Dynamic magneto-seismology: Avenues and roadblocks

The Leverhulme Trust

Richard Morton ISSI Meeting 2017

<u>Outline</u>

Avenues with CoMP Doppler velocities

- Power spectra & wave damping
- Coronal seismology with propagating waves
 - Magnetic fields
 - •Flows in the corona

Roadblocks in the Chromosphere(?)

- Attempts at spicule seismology
- Attempts at fibril seismology

How prevalent are Alfvénic waves in the corona?

Clearly everywhere - CoMP is a unique tool to study them!

CoMP basics & Data products

$$v = \frac{w^2}{4d}(a-b),$$

$$w = \sqrt{\frac{-2d^2}{a+b}}, \quad a = \ln \frac{I_3}{I_2}, \qquad b = \ln \frac{I_4}{I_2},$$

$$i = I_2 \exp \frac{v^2}{w^2},$$

Solar rotation removed from Doppler shift by 5th order polynomial fit to eastwest trend (Tian et al. 2013).

Infrared doppler measurements

Velocity signal appears to follow magnetic field and propagate at average local Alfvén speed (Tomczyk et al., 2007, Tomczyk & McIntosh 2009).

Predominantly uni-directional - evidence for frequency dependent reflection.

Bi-directional - evidence for frequency dependent damping (Verth et al., 2011).

Relation to waves in SDO/AIA

Damping of coronal waves

Opportunity to probe damping length-scales and plasma parameters.

One published example to date (many good candidates in CoMP archive - so opportunity for study, more man power needed!!).

Damping of coronal waves

Opportunity to probe damping length-scales and plasma parameters.

One published example to date (many good candidates in CoMP archive - so opportunity for study, more man power needed!!).

Verth et al (2010)

Figure 2. Power ratio against frequency best fit using Equation (7) with CoMP data. Fixed parameters are $v_{\rm ph} = 0.6$ Mm s⁻¹ and L = 250 Mm. Best-estimated parameters are $P_{\rm out}/P_{\rm in} = 0.91$ and $\xi_{\rm E} = 2.69$ (solid line). The 95% confidence intervals for the simultaneous functional bounds are shown by the dashed lines. Note that in the CoMP data S/N decreases with increasing frequency.

Least squares-fit of:

$$\left\langle P(f) \right\rangle_{ratio} = \frac{P_{out}(f)}{P_{in}(f)} \exp\left(\frac{2L}{v_{ph}\xi_E}f\right)$$

Verwichte et al (2013) also examine results.

A quick foray into statistics

In general, 'standard' techniques used in data analysis assume uncertainties of measurements are Normally distributed.

Probably true if averaging over many measurements!

In general not true - ignorance can lead to poor estimate of results and confidence levels.

<u>Example</u>

Fitting a function to data points.

Maximise Likelihood

$$L(\theta, x_i) = \prod_{i=1}^n f(x_i \mid \theta)$$

For Normally distributed data:

$$L(\theta, x_i) = \prod_{i=1}^{n} (2\pi\sigma_i^2)^{-1/2} \exp\left(-\frac{(O(y_i) - M(\theta, x_i))^2}{\sigma_i^2}\right)$$

i.e., minimise normalised sum of squared errors.

A quick foray into statistics (Time-series)

When using discrete Fourier transforms, using N observations to estimate N parameters.

Hence DFT not a consistent estimator of power (i.e., N increases, accuracy doesn't.)

Real & Imaginary DFT terms ~ $N(0,\sigma^2)$

 $\hat{P}(f_j) \propto P(f_j) \frac{\chi_2^2}{2}$

Variance scales with P! For power law type spectra in corona, uncertainties are heteroscedastic.

To reduce variance:

* smooth power spectrum (average f bins) - lose resolution

* average over number of time-series.

Averaging over large number of series, uncertainty of mean tends to Normal distribution (Central limit theorem).

A quick foray into statistics (Time-series)

When using discrete Fourier transforms, using N observations to estimate N parameters.

Hence DFT not a consistent estimator of power (i.e., N increases, accuracy doesn't.)

Averaging over large number of series, uncertainty of mean tends to Normal distribution (Central limit theorem).

How do we improve accuracy of results?

Best method is still unclear!

Ratio of two exponential distributions is distributed as $1/(z+1)^2$ where z=x/y (z > 0) (Cauchy-esq).

Maximum likelihood of above distribution - requires good estimate of true power to understand uncertainties on power!

Or fit log of ratio - sharply peaked function (Logistic - nearly Gaussian but fatter tails) & uncertainties homoscedastic!

Currently trialling with Monte Carlo tests.

Perhaps Helioseismology can teach us something (e.g., Appourchaux 2014).

Global coronal seismology: magnetic field

Use density ratio from line pair.

Check with Potential Field extrapolations.

Model comparison (e.g., Cranmer et al., 2007)

Global coronal seismology: magnetic field

<u>Global coronal seismology:Flows</u> Estimating the solar wind speed

0.20

Global coronal seismology:Flows Flows along coronal loops

CoMP 2013-12-23

Plenty of measurable counter-propagating waves - so should be able to get reasonable diagnostics of flows.

Flow profiles and speeds may be useful for constraining heating models. (Negates problems with imagers/Doppler shifts!)

Potential to look for enhanced/reduced damping factors due to flows.

Can we do seismology in the chromosphere?

Morton et al (2012)

Chromospheric features

Seismology with spicules

Morton (2014)

Seismology with spicules

Morton (2014)

What sort of density profile is required?

What about fibrils?

What about fibrils?

BIFROST - Leenaarts et al (2012)

Problems with chromospheric seismology!

Need a MS inversion that incorporates damping & stratification.

WKB approx. is not realistic. Plasma parameters can change rapidly.

Many options for internal & external density profiles - how can this be narrowed down/incorporated into inversions?

Flows are inherent to chromospheric structures (as probably any solar structure).

Is it time for an MS inversion model al la radiative transfer (e.g., NICOLE)?