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Energetic particle precipitation

Earth’s magnetic field directs charged particles into polar regions

EPP affects both ionosphere and middle atmosphere
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Different types of particle precipitation

From a presentation by Randall et al., 2008
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SPE: example of geomagnetic cutoff

Rodger et al., Journal of Geophysical Research (2006)
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Effects of energetic particle precipitation (EPP)

energetic particles precipitate into atmosphere
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Ozone connects to temperature and dynamics
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Sodankylä Ion and Neutral Chemistry (SIC)
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SIC: D-region ion chemistry

36 positive ions, 29 negative ions, 400 reactions
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Changes in hydrogen and nitrogen species

Particles precipitate into middle atmosphere

↓ ↓ ↓ ↓ ↓

– Positive ion chemistry dissociates N2 and H2O

– Negative ion chemistry redistributes NOy (inside the blue box)

– From Verronen and Lehmann, Ann. Geophys., 2013.
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SIC: example of HOx production paths
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SIC: example of HNO3 production paths
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P/Q: relative production/loss rates from SIC
P/Q = (ionic production - ionic loss) / ionization rate

– H2O becomes the limiting factor at upper altitudes

– At night: more negative ions, more HNO3 production
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P/Q: relative production/loss rates from SIC
P/Q = (ionic production - ionic loss) / ionization rate

– Note: Zero net change of NOy (incl. HNO3) by negative ion chemistry

– Net production of NOx is by positive ion chemistry
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Outstanding issue: nitric acid in CCMs

– From Jackman et al., Atmos. Chem. Phys., 2008
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MLS/Aura observations

– Microwave Limb Sounder, measures emissions at mm and sub-mm wavelengths

– Launched in July 2004 into a near-polar orbit, observations cover latitudes between

82◦S – 82◦N, day and night

– Can be used to monitor temperature and more than 15 trace gases,

including O3, OH, and HNO3

– First satellite instrument providing continuous observations of

mesospheric OH and HO2
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Nitric acid: comparisons

Modeling: Sodankylä Ion and Neutral Chemistry

– Uses MLS temperatures, neutral density, and water vapor.

– 80◦N/December–January, no diurnal variations.

– Results reduced to MLS altitude resolution using averaging kernels.

Observations: data version 3.30, SZA > 100◦ (night-time)

– Data are daily means, uncertainty is standard error of the mean.

– Useful range up to 1.5 hPa (≈50 km) in normal conditions, but can be extended into

mesosphere when high amounts are observed.

– Mesospheric HNO3 data have not been validated.

– Comparison is made with the highest amount of HNO3 observed after the peak of

SPE forcing, assuming that it is least affected by dynamics.
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SIC vs. MLS: nitric acid, December 2006 SPE
Before (left), during (middle), and after (right) the SPE forcing
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– The model overestimates the HNO3 increase on Dec 9 at 60–65 km.

– Below 50 km the agreement is OK.

– For more details, see Verronen et al., J. Geophys. Res., 2011.
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MLS: HNO3 (top) and CO (bottom)
Daily avarages at approx. 60 km (2500 K)
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Odd hydrogen: comparisons

Modeling: Sodankylä Ion and Neutral Chemistry

– Uses MLS temperatures, neutral density, and water vapor.

– Latitudes >60◦N, solar proton events of January 2005 and December 2006.

OH observations: data version 3.30

– Useful range up to 0.0032 hPa (≈90 km).

– Mesospheric data have been validated by Pickett et al., JGR, 2008.

– Data are averaged at 65–75◦N, for day and night separately.

MLS was the first instrument that provided continuous and
global observations of mesospheric HOx.
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SIC vs. MLS: hydroxyl, January 2005
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SIC vs. MLS: OH
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– From Verronen et al., Geophys. Res. Lett., 2006
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Ion chemistry and its effects in models

• Although there are uncertainties, the understanding of ion chemistry seems
reasonably good for particle effect modelling.

• Our full knowledge is not used when parameterizing ion chemistry in 3-D
atmospheric models, typically:
– HOx and NOx production is included,
– HNO3 and HNO2 production is not included,
– Chlorine activation is not included

(Winkler et al., Geophys. Res. Lett., 2009).

• Two ways to include ion chemistry:
– Parameterization. Simple and good in all situations?
– Full ion chemistry. Computationally too expensive?
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