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The ballooning magnetohydrodynamic (MHD) modes have been often suggested as a
possible instability trigger of the substorm onset, and a mechanism of compressional
waves in the outer magnetosphere and magnetotail. Commonly these disturbances are
characterized by the local dispersion equation which is widely applied for the descrip-
tion of ULF oscillatory disturbances and instabilities in the nightside magnetosphere. In
realistic situations, especially in the inner magnetosphere, the magnetospheric plasma is
composed of two components: background ”cold” plasma and ”hot” component. The bal-
looning disturbances in a two-component plasma immersed into a curved magnetic field
are described with the system of coupled equations for the Alfvén and slow magnetosonic
modes. We have reduced the basic system of MHD equations to the dispersion equation
for the small-scale in transverse direction disturbances, and applied WKB approximation
along a field line. As a result, we have derived a dispersion equation which can be used for
geophysical applications. In particular, from this relationship the dispersion, instability
threshold, and stop-bands of the Alfvén and slow magnetosonic modes in two-component
plasma have been examined.

1. Introduction: Ballooning modes in the near-Earth plasma

The ballooning instability could be a possible trigger of the substorm explosive phase
as was suggested by Miura et al. (1989) and Ohtani & Tamao (1993). Later this idea
was extensively elaborated (Liu 1997; Cheng & Qian 1994; Agapitov 2007). Favorable
conditions for the growth of this instability emerge at a steep plasma pressure drop held
by curved field lines. Such a condition may occur before substorm onset on strongly
extended field lines (Zhu et al. 2009). Though the main substorm power is released via
reconnection in the distant magnetotail, the substorm onset trigger could be the bal-
looning instability in a region of closed field lines (Raeder et al. 2010). There are other
magnetospheric regions where the ballooning instability may develop: outer boundary of
the trapped radiation (Pokotelov et al. 1980), at the westward travelling surge (Roux
et al. 1991). This instability can be imagined as a localized disruption of plasma pressure
gradient by growing small-scale ”fingers” of hot plasma. To better understand the physi-
cal mechanisms of the processes involved in the substorm development, the results of the
numerical modeling and in situ satellite observations are to be compared with simplified,
but more explicit, theoretical models.
Ultra-Low-Frequency (ULF) waves of the Pc5 frequency range (periods about 3 − 10

min) — so called storm-time Pc5 pulsations, — are a ubiquitous element of magnetic
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storms. These long-lasting (from several hours to tens of hours) monochromatic oscil-
lations are supposedly generated by ring current protons during the magnetic storm
recovery phase. A feature of these pulsations is a significant field-aligned (compressional)
magnetic component and small azimuthal scale (wave numbers m � 30−100). Many the-
ories (e.g., Southwood & Saunders 1985; Cheremnykh & Parnowski 2004) were aimed to
understand the physics of compressional Pc5 waves persistently observed by space-borne
magnetometers. Various kinds of kinetic instabilities of ring current ions were suggested
as a possible excitation mechanism of these waves (Pokhotelov et al. 1985; Cheng & Lin
1987; Cheng et al. 1994).

ULF waves also play an active role in the dynamics (energy transport, dissipation,
and sink) of the Earth’s magnetotail (Keiling 2009). Geotail satellite observations in the
magnetotail from 9 to 30 RE indicated coupling of slow mode and transverse Alfvén
wave (Nakamizo & Iijima 2003). The mode conversion between the Alfvén and slow
mode waves were observed by the THEMIS spacecraft constellation in the region of the
central current sheet (Du et al. 2011). Thus, coupled MHD modes are a vital component
of dynamic magnetotail and outer magnetosphere. The ballooning MHD instability was
suggested to be a trigger for the destabilization of the solar coronal loops and flare energy
release (Tsap et al. 2008).

