 g19 118.30 421.
5 gl8 123.71 421.
5 gl7 129.63 421.
5 gl6 136.11 421.
5 glh 143.23 421.
5 gl4 151.10 421.
5 ol3 159.83 429,
5 gl?2 169.57 422.
5 gll 180.47 422.
5 o10 192.73 423,
5 g9 206.65 423.
5 g8 222.51 423.
5 g7 240.52 422.
5 g6 260.41 413.
5 g5 272.20 383.
5 g4 288.63 424.
5 g3 316.66 427.
5 g2 351.14 428.
5 gl 385.46 431.
5 f 426.19 424.
5 pl 467.80 407.
5 D2 637.83 421,
5 p3 798.90 428.
5 p4 954.25 430.
5 ph 1104.81 433.
5 p6 1254.49 435.
5 p7 1401.51 436.
5 p8 1545.23 437.
5 P9 1685.84 438.
5 pl0 1823.21 438.
5 pll 1960.44 439.
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Table 12: Mode frequency for GONG model computed at Nice. [ = 6

[ mode type-n Frequency (in pHz) Splitting (in nHz)
6 225 108.02 424.
6 g24 111.83 424.
6 g23 115.91 424.
6 g22 120.28 424.
6 g2l 124.99 424.
6 020 130.06 424,
6 g19 135.55 425.
6 gl7 147.96 425,
6 gl6 155.00 425.
6 glh 162.71 425.
6 gl4 171.17 425.
6 gl3 180.50 425.
6 gl?2 190.83 426.
6 gl0 215.06 426.
6 g9 229.41 426.
6 g8 245.58 427.
6 o7 263.74 427,
6 g6 283.28 427.
6 g5 289.19 413.
6 g4 309.16 395.
6 g3 336.04 428.
6 o2 367.57 429.
6 gl 396.56 430.
6 f 432.52 432.
6 pl 493.15 427.
6 D2 670.02 415,
6 p3 834.18 425.
6 p4 992.18 431.
6 ph 1144.88 433.
6 p6 1295.42 435.
6 p7 1443.61 437.
6 p8 1587.31 437.
6 9 1727.71 438,
6 pl0 1865.91 439.
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