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Transverse oscillations of coronal loops

m First observed with TRACE in 1999
Nakariakov et al. (1999); Aschwanden et al. (1999)

m After an energetic disturbance (e.g., a flare), the whole loop displays
a damped transverse oscillation
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Theoretical interpretation

1. Quasi-mode

m Transverse oscillation is the MHD Kink mode
e.g., Edwin & Roberts (1983)

m Damping due to resonant absorption in the Alfvén continuum
e.g., Ruderman & Roberts (2002); Goossens et al. (2002)
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3. Time-dependent numerical simulations

m Full temporal behavior
m Complicated effects: second order, nonlinear, etc. ..
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2. Spatial Fourier Expansion

m The superposition of Alfvén continuum modes builds up the global
kink motion

m The damping of the global motion is caused by the phase mixing of
the Alfvén modes
e.g., Cally (1991); Soler & Terradas (2015)
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3. Time-dependent numerical simulations

m Full temporal behavior

m Complicated effects: second order, nonlinear, etc. ..




Quasi-mode



Homogeneous magnetic cylinder
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The kink mode of a homogeneous tube

m Global transverse motion of the flux tube

m No damping
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Transversely non-uniform cylinder

m A nonuniform layer is added

Photosphere Z
=
~ 1.1 %Loop core ‘ Tranéition ‘ Exterior %
<
p. L||n B =
=Y
Corona Loop
0,4§ L i 3
0.0 0.5 1.0 1.5 2.0
/R
m / =0 — Abrupt density jump
m /| = 2R — Fully nonuniform tube




The quasi-mode

The kink mode still exists as a global mode (quasi-mode)
~exp(—iwt)
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The quasi-mode

The kink mode still exists as a global mode (quasi-mode)
~exp(—iwt)

The kink mode is resonant in the Alfvén continuum
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Computing the quasi-mode

Thin tube (L/R > 1) + thin boundary (//R < 1) approximations
(e.g., Ruderman & Roberts 2002; Goossens et al. 2002)
m Correction to the kink mode of the homogeneous tube
m Analytic expressions for P and tp/P
m TT is OK: observations typically show that L/R ~ 10?
m There is no observational support for TB!
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Full solution of eigenvalue problem for arbitrary parameters

m Resistive MHD eigenmode: Fully numerical

(e.g., Van Doorsselaere et al. 2004; Arregui et al. 2005)
m Ideal MHD quasi-mode: Semi-analytic

(Soler et al. 2013, 2014)



TT + TB approximations

m Thin tube (L/R > 1), thin boundary (//R < 1) approximation
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Beyond TTTB

m Governing equation for P’ in the 3 = 0 approximation

aP’+<p(r) (W —wi(r) n72> P
or

B2/u 2

m General solution: P’(r) = AoP{(r) + SoP3(r)

m Frobenius series around the resonance position, w = wa(ra)
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Quasi-mode perturbations
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Quasi-mode damping rate

m Sinusoidal transition
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Error due to the TB approximation: P

error %
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Error due to the TB approximation: T

error %
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Flux of energy

m Resonant absorption is an ideal process — Wave energy is conserved
m Damping # Dissipation
m Radial flux of energy
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Linear numerical simulation

m Energy transfer from transverse (kink) motions to azimuthal
(rotational) motions — “Mode conversion”

m Phase mixing of rotational motions

t= q.0/7,

—a2

Goossens et al. (2014)



Spatial Fourier Expansion



An alternative view

m Based on the paper Phase mixing and surface waves: a new
interpretation by P. S. Cally, J. Plasma Physics 45, 1991

m Adapted to a cylindrical flux tube

m No global mode, no assumed coordinated motion of the flux tube

m Plasma motions described by the superposition of Alfvén continuum
modes

m Full temporal evolution is retained

m Damping of the kink oscillation due to phase mixing

m Conversion from transverse to rotational motions consistently
described




m Linear incompressible MHD equations
m Compressibility of the kink mode (Goossens et al. 2009)
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m Linear incompressible MHD equations
m Compressibility of the kink mode (Goossens et al. 2009)
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m Alfvén wave operator:
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m Linear incompressible MHD equations
m Compressibility of the kink mode (Goossens et al. 2009)
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Solution in the uniform regions

m Decoupled Alfvén waves and surface waves
[fAE»r =0
'CSEr =0

m m = 1 surface wave (kink mode)
m Internal plasma (r < R—1):

Er(ryt) = At (kor) ~ Ai(t) if kR<«1
m External plasma (r > R+ %):

1
Er(ryt) = Ac(t) K] (kor) ~ Ae(t)ﬁ if k:R <1
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Solution in the nonuniform boundary

m Alfvén waves and surface waves are unavoidably coupled
m Generalized Fourier series
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Alfvén continuum modes

m Temporal evolution of coefficients a,(t) ~ exp (—iwt)
m Generalized eigenvalue problem: Ha = w’Ma
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Time-dependent solution

m Phase 1: Damping of the global transverse motion

m Phase 2: Motions become rotational in the nonuniform layer
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Damping of the global motion (quasi-mode)
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m Excellent agreement, specially for thin nonuniform layers

m For thick layers, undamped oscillations after the global motion
damped
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Flux of wave energy to the nonuniform boundary

Emergy Density
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m Smaller and smaller spatial scales are generated as time increases
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Energy cascade
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Conclusion



Comparison

1. Quasi-mode

m The kink oscillation is understood as a global mode that is damped
due to resonant absorption in the Alfvén continuum

2. Spatial Fourier Expansion

m Temporal evolution of kink oscillations built up as the superposition
and phase mixing of Alfvén continuum modes
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Comparison

1. Quasi-mode

m The kink oscillation is understood as a global mode that is damped
due to resonant absorption in the Alfvén continuum

m Only phase 1 (damping of global motion) is described

m Simple expressions for P and Tp are obtained in the TTTB
approximation

. Spatial Fourier Expansion

m Temporal evolution of kink oscillations built up as the superposition
and phase mixing of Alfvén continuum modes

m Both phase 1 (damping of global motion) and phase 2 (generation
of small-scale rotational motions) are described

m No simple expressions for P and T are obtained




Final Remarks

What have we learnt?

m Resonant absorption and phase mixing are two aspects of the same
underlying physical process

m Energy cascade from large scales to small scales
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m Nonlinearity: KHI can generate shorter scales and enhance
dissipation and heating




Final Remarks

What have we learnt?

m Resonant absorption and phase mixing are two aspects of the same
underlying physical process

m Energy cascade from large scales to small scales

Missing Ingredients

m Dissipation of the small scales
m Associated heating

m Nonlinearity: KHI can generate shorter scales and enhance
dissipation and heating

m References:
Soler, Goossens, Terradas, & Oliver 2013, ApJ 777, 158
Soler, Goossens, Terradas, & Oliver 2014, ApJ 781, 111
Soler & Terradas 2015, ApJ 803, 43