A theoretical approach to the study of the ballooning modes and their stability is based
on a complicated system of coupled equations for the poloidal Alfvén waves and slow
magnetosonic (SMS) modes in a finite-pressure plasma immersed in a curved magnetic
field B. The easiest way to comprehend qualitatively the basic features of the unstable
modes and instability condition is the analysis of a local dispersion equation. Such a
dispersion equation, obtained using a local analysis of this system, is widely used for
geophysical applications both for examination of plasma stability (Liu 1997), and for
the description of spectral properties of ULF wave phenomena in the nightside auroral
magnetosphere (Safargaleev & Maltsev 1986; Golovchanskaya & Mingalev 2006). The
most detailed and comprehensive derivation and analysis of the dispersion equation was
provided by (Mazur et al. 2012).

However, in all above papers it was assumed that plasma had one component with
a finite temperature. In realistic situations, especially in the outer magnetosphere, the
magnetospheric plasma is composed of two components (Walker 1987):

— background ”cold” plasma with density ρc0;

— ”hot” component with density ρh0 which is responsible for a finite plasma pressure.

The two-component plasma may be characterized e.g. by the fraction of the hot compo-
nent μ = ρh0/(ρc0 + ρh0) (for one-component plasma μ = 1).

Moreover, the previous studies considered 2D geometry, where the coordinate lines
were straight in Y (azimuthal) direction. In reality, the magnetospheric system is torus-
like, therefore, the magnetic shell curvature in the azimuthal direction may influence
the wave properties. In this paper we derive and analyze the dispersion equation with
the account of these aspects: two-component plasma and curved magnetic shells in the
azimuthal direction.
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2. MHD plasma equilibrium and linearized dynamic equations

2.1. Basic equations

We consider the plasma consisting of cold and hot ions in a curvilinear magnetic field.
The set of MHD equations in this case is (Walker 1987):

ρh
dV h

dt
= −∇P + c−1Jh ×B, (2.1)

∂ρh
∂t

+∇ρhV h = 0, (2.2)

ρc
dV c

dt
= c−1Jc ×B, (2.3)

d

dt

(
P

ργh

)
= 0, (2.4)

∇×E = −c−1 ∂B

∂t
, ∇×B = 4πc−1(Jh + Jc), (2.5)

E = −c−1V c ×B = −c−1V h ×B, (2.6)

where V c, h and ρc, h are the velocities and densities of cold and hot plasma components,
P is the plasma pressure, B is the magnetic field, Jc, h is the current density transported
by cold and hot particles, E is the electric field, γ is the adiabatic index, and d/dt =
∂/∂t + (V ∇) is the Lagrangian derivative. Thus, it was supposed that in MHD limit
both cold and hot particles oscillate in a wave electric field with the same transverse
velocity, implying the frozen-in condition (Walker 1987).
We introduce the right-handed orthogonal curvilinear coordinates associated with the

background axisymmetric magnetic field geometry B0: the x3 coordinate is directed
along the background magnetic field, therefore, B0 = (0, 0, B0), where B0 is the scaled
component of B0, the x1 coordinate is across magnetic shells, and the x2 coordinate is
in the azimuthal direction.
Assuming that plasma is immobile in the stationary state, V 0c = V 0h = 0, we get the

local equilibrium condition:

∇1P0 +
1

4π
h−1
3 B0∇1h3B0 = 0, (2.7)

where ∇i ≡ h−1
i ∂/∂xi, hi =

√
gi are scale factors, and gi ≡ gii are diagonal components

of the metric tensor. The condition (2.7) can be written in terms of κ-parameters:

(β/2)κP + κB − κc = 0,

where κP = ∇1 lnP0, κB = ∇1 lnB0, κc = −∇1 lnh3 is the curvature of magnetic field
line, β = 8πP0/B

2
0 . The pressure P0 is constant along the field line, ∇3P0 = 0. Due to

axial symmetry of medium, all the unperturbed parameters are uniform in the azimuthal
direction.
We introduce the displacement vectors ξc,h and linearize the set of equations (2.1)–

