Astrochemistry

and its uses in astronomy

Ewine F. van Dishoeck

Leiden Observatory/ Max-Planck Institüt fur Extraterrestrische Physik

ISSI workshop

Introduction

- Is interstellar chemistry useful? (Dalgarno 1986)
- Purpose of this talk: show that answer to this question is indeed YES!
- Molecular astrophysics forms an integral part in understanding formation of galaxies, stars, planets and perhaps even prebiotic material
- Illustrate here with a few examples

Where do we find molecules?

Orion HST image

Horsehead nebula

Dark clouds: sites of star formation

Mass of cloud can be as large as $10^4 - 10^6 M_{Sun}$

Dark clouds: 'coal sacks'

- 99% gas (H₂) 1% dust (0.1 µm silicates+carbonaceous)
- Temperature: ~10 K
- Density: ~10⁴ particles per cubic cm

• Unique chemical laboratory!

How do we study what is happening inside clouds?

Optical

Infrared

Long wavelengths!

Alves et al. 2001

From visible to infrared light

HH 46 star-forming region

Types of clouds

- Diffuse and translucent clouds
 - Observed primarily by absorption lines at visible (since 1900's) and UV wavelengths (since 1970's)
- PDRs
 - Dense clouds exposed to intense UV radiation, typically at least 100x average interstellar radiation field
 - Observed by far-infrared and submm emission lines
- Cold dark clouds
 - Observed by mm emission lines
- Warm star-forming regions/hot cores
 - Observed by submm/mm emission lines
 - IR absorption for ices
- Shocks
 - Observed by IR and submm/mm emission
- Circumstellar shells evolved stars
- Protoplanetary disks
- Comets, planetary atmospheres $T \sim 8-2000 \text{ K}, n(\text{H}_2) \sim 10^2 \cdot 10^{13} \text{ cm}^{-3}$ $I_{\text{UV}} \sim 0.2 \cdot 10^7$

NGC 1333 outflows

Q: effects of outflows, jets, shocks on chemistry?

Ha, [SII] Walawender, Bally, Reipurth 2006 Spitzer/IRAC Jørgensen et al. 2006

Ingredients of clouds

Element	Abundance	Element	Abundance
H	1.00	Mg	4.2 ×10 ⁻⁵
Не	0.075	Al	3.1×10 ⁻⁶
С	2.5×10-4	Si	4.3×10 ⁻⁵
Ν	6.3×10 ⁻⁵	S	1.7×10 ⁻⁵
0	4.5×10-4	Ca	2.2×10 ⁻⁶
Na	2.1×10-6	Fe	4.3×10 ⁻⁵

Note: abundances of C,N,O recently revised downward by almost factor of 2; other elements TBD

Approach

Observations + Instrumentation

Models

 $C + \neg > C \neg > CO$

Laboratory

Submillimeter telescopes

APEX Chajnantor

Pico Valeta, Spain

Infrared telescopes

Very Large Telescope, ESO, Paranal

Space observatories

Spitzer

Large part of infrared and submm blocked by atmosphere (i.p. H₂O, O₂ and CO₂)

Orion line surveys

Antenna Temperature (K)

Tercero & Cernicharo 2007 Blake, Sutton et al. 1985 Schilke. Comito et al. 1993, 1997

....

Frequency (MHz)

Orion line surveys

Tercero & Cernicharo

Orion line surveys

Q: how far does chemical complexity go? Prebiotic molecules?

