

POLAR SCIENCE FOR PLANET EARTH

Response of the lower atmosphere to changes in the global atmospheric electric circuit associated with solar wind variability

Mai Mai Lam, Gareth Chisham & Mervyn P. Freeman

ISSI, Bern, Switzerland March 26 , 2014

Outline

- Background and context Mansurov effect: polar surface pressure variations & variations in B_y Well-established, but little understood Global atmospheric electric circuit?
- Results
 Polar lower-atmosphere, time lag study
 Global surface pressure study
- Conclusions

Chain of events: time scale day-to-day

What can change J_z ?

What can change J_z ?

The Mansurov effect

Solar-wind-induced ionospheric electric potential (SWIP)

- Changes in product of B_y & solar wind velocity $v_x \Rightarrow$ changes in SWIP at high latitudes.
- Variations in SWIP associated with ionosphere-to-ground p.d. variations.

Polar solar-wind-induced ionospheric electric potential

Spatial change in ionospheric electric potential with change in IMF By

Large interplanetary magnetic field (IMF) $5 < |\mathbf{B}| < 10 \text{ nT}$

> Change in IMF B_y (large negative to large positive)

Pettigrew et al. (2010) 1998 – 2002 SuperDARN radar database

Spatial change in ionospheric electric potential with change in IMF By

Pettigrew et al. (2010) 1998 – 2002 SuperDARN radar database

Spatial change in ionospheric electric potential with change in IMF By

Change in IMF *B_y* (large negative to large positive) Change in ionospheric potential (+ve S)

Pettigrew et al. (2010) 1998 – 2002 SuperDARN radar database

The Mansurov effect

Burns et al. 2008 Station data

11 Antarctic 7 Arctic

Verified by me with BAS archive.

Arctic (mlat >83) : 1999-2002

The Mansurov effect

Arctic (mlat >83): 1999-2002

Change of Δp and Φ_{SW} with increasing IMF B_y has same sign within a given hemisphere

-ve in N +ve in S

Global electric circuit in Earth's atmosphere

- Global thunderstorms: vertical electric potential difference $V_{\rm T} \sim 250 \text{ kV}$
- Additionally, solar-wind-driven component

$$V_i = V_T + V(\Phi_{SW})$$

- $V_{\rm i}$ drives horizontal currents along surface and ionosphere.
- Closed by ionosphere-ground global fair-weather currents J_Z

J_z can affect droplet growth rate at layer cloud base

Why might that indicate involvement of electricity?

lonosphere

- $J_z \Rightarrow$ electrification of cloud edges
- Condensation rate increased by charged condensation nuclei...
- ...vary with vertical current J_z
- Possible responses in scattering and emissivity, albedo

Three links between solar variability and atmosphere

1. UV-ozone

Effect of solar UV variability on **stratospheric** O_3 , hence radiation balance

2. EPP-ozone

Effect of energetic particle precipitation (EPP) from space environment on **stratospheric** O_3 , hence radiation balance

3. Mansurov (GEC-cloud?)

Action of variations in global atmospheric electric circuit on cloud dynamics, hence radiation balance, heat budget...

Spatial patterns

- Explore spatial distribution rather than spectral analysis
- Initial global, surface pressure, zero timelag study

$$\Delta ar{p}_O(\lambda,\phi) = ar{p}_+(\lambda,\phi) - ar{p}_-(\lambda,\phi)$$

Polar $\Delta ar{p}_O$ resembles riangle V above 74 $^{\circ}$ geomagnetic latitude