(2.6) with respect to the small monochromatic perturbation ∼ exp(−iωt + ik2h2x
2) as

follows

p = −ξh∇P0 − γP0∇ξh, (2.8)

E = iωc−1ξc (h) ×B0, (2.9)

∇×E = iωc−1b, (2.10)

− ω2(ρh0ξh + ρc0ξc) = −∇p− 4π−1b× [∇×B0]− 4π−1B0 × [∇× b]. (2.11)
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Noticing that ξc1 = ξh1, ξc2 = ξh2 from linearized Eq. (2.6) and ξc3 = 0 from linearized
Eq. (2.3), we denote ξ1 = ξh1, ξ2 = ξh2, ξ3 = ξh3. Excluding the perturbed electric field
E from (2.10), we obtain a closed set of equations for b, ξ and p:

p = −ξ1∇1P0 − γP0u, (2.12)

b1 = h−1
2 ∇3h2B0ξ1, (2.13)

b2 = h−1
1 ∇3h1B0ξ2, (2.14)

b3 = −h−1
2 ∇1h2B0ξ1 − iB0k2ξ2, (2.15)

ω2ρ0ξ1 = ∇1p+ (4πh3)
−1b3∇1h3B0 + (4πh3)

−1B0∇1h3b3 − (4πh1)
−1B0∇3h1b1,

(2.16)

ω2ρ0ξ2 = ik2p+ ik2(4π)
−1B0b3 − (4πh2)

−1B0∇3h2b2, (2.17)

ω2ρh0ξ3 = ∇3p− (4πh3)
−1b1∇1h3B0, (2.18)

where ρ0 = ρc0 + ρh0, and bi, ξi, ki are scaled components of vectors b, ξ, k correspond-
ingly.
The variable u = ∇ ·ξ = (h2h3)

−1∇1h2h3ξ1 + ik2ξ2 +(h1h2)
−1∇3h1h2ξ3 characterizes

the plasma compression. Substituting the expressions for p and b1 from (2.12) and (2.14)
into (2.18), one can find an important relationship between the field-aligned plasma
displacement ξ3 and the plasma compression u:

ξ3 = −k−2
s ∇3u,

where ks = ω/Vs, and Vs =
√
γP0/ρh0 is the sound speed determined by hot particles.

Excluding b from (2.12)–(2.18) and proceeding from ξ3 and p to variables u and p̄,
where p̄ = 4πB−2

0 (p+B0b3/4π) is the normalized perturbation of the total pressure, we
obtain the following equations:

LP ξ1 = ∇1p̄− βκP p̄− γβκcu− βκcκP ξ1,
LT ξ2 = ik2p̄,
k−2
s (Ls + μk2A)u = −p̄− 2κcξ1,

k−2
s Lsu = ∇1ξ1 + ik2ξ2 − κcξ1 + (∇1 lnh2)ξ1.

(2.19)

Here μ = ρh0/ρ0 is the fraction of the hot component, and the following differential
operators are introduced:

LP = k2A + h2∇3h1h
−1
2 ∇3h

−1
1 ,

LT = k2A + h1∇3h2h
−1
1 ∇3h

−1
2 ,

Ls = k2s
(
1 + (h1h2)

−1∇3h1h2k
−2
s ∇3

)
,

where kA = ω/VA is the Alfvén wave number, VA = B0/
√
4πρ0 is the Alfvén speed. The

system (2.19) for one-component plasma coincides with the system derived in (Cheng
2003) for 2D case.

2.2. Asymptotic theory of small-scale disturbances

Now we examine the asymptotic solution for the harmonics ∝ exp(ik1h1x
1 + ik2h2x

2)
of the system (2.19) for small-scale disturbances in the transverse direction, i.e. for large

transverse wave numbers k⊥ =
(
k21 + k22

)1/2 → ∞. The asymptotic solution of (2.19) we
search for in the form (n = 1, 2)

(ξn, u, p̄) =
[
(ξn0, u0, p̄0) + ε(ξn1, u1, p̄1) + ε2(ξn2, u2, p̄2) + . . .