Inventory of gas-phase molecules

Number of Atoms												
2	3	4	5	6	7	8	9	10	11	13		
H_2 AlF AlCl C_2 CH ⁺ CN CO ⁺ CP CSi HCl NH NO NS NaCl OH PN SO ⁺ SiN SiO SiS CS HF	$\begin{array}{c} C_{3} \\ C_{2}H \\ C_{2}O \\ C_{2}S \\ CH_{2} \\ HCN \\ HCO \\ HCO^{+} \\ HCO^{+} \\ HOC^{+} \\ HOC$	$c-C_{3}H$ $l-C_{3}H$ $C_{3}N$ $C_{3}O$ $C_{3}S$ $C_{2}H_{2}$ $CH_{2}D^{+?}$ HCCN $HCNH^{+}$ HNCO HNCS $HOCO^{+}$ $H_{2}CO$ $H_{2}CS$ $H_{3}O^{+}$ NH_{3} SiC_{3}	$\begin{array}{c} C_5 \\ C_4 H \\ C_4 Si \\ 1 - C_3 H_2 \\ c - C_3 H_2 \\ C H_2 C N \\ C H_4 \\ H C_3 N \\ H C_2 N C \\ H C O O H \\ H_2 C N \\ H_2 C H N \\ H_2 C C O H \\ H_2 N C N \\ H N C_3 \\ S i H_4 \\ H_2 C O H^+ \end{array}$	$C_{5}H$ $I-H_{2}C_{4}$ $C_{2}H_{4}$ $CH_{3}CN$ $CH_{3}NC$ $CH_{3}OH$ $CH_{3}SH$ $HC_{3}NH^{+}$ $HC_{2}CHO$ $NH_{2}CHO$ $C_{5}N$	C_6H CH_2CHCN CH_3C_2H HC_5N $HCOCH_3$ NH_2CH_3 $c-C_2H_4O$	CH ₃ C ₃ N HCOOCH ₃ CH ₃ COOH? C ₇ H H ₂ C ₆	CH ₃ C ₄ H CH ₃ CH ₂ CN (CH ₃) ₂ O CH ₃ CH ₂ OH HC ₇ N C ₈ H	CH ₃ C ₅ N? (CH ₃) ₂ CO NH ₂ CH ₂ COOH?	HC ₉ N	HC ₁₁ N		

-Abundances vary from 10⁻⁴ to 10⁻¹¹ w.r.t. H₂ -Abundances vary from region to region

Some recent detections

Negative ions

McCarthy et al. 2006

Propene in TMC-1

Marcelino et al. 2007

Importance of molecules

- Molecules as *physical* diagnostics of temperature, density, mass, velocity, redshift, star-formation activity,...
- Molecules as *chemical* diagnostics of ionization rate, temperature (history), evolutionary state protostars, ...
- Astrochemical evolution clouds => planets
- Molecules as coolants
- Basic chemistry under exotic conditions Collisions
 Radiation

 CO (J=0) CO(J=1) CO(J=0)

Molecules as physical diagnostics

Pure rotational transitions

Higher transitions probe higher temperatures and densities

Derivation of abundances

Abundance can vary with position in cloud

Molecules as probe of star- and galaxy formation at high redshifts

From *z* ~ **0 to** *z* ~ **5**

in just 5 years

CO at z = 2

(Eisenhardt et al. 1996)

FIR background

(Guiderdoni et al. 1999)

SCUBA sources

(Hughes et al. 1998)

Dust, CO and [C II] at z=6.4!

Sloan survey optical image Contours: dust

IRAM 30m MAMBO Bertoldi et al. 2003 VLA and IRAM PdB Walter et al. 2003

=> - Molecular astrophysics started shortly after Big Bang
 - Dust and molecules are tracers of mass, dynamics, T, star formation activity of earliest galaxies

[C II] detection at z=6.4!

Rest wavelength 157 μm

 [C II] will be primary probe of z>7 galaxies, when bright CO lines have shifted out of ALMA frequency range
 Luminosity 0.1-1% of L_{FIR}

Ubiquitous PAH emission

- PAH's dominate mid-IR spectra => redshift indicators
- PAH emission requires UV for excitation => diagnostic starburst vs. AGN

Allamandola , Tielens et al. Léger, Puget

Role of molecular clouds in galaxy

EXCITATION CONDITIONS IN MOLECULAR CLOUDS

Detection of exoplanets: renewed interest in lifecycle of gas and dust

Based on Ehrenfreund & Charnley 2000

R.Ruiterkamp 2001

Cold cores: heavy freeze-out

Direct detection ices at infrared

From 10⁵ to <0.1 L_{sun} objects!