Orange circles at 70°

2D pressure is ordered by IMF B_y at mid latitudes

$$\Delta ar{p}_O(\lambda,\phi) = ar{p}_+(\lambda,\phi) - ar{p}_-(\lambda,\phi)$$

L

 $\Delta ar{p}_O(\lambda,\phi)$

>1.		Table 1. Field signific	cances for WRS test	between \bar{p}_+ and \bar{p}
0.5		Region	Latitude range (°)	Field significance (%, 2 s.f.)
		Arctic	70.0 N–90.0 N	1.9
		Mid latitude (north)	30.0 N–67.5 N	2.1
0.0		Equatorial	- 27.5 S-27.5 N	23
		Mid latitude (south)	$30.0 \ {\rm S}{-}67.5 \ {\rm S}$	0.4
-0.5		Antarctica	$70.0 \text{ S}{-}90.0 \text{ S}$	0.3
	2.	Globe	90.0 S–90.0 N	2.0
<-1. hPa	The second se			

Orange circles at 30° and 70°

2D surface pressure ordered by IMF B_y in north resembles QS Rossby wavefield

 $\Delta ar{p}_O(\lambda,\phi)$

Orange circles at 30° and 70°

Quasi-stationary Rossby (planetary) waves

 $\sim 4 - 6$ waves at mid-latitudes (m = 4 - 6)

2D surface pressure ordered by IMF B_y in south resembles Rossby wavefield

Mid-latitude Mansurov effect could be important

- Size of $\Delta \bar{p}_O(\lambda, \phi)$ at mid latitudes similar to that in polar regions: ~ 1 2 hPa
- Corresponding zonal winds similar to initial uncertainties in ensemble numerical weather predictions of ~ 1 m/s

Change in latitudinal wavelength 2D QS Rossby waves

- \bullet Coriolis force varies linearly in co-latitude θ
- Stationary solutions for wind in longitudinal and latitudinal directions
- Integer number of azimuthal Rossby waves, m
- Geostrophic approximation horizontal motion balanced by pressure force

Wavelength in latitudinal direction:

$$L_{\theta} = \frac{2\pi R \sin \theta}{\left[(4\omega^2 R^2 \rho \cos \theta \sin^3 \theta) / (\mathrm{d}\bar{p}/\mathrm{d}\theta) - m^2 \right]^{1/2}}$$

depends on meridional gradient of zonally-averaged pressure, which changes with IMF B_y

Accounts for Rossby-wave-like form of $\Delta ar{p}_O(\lambda,\phi)$

2-stage mechanism

i. Change in polar pressure field involving global atmospheric electric circuit

2-stage mechanism

- i. Change in polar pressure field involving global atmospheric electric circuit
- ii. Resulting change in L_{θ} via zonal wind change

co-latitude $\theta = 90^{\circ} - \lambda$

2-stage mechanism

IMF $B_y < 0 \rightarrow \text{switches to}$ IMF $B_y > 0 \leftarrow$ $V \downarrow \qquad V \downarrow$

co-latitude $\theta = 90^{\circ} - \lambda$

• In varying between the two IMF By states, we vary between two similar planetary wave patterns.

Implications

- Rossby wave field key in determining trajectories of storm tracks
- Configuration of North Atlantic jet stream particularly susceptible to changes in forcing...
- ... as are location/timing of blocking events? (\Rightarrow periods low/high pressure)

Importance of small effects (nonlinear dynamics)

Summary

- Changes in IMF B_v correlate to significant changes in pressure:
 - in troposphere and base stratosphere (Antarctic)
 - on timescale of days
 - peak in correlation occurs with higher timelag at high altitudes
- Globally, strongest and simplest behaviour in Antarctic
- Difference in mean surface pressure for high positive and negative IMF B_v:
 - polar mean resembles ionospheric electric potential
 - mid-latitude mean resembles planetary wave field
- 2-stage mechanism (i) polar, (ii) mid-latitude:
 - (i) direct action of ionospheric potential on cloud dynamics via GEC
 - (ii) associated changes to atmospheric pressure modify planetary wave field via zonal wind
- NCEP Reanalysis data provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from http://www.esrl.noaa.gov/psd/
- OMNI data obtained from GSFC/SPDF OMNIWeb interface <u>http://omniweb.gsfc.nasa.gov</u>
- SuperDARN model of ionospheric potential created by Ellen Pettigrew