)
exp

[
iθ (x1) ε

−1
]
,
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where ε is a small parameter. We put this decomposition into the system (2.19). Collecting
terms with the same order of ε, we get in the order of ε−1 the system

k1ξ10 + k2ξ20 = 0, k1p̄0 = 0, k2p̄0 = 0, (2.20)

from which it follows that the perturbation of the total pressure p̄ is small value of the
order of ≤ ε, which means the separation of a fast magnetosonic wave.
Further, in the zeroth order of ε we get the system

ik1ξ11 − κcξ10 + (∇1 lnh2)ξ10 + ik2ξ21 − k−2
s Lsu0 = 0, (2.21)

(LP + βκcκp)ξ10 + γβκcu0 + βκpp̄0 − ik1p̄1 = 0, (2.22)

LT ξ20 − ik2p̄1 = 0, (2.23)

2κcξ10 + k−2
s (Ls + μk2A)u0 + p̄0 = 0. (2.24)

Excluding p̄0 and ξ20 from (2.22)–(2.24) with the help of equations (2.20) and then ex-
cluding also the variable p̄1 we obtain the closed system of zero approximation equations
(where zero indices are omitted for brevity)(

LP + k21k
−2
2 LT + βκcκP

)
ξ1 + γβκcu = 0,

2κck
2
sξ1 + (Ls + μk2A)u = 0.

(2.25)

This system of ordinary differential equations for the coupled Alfvén and SMS modes
describes the ballooning disturbances. These equations in the case of one-component
plasma (μ = 1) coincide with equations from (Walker 1987; Klimushkin 1998).

3. Local dispersion equation

The spectral properties of the ballooning modes can be qualitatively understood with
the use of local dispersion equations. Let us suppose that a disturbance has a small scale
not in the transverse direction only, but also along the field line x3.
In the geometrical optics (WKB) approximation ∝ exp(ik3h3x

3) all operators turn
into numerical factors LP = LT = k2A − k2‖, where k2‖ ≡ k23 . Then the local dispersion

equation stemming from the system (2.25) has the following form

(ω2 − k2‖V
2
A)(ω

2 − k2‖V
2
ms) + sin2 θ[βκcκPV

2
A(ω

2 − k2‖V
2
ms)− 4ω2μκ2

cV
2
ms] = 0, (3.1)

where sin2 θ = k22/(k
2
1 + k22), and V 2

ms = V 2
AV

2
s /(V

2
A + μV 2

s ) is the characteristic magne-
tosonic speed.
The important distinction from the case of one-component plasma (μ = 1) is that in

a two-component plasma the magnetosonic speed Vms may exceed the Alfvén speed VA.
This possibility emerges under Vs > VA when μ is sufficiently small, namely

μ < 1− V 2
A/V

2
s . (3.2)

If Vs ≤ VA, then under any μ the magnetosonic speed is still less than the Alfvén speed,
Vms < VA. The condition (3.2) can be used during consideration of plasma with fixed
temperature of hot component. However, if the parameter β is considered to be fixed,
the condition (3.2) should be replaced by μ < γβ(2 + γβ)−1.
In the cold limit (β → 0) the equation (3.1) reduces to the Alfvén dispersion equation

in a cold plasma: ω2 − k2‖V
2
Ac = 0, where VAc = B0/

√
4πρ0c. When the hot component

predominates over cold ion population, μ → 1, then the equation (3.1) transforms to the
dispersion equation for one-component plasma with finite pressure. The obtained local
dispersion equation for the axial symmetric case coincides with the equation for 2D case
with straight Y -axis.
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The equation (3.1) is a quadratic equation in respect to ω2. The roots ω2 of (3.1) are
real for a real k‖

