## Observed Statistical Ozone Response to Particle Precipitation

**Mick Denton** 

## Outline

- **1. Introduction**
- **2.** Background
- **3. Solar/Geomagnetic Activity**
- **4.** Ozonesondes and Satellites
- **5.** *Results*
- **6.** Summary

## **Origins of This Work**

#### Work carried out up to now began over 10 years ago...

## **The Beginning**

## "My God, Space is Radioactive!"

(Quote attributed to Ernie Ray)

#### Discovery

Geiger counter on-board first US satellite : Explorer 1.

Detected by Sputnik III but data not analysed.

Two belts with "slot" between them.





Pickering, Van Allen, von Braun.

**Inner Radiation Belt** 

Dominated by protons (E >50 MeV)
 Formed by CRAND
 Inner helt is stable even time

Inner belt is stable over time.

#### **Outer Radiation Belt**

- Dominated by electrons (E >0.1 MeV)
  Formed by <u>???</u>
  - Highly variable in time and space.

#### Understanding

"The Radiation Belt and Magnetosphere" by Wilmot Hess, 1968.

>2500 papers on the subject at that time.

**Page 16:** "We have a pretty complete picture of the radiation belt..."



#### **Solar Wind Speed : OMNI Statistics**



#### **Solar Wind Speed : OMNI Statistics**



#### What Controls the Electron Flux in the Outer Radiation Belt?

It has long been known that the electrons we count in the outer radiation belt fluctuate wildly....the flux can increase/decrease by up to five orders of magnitude in a 24 hour period. Why?



One things we do know about electrons in the outer belt is that the flux measured tends to increase when the solar wind speed is high.

#### What Controls the Electron Flux in the Outer Radiation Belt?

#### High-speed Solar-wind Streams (HSSs)

These are similar, **repeatable** structures in the solar wind that are related to coronal holes - the source of fast solar wind.



Source of 'fast' wind



#### What Controls the Electron Flux in the Outer Radiation Belt?



#### 54 Years Later...

#### NASA launches the Radiation Belt Storm Probes (RBSP) mission (Van Allen Probes)



Members of the RBSP/ECT team at KSC for the launch of the RBSP satellite.

#### So What Are the Major Loss Mechanisms?

#### • Outwards radial transport (minutes)

Particles drift outwards and collide with the magnetopause

#### • EMIC-induced losses to the atmosphere (minutes)

Interactions driven by anisotropies in plasma

#### • Chorus-induced losses to the atmosphere (microbursts <1 second)

Cyclotron-resonant interaction leads to rapid losses over short time scales

#### • Plasmaspheric hiss losses (~days)

Recent evidence supports the idea that hiss evolves from discrete chorus waves.

Differentiating between the different loss mechanisms is not simple... (VAN-ALLEN / BARREL / VLF /, etc.)

## **Origins of This Work**

# If particles in the radiation belts precipitate in the atmosphere, they must have an effect.

**Can we quantify this effect and set upper/lower bounds for its importance?** 

## **Particle Precipitation**



## Why Do We Care?

**Two Main Issues For Stratospheric/Mesospheric Ozone** 

- 1. Separating the cause of "natural" and "un-natural" variations (i.e. separating natural variations from anthropogenic changes and/or space-weather related effects)
- 2. Predicting future ozone levels and climate (usually via global models)

Regardless of how good models may be, <u>OBSERVATIONS</u> provide direct in-situ measurements of natural/un-natural O<sub>3</sub> variations.

## **Measuring Stratospheric Ozone**

✤ Ozonesonde

observations from four

sites: 1989-2016

**\*** Study annual and

seasonal changes in

ozone

**\*** Effect of SPEs on O<sub>3</sub>

**\*** Effect of SSWs on O<sub>3</sub>



Launching a 'sonde' from Sodankylä, Finland.

Quantify statistical changes in stratospheric ozone during these events.

Most study to date has been single events. Difficult to remove seasonal bias in the data.



#### **TYPICAL WINTER TRANSPORT IN THE NORTHERN HEMISPHERE**



## THE NORTHERN HEMISPHERE FOLLOWING A SUDDEN STRATOSPHERIC WARMING





**Examine Two Types of Event:** 

(a) Solar Proton Events (SPEs).

Precipitation creates extra/new  $NO_x$  in the mesosphere Descent of this additional  $NO_x$  in the winter PV Greater reduction in stratospheric ozone (less ozone) <u>191 events</u> (1989-2016)

(b) Sudden Stratospheric Warmings (SSWs).

Disruption of the PV Rapid increase in temperature Reduced descent of NO<sub>x</sub> Reduced winter destruction of ozone (more ozone) <u>37 events</u> (1989-2016)

**Examine Two Types of Event:** 

(a) Solar Proton Events (SPEs).

Precipitation creates extra/new  $NO_x$  in the mesosphere Descent of this additional  $NO_x$  in the winter PV Greater reduction in stratospheric ozone (less ozone) <u>191 events</u> (1989-2016)

(b) Sudden Stratospheric Warmings (SSWs).

