

Direct effects of particle precipitation and ion chemistry in the middle atmosphere

P. T. Verronen Finnish Meteorological Institute, Earth Observation Helsinki, Finland

Contents of presentation

- 1. Middle atmospheric effects of energetic particle precipitation (EPP)
- 2. Sodankylä Ion and Neutral Chemistry Model (SIC)
 - Analysis of the ion chemistry scheme
 - Parameterization of EPP-related changes in HO_x and NO_y
- 3. SIC model versus MLS/Aura observations:
 - SPEs of January 2005 and December 2006
 - Production of HNO_3 and OH
- 4. Summary

Energetic particle precipitation

Earth's magnetic field directs charged particles into polar regions EPP affects both ionosphere and middle atmosphere

Different types of particle precipitation

From a presentation by Randall et al., 2008

SPE: example of geomagnetic cutoff

Proton Cutoff Energies at 100km altitude: Kp=4

Rodger et al., Journal of Geophysical Research (2006)

Effects of energetic particle precipitation (EPP)

Ozone connects to temperature and dynamics

Sodankylä Ion and Neutral Chemistry (SIC)

36 positive ions, 29 negative ions, 400 reactions

Changes in hydrogen and nitrogen species

Particles precipitate into middle atmosphere $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

- Positive ion chemistry dissociates N_2 and H_2O
- Negative ion chemistry redistributes NO_y (inside the blue box)
- From Verronen and Lehmann, Ann. Geophys., 2013.

SIC: example of HO_x production paths

$$N_{2} + p^{+}(E) \rightarrow N_{2}^{+} + e^{-} + p^{+}(E - \Delta E)$$

$$N_{2}^{+} + O_{2} \rightarrow O_{2}^{+} + N_{2}$$

$$O_{2}^{+} + O_{2} + M \rightarrow O_{4}^{+} + M$$

$$O_{4}^{+} + H_{2}O \rightarrow O_{2}^{+}(H_{2}O) + O_{2}$$
...
$$O_{2}^{+}(H_{2}O)_{2} + H_{2}O \rightarrow H_{3}O^{+}(OH)H_{2}O + O_{2}$$

$$H_{3}O^{+}(OH)H_{2}O + H_{2}O \rightarrow H^{+}(H_{2}O)_{3} + OH$$

$$H^{+}(H_{2}O)_{3} + H_{2}O + M \rightarrow H^{+}(H_{2}O)_{4} + M$$

$$H^{+}(H_{2}O)_{4} + e^{-} \rightarrow H + 4H_{2}O$$

$$---- ---$$

$$Net : H_2O \rightarrow OH + H$$

SIC: example of HNO_3 production paths

$$N_{2} + p^{+}(E) \rightarrow N_{2}^{+} + e^{-} + p^{+}(E - \Delta E)$$

$$O_{2} + O_{2} + e^{-} \rightarrow O_{2}^{-} + O_{2}$$

$$O_{2}^{-} + O_{3} \rightarrow O_{3}^{-} + O_{2}$$

$$O_{3}^{-} + CO_{2} \rightarrow CO_{3}^{-} + O_{2}$$

$$CO_{3}^{-} + NO_{2} \rightarrow NO_{3}^{-} + CO_{2}$$

$$NO_{3}^{-} + H_{2}O + M \rightarrow NO_{3}^{-}(H_{2}O) + M$$

$$NO_{3}^{-}(H_{2}O) + HNO_{3} \rightarrow NO_{3}^{-}(HNO_{3}) + H_{2}O$$

$$NO_{3}^{-}(HNO_{3}) + H^{+}(H_{2}O)_{4} \rightarrow HNO_{3} + HNO_{3} + 4H_{2}O$$

$$----$$

$$Net : H_{2}O + O_{3} + NO_{2} \rightarrow OH + HNO_{3} + O_{2}$$

P/Q: relative production/loss rates from SIC

P/Q = (ionic production - ionic loss) / ionization rate

- H_2O becomes the limiting factor at upper altitudes
- At night: more negative ions, more HNO_3 production

P/Q: relative production/loss rates from SIC

P/Q = (ionic production - ionic loss) / ionization rate

- Note: Zero net change of NO_y (incl. HNO_3) by negative ion chemistry
- Net production of $\ensuremath{\mathsf{NO}}_{\ensuremath{\mathsf{x}}}$ is by positive ion chemistry

Outstanding issue: nitric acid in CCMs

- From Jackman et al., Atmos. Chem. Phys., 2008

MLS/Aura observations

- Microwave Limb Sounder, measures emissions at mm and sub-mm wavelengths
- Launched in July 2004 into a near-polar orbit, observations cover latitudes between $82^{\circ}S 82^{\circ}N$, day and night
- Can be used to monitor temperature and more than 15 trace gases, including O_3 , OH, and HNO₃
- First satellite instrument providing continuous observations of mesospheric OH and HO₂

Nitric acid: comparisons

Modeling: Sodankylä Ion and Neutral Chemistry

- Uses MLS temperatures, neutral density, and water vapor.
- 80°N/December–January, no diurnal variations.
- Results reduced to MLS altitude resolution using averaging kernels.

Observations: data version 3.30, SZA $> 100^{\circ}$ (night-time)

- Data are daily means, uncertainty is standard error of the mean.
- Useful range up to 1.5 hPa (\approx 50 km) in normal conditions, but can be extended into mesosphere when high amounts are observed.
- Mesospheric HNO₃ data have not been validated.
- Comparison is made with the highest amount of HNO₃ observed after the peak of SPE forcing, assuming that it is least affected by dynamics.

SIC vs. MLS: nitric acid, December 2006 SPE

Before (left), during (middle), and after (right) the SPE forcing

- The model overestimates the HNO_3 increase on Dec 9 at 60–65 km.
- Below 50 km the agreement is OK.
- For more details, see Verronen et al., J. Geophys. Res., 2011.

MLS: HNO₃ (top) and CO (bottom) Daily avarages at approx. 60 km (2500 K)

Odd hydrogen: comparisons

Modeling: Sodankylä Ion and Neutral Chemistry

- Uses MLS temperatures, neutral density, and water vapor.
- Latitudes $>60^{\circ}$ N, solar proton events of January 2005 and December 2006.

OH observations: data version 3.30

- Useful range up to 0.0032 hPa (\approx 90 km).
- Mesospheric data have been validated by Pickett et al., JGR, 2008.
- Data are averaged at 65–75°N, for day and night separately.

MLS was the first instrument that provided continuous and global observations of mesospheric HO_x .

SIC vs. MLS: hydroxyl, January 2005

SIC vs. MLS: OH

- From Verronen et al., Geophys. Res. Lett., 2006

Ion chemistry and its effects in models

- Although there are uncertainties, the understanding of ion chemistry seems reasonably good for particle effect modelling.
- Our full knowledge is not used when parameterizing ion chemistry in 3-D atmospheric models, typically:
 - $HO_{\!\times}$ and $NO_{\!\times}$ production is included,
 - HNO_3 and HNO_2 production is not included,
 - Chlorine activation is not included

(Winkler et al., Geophys. Res. Lett., 2009).

- Two ways to include ion chemistry:
 - Parameterization. Simple and good in all situations?
 - Full ion chemistry. Computationally too expensive?