ω2
± =

V 2
A

2 + γβ

[
σk2‖ +H ±

√(
τk2‖ +H

)2
+ 4μ−1γ2β2κ2

ck
2
‖ sin

2 θ

]
, (3.3)

whereH = βκc [2γκc − κp(2 + γβ)/2] sin2 θ, σ = 1+γβ(μ−1+1)/2, and τ = 1−γβ(μ−1−
1)/2. The relationship (3.3) describes two branches: fast (ω+), which transforms into an
Alfvén wave as β → 0, and slow (ω−) branch.
The fast branch ω2

+(k‖) > 0 is stable for any real k‖. Only the slow mode ω2
−(k‖) can

be unstable under the condition

βκcκP sin2 θ > k2‖. (3.4)

This inequality is the generalization of the ballooning instability condition for oblique
disturbance k1 �= 0 (Liu 1997) and has the same form as the instability condition for the
slow mode in one-component plasma.
The asymptotic formulas for disturbances with small scales in the field-aligned direction

are obtained from (3.3) under assumption k‖ � κc sin θ. They depend on the sign of the
coefficient τ in (3.3). When μ > γβ/(2 + γβ) this value is positive, and the asymptotic
formulas have the form

ω2
+ = LA(k

2
‖) +O(k−2

‖ ), ω2
− = Lms(k

2
‖) +O(k−2

‖ ),

where

LA(k
2
‖) = V 2

Ak
2
‖ + V 2

Aκ
2
cβ

[
2γ

(
1 +

(1− μ)γβ

μ(2 + γβ)− γβ

)
− κP

κc

]
sin2 θ (3.5)

and

Lms(k
2
‖) = V 2

msk
2
‖ −

4V 2
msκ

2
cγβμ sin2 θ

μ(2 + γβ)− γβ
. (3.6)

Otherwise, if μ < γβ/(2 + γβ), then the characteristic speed Vms exceeds VA, and the
asymptotics changes to

ω2
+ = Lms(k

2
‖) +O(k−2

‖ ), ω2
− = LA(k

2
‖) +O(k−2

‖ ).

The oscillation branches may be classified according to their asymptotics in the limit
k‖ → ∞. The branch with asymptotics ω2 ≈ LA(k

2
‖) may be called Alfvén branch,

whereas the branch with asymptotics ω2 ≈ Lms(k
2
‖) may be called magnetosonic one. It

is worth noting that in a two-component plasma the magnetosonic branch can become a
fast branch, which can never happen in a one-component plasma. For that it is necessary
the hot component temperature to be rather high, Vs > VA, and the fraction of hot
component density to be sufficiently small (see (3.2)).
Alfvén and magnetosonic branches are distinguished not by their speeds only, but by

their polarizations as well. Short-wavelength Alfvén waves (k‖ → ∞ ) are transverse,
whereas magnetosonic waves are compressional (see below (3.9) and (3.10)). However,
under finite wave number k‖, owing to the mode coupling described by the ballooning
system (2.25), this distinction does not hold, and two branches have both transverse and
compresional components.
The wave magnetic components can be derived via the variables ξ1 and u from the

system (2.25) as follows

b3 = B0(β/2)(κP ξ1 + γu), b1 = h−1
2 ∇3(h2B0ξ1).
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From these relationships, and using in the WKB limit b1 = ik‖B0ξ1, the ratio between
the field-aligned and transverse magnetic components can be derived via the ratio u/ξ1:

b3/b1 = β(2ik‖)−1(κP + γu/ξ1). (3.7)

