INTERNATIONAL An international team to create reference models and data sets for Moon seismology

Raphael F. Garcia (*,1), Peimin Zhu (2), Na Zhao (2), Mark Wieczorek (3), Renée Weber (4), Daoyuan Sun (5), Attilio Rivoldini (6), Ludovic Margerin (7), Ceri Nunn (8), Yosio Nakamura (9), Philippe Lognonné (10), Taichi Kawamura (11), Amir Khan (12), Angela Giuliano Marusiak (13), and Mélanie Drilleau (10)

(*) presenting author, (1) ISAE-SUPAERO, DEOS/SSPA, Toulouse, France (raphael.garcia@isae.fr), (2) CUG, Wuhan, China, (3) OCA, Nice, France (mark.a.wieczorek@gmail.com), (4) MSFC, Huntsville, USA (renee.c.weber@nasa.gov), (5) USTC, China (sdy2014@ust.cedu.cn), (6) OMA, Bruxelles, Belgium (Attilio.Rivoldini@oma.be), (7) IRAP, Toulouse University, Toulouse, France (ludovic.margerin@irap.omp.eu), (9) UTIG, University of Texas, Austin, USA (yosio@ig.utexas.edu), (10) IPGP, Paris, France, (11) NAOJ, Oshu-city, Japan (t.kawamura@naoa.c.jp), (8) LMU, Munich, Germany (ceri.nunn@gmail.com), (12) ETH, Zurich, Switzerland (amir.khan@erdw.ethz.ch), (13) Department of Geology, University of Maryland, USA (marusiak@umd.edu)

We present here the work performed by an international team on Moon seismology which gathered with the support of ISSI Bern and Beijing. Our goal is to provide to the scientific community the following elements:

- processed data sets and an analysis of their error bars

- internal structure models produced by using these processed data sets and up to date a priori information

- an analysis describing what we know and what we don't know about the internal structure of the Moon, in order to support and drive future seismological deployments

We will present the review work of a priori information and internal structure models, and the preliminary analysis of processed data sets (travel times, deep moonguake stacks...) performed up to know.

The strategy for data analysis and reference model production will also be presented. We conclude on our statement to support future lunar internal geophysics missions.

Review of internal structure models:

As a first step, we reviewed internal structure models of the Moon and underlying assumptions. Table 1 and Figures 1 and 2 summarize the previous models published and their underlying assumptions.

Model Nickname	TK74	NK83	KM02	LG03	BN06	WB11	GR11	KH14	MS15	Best estimate
Data / prior										
Body wave travel times	P only KV73ab	P+S multiple	P+S NK83	P+S+Smp own+VK01	P+S+Smp LG03+VK01	S only own	P + S LG03	None	P + S LG03	ISSI team data set
Electromag. sounding	None	None	None	None	None	None	None	H83	None	
prior source locations	KV73ab	None	None	None	None	LG03	LG03	None	LG03	
Mass (×10 ²² kg)	None	None	None	None	None	None	7.3458	7.3463 ±0.00088	7.34630 ±0.00088	7.34630 ±0.00088
I/MR^2	None	None	None	None	None	None	0.3932 ±0.0002	0.393112 ± 0.000012	0.393112 ±0.000012	0.393112 ±0.000012
k_2	None	None	None	None	None	None	0.0213 ± 0.0025	0.0232 ± 0.00022	$0.02422 \\ \pm 0.00022$	0.02277 ±0.00058 (clastic)
h_2	None	None	None	None	None	None	0.039 ±0.008	None	None	0.048 ±0.006
prior crust seismic model	None	None	None	None	None	LG03	LG03	None	None	unknown
prior crust density	None	None	None	None	None	None	2.6-3.0	None	None	2.5-2.6

Table 1: A priori information and data sets used to create the various models presented in figures 1 and 2.

Figure 1: Zoom on the first 80km of the Moon internal structure inferred by various spherically symmetric models. From left to right, P and S wave velocities and density as a function of depth inside the Moon.

Previously published models disagree mainly on the inferred crust structure, deep mantle and core. If we exclude the earliest results, there is a general agreement in the top and mid-mantle ranges.

Review of seismic attenuation models:

Table 2 review the various seismic attenuation models published and underlying assumptions.

