Middle-atmosphere chemical response to Solar Proton Events (SPEs) in 1989–2012 in WACCM-D simulations.

Niilo Kalakoski niilo.kalakoski@fmi.fi Finnish Meteorological Institute February 4, 2020

Solar Proton Events: an Introduction

- Bursts of high-energy solar particles
 - dominated by protons
 - tens or hundreds of MeVs/nucleon
 - from few hours to few days
 - most common during solar maximum (11-year cycle)
- Cause ionization and dissociation in the atmosphere
 - altitude range roughly 30-90 km, depending on energy
 - impact seen mostly in polar areas
- Impact O₃ chemistry via HO_x and NO_x reactions

WACCM-D

- Whole Atmosphere Community Climate Model (WACCM)
- Component of Community Earth System Model (CESM)
 - Option for fully interactive Ocean, Land and Sea-Ice components
 - We generally run atmosphere only, other components included as input data
- WACCM-D adds an expanded lower ionosphere (D-region) ion chemistry scheme
 - Verronen et al., 2016
 - Included as out-of-the-box configuration in new version of CESM.

Figure: Monika Szelag

WACCM-D SPE superposed epoch analysis

- Specified dynamics WACCM–D vs Standard WACCM–SD
- Superposed epoch analysis
 - Zero-epoch: first day GOES EPS proton flux exceeds 10 pfu [particles/(cm² s sr)]
 - Closely separated SPEs complicate interpretation
 - Solar maxima years overpresented \Rightarrow Solar cycle signals
- 1989–2012, Events larger than 100 pfu ⇒ 66 SPEs after some additional screening
- Difference between SPE epochs and same epochs from climatology ⇒ Effect of SPEs
- Difference between WACCM–D epochs and REF epochs ⇒ Effect of WACCM–D
- Considering polar caps (60-90 degrees geographical, area-weighted)
- ACPD: Kalakoski et al., Statistical response of middle atmosphere composition to solar proton events in WACCM-D simulations: importance of lower ionospheric chemistry

Events and Climatology

SPE – Climatology, Northern Polar Cap

SPE – Climatology, Southern Polar Cap

WACCM-D - Reference, Northern Polar Cap

WACCM-D – Reference, Southern Polar Cap

Details

FINNISH METEOROLOGICAL INSTITUTE

WD_SPE_STAT: Conclusions

- Response from WACCM-D to SPE:s looks reasonable
- WACCM-D makes a difference
 - Reduced HO_x around 0.01 hPa \Rightarrow Ozone loss reduced around 0.01 hPa (SH)
 - Increased Cl_x above 1 hPa ⇒ Ozone loss increased around 1 hPa
 - Dramatically increased HNO₃
 - Increased NO_x in mesosphere, change in downward transport not robust.
 - H₂O loss at 0.01 hPa?
- Response dominated by larger events, SPEs smaller than 100 pfu only add noise.