For poloidal oscillations, that is if k1 � k2, from the WKB limit of the system (2.25)
with account for the dispersion equation (3.1) the ratio u/ξ1 can be found explicitly.
Using it in (3.7), we obtain the dependence of the ratio between the compressional and
transverse magnetic components on wave number and plasma parameters

b3
b1

=
k‖
2iκc

(
1− ω2

±
k2‖V

2
A

)
, (3.8)

where ω2
± is one of the dispersion equation branches (3.3). At k‖ → ∞ in accordance

with asymptotic formulas (3.5) and (3.6) the ratio b3/b1 for Alfvénic branch is as follows

b3
b1

≈ iβκc

2k‖

[
2γ − κP

κc
+

2(1− μ)γ2β

μ(2 + γβ)− γβ

]
, (3.9)

whereas for the magnetosonic branch this ratio is

b3
b1

≈ k‖
2iκc

(
1− γβ

μ(2 + γβ)

)
. (3.10)

The analysis of the formula (3.8) shows that in a stable, nearly one-component hot
plasma at μ > μ∗

β = γβ/(2+γβ), the wave polarization corresponds to the mode classifi-
cation in the short wavelength limit, however at smaller k‖ it changes to the opposite. At
the same time, when hot plasma component is small (μ < μ∗

β) because of the asymptotics
swapping at μ = μ∗

β , the Alfvénic branch polarization is predominantly transverse at all
k‖. The same is valid for magnetosonic branch: at small μ its polarization is predom-
inantly compressional at all k‖. In a potentially unstable plasma with κP /κc > 0, the
growing slow mode under condition (3.4) has a magnitude of the ratio b3/b1 � 1/2.

3.1. The possibility of total reflection of the poloidal Alfvén waves

Analysis of the dispersion equation (3.3) shows that for the real ω there may occur regions
where k2‖ < 0. These regions with high β and locally curved field lines are non-transparent

for poloidal Alfvén waves (Mager et al. 2009). A wave meets the turning points k2‖ = 0
when its frequency ω matches the cut-off frequency

ω2
∗ = ω2

+(0) = βV 2
Aκ

2
c

(
4γ

2 + γβ
− κP

κc

)
sin2 θ =

2P0

ρ0
κ2
c

(
4γ

2 + γβ
− κP

κc

)
sin2 θ. (3.11)

When κP /κc � 1, the cut-off frequency distribution along a field line can be estimated as
ω2∗ ∼ 1/(R2

cρ0) because P0 is constant along the field line. Both the curvature radius Rc of
the field line and the plasma density ρ0 = ρc0+ρh0 decrease along the field line from the
ionosphere to the equator. The cut-off frequency ω2

∗ monotonically rises equatorward,
and if its value at the equator exceeds ω2, the opaque region around the equator can
appear, where ω2 < ω2

∗.
For field lines intersecting the plasma sheet, the density after a monotonic fall increases

considerably in the plasma sheet region. As a result, it is possible for a transparent
region near the equator between two opaque regions to appear. In this case, however, the
transparent region at the top of a field line seems to be too narrow to provide a resonator
for coupled Alfvén and slow magnetosonic waves. Near the cut-off frequency the Alfvénic
branch wavelength is very large, so the occurrence of a finite-scale non-transparent region
cannot prevent the tunneling of Alfvénic mode through this region.
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4. Dispersion curves for two-component plasma

The dispersion equation for the two-component plasma besides the parameters ρ0, T ,
B0, κP , κc, and sin2 θ, holds the new parameter μ. The dependence of dimensionless
frequency Ω± = ω±(κcVA sin θ)−1 on dimensionless wave number κ‖ = k‖(κc sin θ)

−1 for
a set of the new parameter μ values is given in Figures 1 - 4. For the taken normalization
of frequency and wave number, the asymptotics of the Alfvénic branch have a unit slope,
whereas the slope of the magnetosonic branch asymptotics is V 2

ms/V
2
A. The total density

ρ0 = ρc0 + ρh0, as well as VA, are supposed to be fixed.
The influence of the hot component on plasma properties may be considered from two

viewpoints:
A) the parameter β is proportional to μ, while the temperature of the hot component

is assumed to be constant;
B) the parameter β is fixed (β = 1 for the examples presented in figures), that is the

hot component temperature is inversely proportional to μ.
For the case A the dispersion curves are shown in Figures 1 (stable plasma κP /κc < 0)

and 2 (κP /κc > 0, when plasma instability is possible). We consider the case when the
temperature of the hot component is sufficiently high, so V 2

s exceeds V 2
A ten times. In

this case the critical value of μ, when the Alfvénic and magnetosonic branches swap the
asymptotics, is μ∗