					Dissipation			
Reference	Freq. (Hz)	Freq. Dep.	Depth Range (km)	D (km ² /s)	Q _p	Q,	Observable	Method
Latham et al. (1970a)	1	Yes	< 20	2.3-2.5		3600	Seismogram envelope	Diffusion theory
Latham et al. (1970b)	1	Yes	< 20			3000	Coda Decay	Diffusion theory?
Dainty et al. (1974)	0.45	Yes	< 25	8 1 ?		5000	Seismogram Envelope	Diffusion Theory
	1		< 14	0.9 ± 0.4		5000		
Dainty et al. (1976a)	1 - 10	No	0 - 500		5000			
			500 - 600		3500		Average P-wave	Inter-station
			600 - 950		1400		amplitude	spectral ratio
			950 - 1200		1100			
Dainty et al. (1976b)	1 - 10	No	< 520		4800 ± 900		Average P-wave	Inter-station
		No	520 - 1000		1400 ± 300		amplitude	spectral ratio
Nakamura et al. (1976)	1 - 8	No	60 - 300		4000		Average P-wave	Inter-station
			300 - 800		1500		amplitude	spectral ratio
Nakamura (1976)	4			2.6×10^{-2} , 3.3×10^{-2}		1600 - 1700	Maximum amplitude	Diffusion theory
	5.6		< 2	2.2×10^{-2} , 2.8×10^{-2}		1900 - 2000	decay	for
	8			1.8×10^{-2} , 2.2×10^{-2}		2300	with distance	moving sources
Nakamura and Koyama (1982)	1	Yes	< 400		> 4000	4000 - 150000	Average P, S	Single + Inter-station
	8	$Q_* \propto f^{0.7\pm 1}$			4000 - 8000	7000 - 15000	amplitude	Spectral fitting
Simplified from	0.5	Yes	0 - 61	$1.9 \pm 0.5 - 8.5 \pm 3$		2500 ± 25		Diffusion theory
Gillet et al. (2017)			61 - 95	$16 \pm 3 - 21 \pm 5$		Id.	Rise time	
			95 - 113	270 ± 200		Id.	and coda Q of	
			113 - 147	$365 \pm 150 - 1000 \pm 600$		Id.	seismogram envelope	
			> 147	4585 ± 2000		Id.		

Table 2: Seismic attenuation estimates by various authors using various methods that constrain different depth and frequency ranges

Comparison of quake

locations: Our team gathered quake locations from various researchers in order to estimate quake location errors. As already pointed out by previous studies these errors appear to be quite large, in particular if constraints on the velocity models are relaxed like in Hempel et al. (2012).

INTERNATIONA

SPACE SCIENCE

Compilation of body wave arrival time picks:

Our team created a compilation of previously published P and S arrival times for the events with enough arrivals to allow a location.

Deviations relative to median arrival times are presented for surface and shallow events in figure 3, and for S-P times of deep Moon quakes in figure 4.

Figure 4: P and S arrival time deviations relative to median value for surface and shallow events

Comparison of deep moonquake stacks

Stacks for deep moonquakes have been created by three different teams over the years of Apollo data processing. Our international team gathered the stack waveforms and started a comparison of these waveforms.

Conclusions:

• Inferred internal structure models disagree on crust structure, deep mantle and core, because the data are lacking to constrain deep regions.

- •Arrival time picks present a low variability (<2 s) except S waves outliers.
- Deep moonquake stacks by various teams present very similar waveforms.

Next steps:

- Invert the same data sets with the same a priori assumptions using different model parametrization to infer resolved and unresolved regions
- Finish writing two papers describing respectively data sets and models
- Provide body wave arrival time picks and deep moonquake stacks waveforms to the scientific community
- Provide recommendations and support for future seismological experiments on the Moon surface
- Initiate a core science team for an international lunar seismological network

Fig. 3 Locations of moonquakes at the nearside of the Moon.(A) displays the meteorite and artificial impacts, shallow moonquakes. Dark triangles represent the locations of 4 seismic statoms. (B)-(D) displays the source locations of the DMQ's from different studies. The color denotes the event depth. The difference between the locations is marked by the blue line.