Disruption of the PV Rapid increase in temperature Reduced descent of NO<sub>x</sub> Reduced winter destruction of ozone (more ozone) <u>37 events</u> (1989-2016)

(c) But what about HSSs...?

#### **Introduction to Solar Proton Events (SPEs)**

- Solar Proton Events are high fluxes of protons due to energetic events in the solar wind (shocks).
- Energetic protons penetrate into the atmosphere to depths that are dependent on the incident energy (More energetic = lower altitude).
- For energies > ~few MeV the protons will penetrate to the mesosphere/stratosphere where they can create NO<sub>x</sub> and HO<sub>x</sub> families of particles.
  - **HO**<sub>x</sub> is short-lived (**DIRECT route to ozone destruction**)
  - **NO<sub>x</sub>** is long-lived in darkness (INDIRECT route to ozone destruction).

#### **JUL-OCT**

 Compare ozone partial pressure as a function of time before/after the arrival of SPEs

\* 191 SPEs between 1989-2015

\* Compare results against random events

 Subtract monthly mean from each datapoint to reveal seasonally adjusted changes in O<sub>3</sub>

LITTLE CHANGE IN OZONE WHEN PV IS NOT PRESENT





#### **JUL-OCT**

 Compare ozone partial pressure as a function of time before/after the arrival of SPEs

\* 191 SPEs between 1989-2015

\* Compare results against random events

 Subtract monthly mean from each datapoint to reveal seasonally adjusted changes in O<sub>3</sub>

LITTLE CHANGE IN OZONE WHEN PV IS NOT PRESENT





#### **JAN-APR**

 Compare ozone partial pressure as a function of time before/after the arrival of SPEs

191 SPEs between1989-2015

\* Compare results against random events

 Subtract monthly mean from each datapoint to reveal seasonally adjusted changes in O<sub>3</sub>

RAPID DECREASE IN OZONE WHEN PV IS PRESENT





#### **JAN-APR**

 Compare ozone partial pressure as a function of time before/after the arrival of SPEs

191 SPEs between1989-2015

\* Compare results against random events

 Subtract monthly mean from each datapoint to reveal seasonally adjusted changes in O<sub>3</sub>

RAPID DECREASE IN OZONE WHEN PV IS PRESENT





#### **Summary of results for:**

Ny-Ålesund (70% in PV) Sodankylä (50% in PV) Lerwick (20% in PV) Boulder (0% in PV)

• No change in ozone for random events

• No change in ozone in summer (no PV)

• Stratospheric ozone decreases rapidly for in excess of 30 days, but only for sites in PV (not Boulder). Overall decrease is ~10%.



## **AURA/MLS v Ozonesondes**











1991-2016

2004-2018



**Ozonesonde and AURA/MLS Agree Reasonably Well...** 







#### **Ozonesonde Data from Four Sites**

Same ozonesonde balloon data as before, now plotted as "volumetric mixing ratio".

#### We note:

- Rapid increase in ozone mixing ratio with the onset of SSWs
- Strongest increase at sites in the PV.
- No effect for sites outside the PV.



Denton et al., 2018

#### **Summary of Ozonesonde Observations**



Seasonally-detrended results.

- ~20% O<sub>3</sub> increase (above mean)
- ~15°C increase in T (above mean)

O<sub>3</sub> chemistry is complex and temperature dependent

## **NASA AURA/MLS Ozone Observations**

- Rapid increase in ozone with the onset of SSWs
- Strongest increase at sites in the PV.
- No effect for sites outside the PV.
- Increase in O<sub>3</sub> occurs in stratosphere and mesosphere.
- Good quantitative agreement between ozonesondes and balloons (~20% increase in O<sub>3</sub>).



Denton et al., 2018

## **Summary (SSWs)**

> We've quantified the average statistical changes that occur during SSWs

> Mean duration of increase in T in stratosphere is ~40 days.

➤ ~20% increase in O<sub>3</sub> (above annual mean) that persists ~40 days

➢ We've also looked at effects on other chemistry (NO<sub>2</sub>, H<sub>2</sub>O, etc) and neutral winds.

> Essential to account for seasonal variations to quantify underlying changes!

#### **Overall Summary**

We've attempted to quantify the average statistical increase/decrease of  $O_3$  in response to SPEs and SSWs.

**SPEs reduce ozone during polar winter** (*descent in polar vortex*)

**SSWs increase ozone during polar winter** (*disrupt polar vortex*)

We are unaware of any study that has taken both these effects into account.

What happens if a SPE is quickly followed by a SSW?

#### What Questions Need to be Addressed?

- **→** We don't understand the competing effects of SSWs and SPEs
  - $\rightarrow$  It's not clear if O<sub>3</sub> changes for SPEs are coupled directly to PFU

→ No-one has clearly demonstrated that stratospheric O<sub>3</sub> responds at all to energetic particle precipitation from the magnetosphere/radiation-belts

#### Thanks

R. Kivi T. Ulich M. A. Clilverd C. J. Rodger P. von der Gathen M. Lester