T = 1 − V 2
A/V

2
s = 0.9. Thus, the range of μ values, when VA > Vms, is

rather narrow. For μ < 0.9 the magnetosonic branch is a fast one, whereas the Alfvénic
branch is a slow one. The velocity of the magnetosonic branch increases rapidly with
the decrease of the hot component fraction μ → 0: Vms/VA = (0.1 + μ)−1/2 ∼ μ−1/2,
until μ > 0.1, up to the limiting velocity Vs =

√
10VA. This behavior indicates that the

fast wave propagation involves the hot component only, which explains the increase of

Vms ∝ ρ
−1/2
0h upon the decrease of hot component density ρ0h.

The interval of unstable k‖ (Fig. 2) evidently shrinks upon the decrease of μ, and
consequently β, according to the condition (3.4). In a two-component plasma only the
slow branch ω−(k‖) can be unstable, whereas the fast branch ω+(k‖) is always stable.
In the case of the one-component plasma (μ = 1) this conclusion means the stability of
Alfvénic mode and possible instability of the magnetosonic mode (Mazur et al. 2012).
However, in a two-component plasma under a sufficiently small μ the association of fast
and slow branches with Alvénic and magnetosonic modes (identified according to their
short-wave asymptotics) changes. For an the example given in Fig. 2, it is Alvénic mode
which turns into slow branch at μ < 0.9 and may become unstable. Notice that the
polarization of an unstable mode does not correspond to neither pure compressional, nor
transverse disturbances, because |b3/b1| � 1/2.
For case B the dispersion curves are shown in Figures 3 and 4. As in case A, the

dispersion curves for Alfvénic and magnetosonic modes swap their asymptotics upon the
decrease of μ below the critical value μ∗

β = γβ(2+γβ)−1 (for Figures 3 and 4 μ∗
β = 5/11 ≈

0.45). In contrast to case A, under fixed β the asymptotic velocity of the fast branch
V 2
ms/V

2
A = μ−1γβ(2+γβ)−1 increases to infinity, because the hot component temperature

∝ μ−1. Moreover, under fixed β the instability threshold and cut-off frequency do not
depend on μ, as they are determined by parameter β according to (3.4) and (3.11), which
do not hold parameter μ.

4.1. The growth rate of unstable disturbances

The fastest growth rate of unstable disturbances at linear phase (∝ exp(Γt)) is determined
by the minimum of Ω2

−(κ‖). From the expression for ω2
− (3.3) one can find that minΩ2

− =

−(1/4)μ−1Λ2β2(1 + λ)−2, where Λ = κP /κc, λ = [1 − τΛ(2γ)−1]1/2, and τ = (2 + γβ −



Dispersion equation for ballooning modes in two-component plasma 9

γβμ−1)/2, is reached at

κ2
‖ =

Λβ

1 + λ

[
1− (2 + γβ)Λ

4γ(1 + λ)

]
.

Thus, the maximal growth rate

maxΓ =
1

2
μ−1/2(1 + λ)−1βκPVA sin θ.

The comparison of minΩ2
− in one-component plasma (μ = 1) and in two-component

plasma with small addition of hot component μ � 1 under the same β gives the ratio

minΩ2−(μ � 1)

minΩ2−(μ = 1)
=

4

Λβ

(
1 +

√
1− Λ/(2γ)

)2
.

For the parameters Λ = β = 1, used in Fig. 4, this ratio is 13.5; therefore the growth
rate in the two-component is 3.7 times larger than in the one-component plasma.

