Odd hydrogen response thresholds for indication of solar proton and electron impact in the mesosphere and stratosphere

T. Häkkilä, M. E. Szeląg, N. Kalakoski
P. T. Verronen, A. Kero
L. Millán,

Finnish Meteorological Institute, Finland University of Oulu, Finland
Jet Propulsion Laboratory, USA

Energetic particle precipitation (EPP) - Atmospheric effects

The concept: particles ionize middle atmosphere, leading to an ozone response.

Mesospheric odd hydrogen: indicator of EPP

- nighttime $\mathrm{HO}_{\mathrm{x}}\left(=\mathrm{H}+\mathrm{OH}+\mathrm{HO}_{2}\right)$ concentration is relatively low. \Longrightarrow It can be enhanced by moderate EPP forcing.
- HO_{x} has a relatively short chemical lifetime (hours) below $\approx 80 \mathrm{~km}$. \Longrightarrow Returns quickly to normal values after EPP forcing stops.

Odd hydrogen follows closely increases and decreases of EPP forcing

- In the case of major solar proton events, HO_{x} increases are relatively easy to detect due to the large fluxes and polar cap coverage of the forcing.

MLS/Aura observations

- Microwave Limb Sounder, measures emissions at mm and sub-mm wavelengths
- Launched in July 2004 into a near-polar orbit, observations cover latitudes between $82^{\circ} \mathrm{S}-82^{\circ} \mathrm{N}$, day and night
- Can be used to monitor temperature and more than 15 trace gases, including $\mathrm{O}_{3}, \mathrm{OH}$, and HNO_{3}
- First satellite instrument providing continuous observations of mesospheric OH and HO_{2}

SPE impact: model vs. observations at $70^{\circ} \mathrm{N}$

SIC = Sodankylä Ion and Neutral Chemistry Model (1-D)

Community Earth System Model (CESM)

CESM / WACCM model

Whole Atmosphere Community Climate Model (WACCM)

- Global, 3-D chemistry-climate model
- Range of altitude 0-140 km
- Fully interactive chemistry, radiation, and dynamics
- Horizontal resolution is 1.9° latitude by 2.5° longitude.
- Vertical resolution: 1-2 km below stratopause, 3.5 km above
- The chemical time step is 30 minutes.
- Ionization sources include
- EUV and soft X-ray photons,
- photoelectron impact
- SPE, GCR, MEE, Kp aurora
- D-region ion chemistry (WACCM-D)
- In this study: we run SD-WACCM-D, i.e. with MERRA specified dynamics.

MLS OH data binned into magnetic latitudes

Altitude-Adjusted Corrected Geomagnetic Coordinates (for a definition, see e.g. Shepherd, 2014)

Daily climatology removed from OH data

SPEs of the MLS/Aura era

SPE indicator $=$ daily average $>10 \mathrm{MeV}$ flux from GOES observations.

Threshold detection method: example

SPE v. OH, mlat 70, 74.7 km

Connection between

- SPE indicator
- OH amount

Shown for

- WACCM-D (black)
- MLS OH (red)

Solid lines = linear fit dashed lines $=\mathrm{OH}$ median $+0.5 \times$ STD

Detection thresholds: nighttime

Latitudes:

- $55^{\circ}-85^{\circ}$ geomagnetic.

Altitudes:

- 35-80 km (WACCM-D)
- 50-85 km (MLS)

Thresholds:

- 50-175 protons/cm2/s/sr

Detection thresholds: daytime

Latitudes:

- $55^{\circ}-85^{\circ}$ geomagnetic (WACCM-D)
- only $75^{\circ}-85^{\circ}$ in NH

Altitudes:

- 50-75 km (WACCM-D)
- 50-70 km (MLS)

Thresholds:

- 130-300 protons/cm2/s/sr

The end