-Overall ice composition remarkably similar toward high- and low-mass YSOs -Large abundance variations in minor species NH₃, OCN⁻, CH₃OH on 1000 AU scales

Q: Origin large abundance variations? Formation complex organics on grains? Is UV needed?

Gibb et al. 2000 Boogert et al. 2004, 2007 Young et al. 2004

Infrared absorption

Infrared: vibrational transition of gases and solids

Processing of ices produces complex molecules?

Fraser, Collings & McCoustra Rev. Sci. Inst. 73, no.5, 2161 (2002) **Cold cores: extreme deuteration: tracer of temperature and freeze-out**

Strong H_2D^+ and D_2H^+ in cores

Caselli et al. 2003 Vastel et al. 2006 Stark et al. 1999 H₃⁺, D₃⁺: IR Triply deuterated ammonia: ND₃

Lis et al. 2002 van der Tak et al. 2002

Interstellar H₃⁺ as tracer of ionization

Geballe & Oka 1996 McCall et al. 2003 vdTak & vD 2000 Pety et al. 2004

- Cosmic ray ionization rate varies from cloud to cloud?
- Strong H_3^+ absorption in diffuse clouds implies high cosmic ray ionization rate ~few x 10⁻¹⁶ s⁻¹

Q: Is this an evolutionary sequence? *Can chemistry constrain timescales?* Current data suggest phase of heavy depletions (pre-+protostellar) lasts only ~10⁵ yr

Hot cores/corinos: Inner envelope chemistry Evaporated ices and complex organics around solar-mass star

IRAS 16293-2422

vD et al. 1995, Ceccarelli et al. 2000

IK

Abundance profiles

Molecules as chemical clocks

Charnley et al. 1992, 1997 Wakelam et al. 2004, 2006

Importance of water

- Dominant form of oxygen => affects all species
- Important role in energy balance as coolant
- Diagnostic for 'hot spots'
- Origin of water on Earth (through HDO/H₂O)
 - Chemistry of life occurs in water

Gas phase water

o-H₂O 557 GHz 1₁₀-1₀₁

Melnick et al. 2000

- SWAS and ODIN (~3'): Water emission is weak => most water frozen out on grains in cold clouds

Herschel (10-40'') =>

- zoom in on protostars
- many more lines
- isotopes H₂¹⁸O, H₂¹⁷O, HDO!

Q: what is water cycle from clouds => cores => protostars => disks?

Water and organics in planet-forming zones of disks

- Probe chemistry in inner 10 AU => planet-forming zones
- Gas is hot: 400-700 K
- Abundances factor 1000 larger than in cold clouds

Hot water emission in disk atmospheres!

T~1000 K => 0.1-1 AU

Also hot HCN, C₂H₂ seen in emission

AS 205 disk in Oph Spitzer observations

Carr & Najita 2008 Salyk, Pontoppidan et al. 2008

Near-IR OH/H₂O from ground

Note similarity in CO and H₂O line widths! Salyk et al. 2008

Where is water in protoplanetary disks?

Q: use water as tracer of radial and vertical mixing; 'snow' line?

Future facilities: the best is still to come

Infrared

SIRTF 2003

ASTRO-F 2005

Herschel 2008

Far-infrared/THz

SOFIA 2011

JWST 2013

64 x 12m antenna's; construction started 2003 Early observing 2010; completion 2012

Issues for this workshop

- Identify most important rates needed to address astrophysical and astrochemical questions
 - No use spending a lot of time and money on unimportant rates
 - No use spending a lot of time and money on unimportant molecules
- Quantify uncertainties as functions of parameters
 - Some easy, some difficult
 - May vary with temperature, wavelength,
 - *Critical* evaluation of existing data (latest number is not always the best....)
- Educate astrochemists in underlying chemical physics
 - Manage their expectations of what can/cannot be achieved
- Educate (astro)chemists about proper comparison with observations
 - Make sure all relevant processes are included
 - Awareness that abundances are not constant with position
 - Sometimes physics poorly understood, not chemistry (CH⁺)