5. Discussion

Analysis of the exact dispersion relationship (3.1) in the poloidal limit k1 = 0 shows
that the fast branch ω2

+ is stable for any k2‖, that is ω
2
+ ≥ 0. So, the conclusion about a

the possible instability of the fast mode which in the case of one-component plasma is
Alfvén mode (e.g., (Ohtani & Tamao 1993); (Miura et al. 1989)) cannot be accepted.

Under favorable conditions for the balloon instability on field lines, strongly ex-
tended into the magnetotail, the disturbance grows exponentially, though drift effects
may produce oscillatory growth and azimuthal drift with the velocity about the Lar-
mor drift velocity (Miura et al. 1989). The characteristic growth time of the instability,
τ � Γ−1 � 30 s, is about the typical time scale of the substorm explosive phase. How-
ever, an estimation of the instability criterion in the WKB approximation for a particular
magnetic shell has an ultimately qualitative character. In a realistic magnetosphere, the
ballooning modes are to be localized near the top of the field line, where the β and cur-
vature rapidly increase. However, k‖ → ∞ in fact corresponds to the homogeneous case,
and in this case the instability is absent according to (3.4).

The typical time scale of the substorm explosive phase (∼1-2 min) is much less than the
Alfvén transit time along the extended field lines from the magnetotail to the ionosphere
(∼10 min). Therefore, the influence of the ionospheric boundaries on the ballooning
mode properties can be neglected, assuming that the growing disturbances are local-
ized in the near-equatorial region of the nightside magnetosphere. The influence of the
ionospheric boundary conditions on the ballooning modes was considered in many papers
(e.g., Cheremnykh & Parnowski 2006). The imposing of boundary conditions at conjugate
ionosphere results in quantization of k‖ and occurrence of its imaginary components.

For the considered model the source of the free energy for the ballooning instability
is the excess of the hot plasma pressure in the radial direction. However, this 2D model
does not take into account certain factors which might be significant for the instability
development: pressure anisotropy (Cheng & Qian 1994), drift effect (Pokotelov et al.
1980), kinetic effects (Klimushkin & Mager 2008), and the azimuthal pressure gradient
related to a background field-aligned current (Ivanov et al. 1992; Golovchanskaya &
Mingalev 2006).
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6. Conclusion

The principal new feature of the two-component plasma is the possibility for a sound
wave to propagate via the hot component only, whereas Alfvénic oscillations involve
all plasma particles. This feature changes the dispersion curves for Alfvénic and slow
magnetosonic modes drastically, especially when the hot component fraction is small,
and violates the correspondence between fast/slow branches and Alfvénic/magnetosonic
modes.
In the region with a steep drop of the plasma pressure, held by curved magnetic field

lines, an instability of the slow mode may become feasible. For fast waves with frequencies
less than the cut-off frequency a non-transparent region may occur, which can influence
the wave propagation along a field line.

The reported study was supported by RFBR grants 11-05-90703, 12-02-00031 (DK)
and 13-05-90436 (NM, EF), and grant ISSI ”MHD Oscillations in the Solar Corona and
Earth’s Magnetosphere: Towards Consolidated Understanding” (VP).
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Figure 1. The dispersion curves ω+(k‖) (solid lines) and ω−(k‖) (dashed lines) in the plane
of squared dimensionless parameters Ω = ω/(κcVA sin θ) and κ‖ = k‖/(κc sin θ) for various μ
(indicated near curves) in the case κP /κc = −1 under fixed hot component temperature. The
Alfvén branches are marked with A, and the magnetosonic branches — with MS.
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Figure 2. The same as in Figure 1, but in the case κP /κc = 1, when plasma instability is
possible.
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Figure 3. The same as in Figure 1, but under fixed β = 1.
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Figure 4. The same as in Figure 3, but in the case κP /κc = 1, when plasma instability is
possible.


