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MMS AND CLUSTER OBSERVATIONS OF MAGNETIC RECONNECTION 
1.  Overview of the project 
Introduction and Motivation Magnetic reconnection is a fundamental physical process that operates within the 
heliosphere and throughout the universe. It drives plasmas populating the reconnecting magnetic fields to intermix, 
and converts large amounts of magnetic energy into kinetic energy. The multi-scale nature of reconnection has long 
been a focus of study in both space and laboratory plasmas: Reconnection has large-scale effects such as influences 
on the energy budgets, plasma transport, and dynamics of global plasma structures, e.g., in association with the 
generation of flux transfer events (FTEs) and dipolarization fronts (DFs) and their macroscopic motion. The initiation 
and reconfiguration of magnetic topology associated with the reconnection are thought to arise as a result of 
demagnetization of electrons within the small electron diffusion region (EDR). This region is embedded within a 
much larger ion diffusion region (IDR) where ions are demagnetized. Heavy and/or cold dense ions introduce a new 
length scale associated with their larger/smaller gyroradius to reconnection. Although IDRs, where Hall physics 
governs the magnetofluid description, have been identified by their magnetic and electric field geometry, the EDR is 
difficult to observe primarily because of its small-scale size coupled with the generally long cadences associated with 
plasma measurements. Important reconnection parameters such as the reconnection rate are, however, controlled by 
microphysical processes occurring at these EDR/IDR scales. Yet our understanding of the microphysics of 
reconnection and its meso-macroscale effects on plasma transport/acceleration is far from the completion. 

Objectives and Timeliness The Cluster mission [Escoubet et al., 2001] has emphasized multi-scale processes 
occurring throughout the Earth’s magnetosphere since 2000. The Magnetospheric Multiscale (MMS) mission [Burch 
et al., 2016], launched in March 2015, helps unravel the mysteries of magnetic reconnection with unprecedented 
time-resolution measurements of particles and fields. Cluster and MMS constitute, for the first time, two tetrahedral 
configurations that can investigate multi-scale phenomena simultaneously, enabling more precise mapping of kinetic 
boundaries in a reconnection region and quantitative testing of micro and meso-scale physics. With large spatial 
separations between the two missions and different orbital inclinations, MMS and Cluster provide us with an 
opportunity to capture micro-to-macroscopic pictures of plasma processes, which include the structure and extent of 
reconnection X-lines, reconnection jets and outflow, the generation, structure, and evolution of FTEs and DFs. 
Additionally, in conjunction with the Van Allen Radiation Probes, ARTEMIS, and THEMIS, MMS and Cluster 
provide measurements of spatial and temporal phenomena and global effects of dayside and magnetotail reconnection. 
Our project will make full use of these unprecedented opportunities to compare, resolve, and understand reconnection 
process, including FTEs and DFs, etc., as a function of solar activity. 

Merits and Impacts So far, space plasma physicists studying reconnection (including FTEs and DFs) who have used 
Cluster data and now apply their expertise to MMS observations have largely been working separately from each 
other. In addition, observational researchers who can benefit from collaborations with kinetic code modelers (such as 
Particle-In-Cell simulators) to interpret in-situ data are often disconnected from modelers. Consequently, it can be 
difficult to assemble the various findings in this field into a full picture. Our aim is to bring existing and new pieces 
together to construct the comprehensive picture. We will do so by: compiling a state-of-the-art review article; 
initiating teamwork between researchers familiar with data analysis and simulations, reconciling findings from both 
approaches; and launching inter-disciplinary collaborations to significantly advance our understanding of the physics 
of reconnection. In order to achieve our objectives, we bring together a strong team, composed of top tier researchers 
from 8 different countries. Our team’s combined expertise covers all areas relevant to the proposed research. Our 
team is, hence, in a unique position to overcome present shortcomings of individual approaches to one of the most 
fundamental physical phenomena, magnetic reconnection, and to address the science posed above using 
unprecedented opportunities provided by MMS and Cluster, combined with full particle simulation codes.  

2.  Scientific rationale, goals, and timeliness of the project 
The research vision in magnetospheric physics and solar-terrestrial sciences depends critically on a deep 
understanding of the coupling and interplay of space plasmas at micro-, meso-, and macro-scales. Magnetic 
reconnection, the subject of our proposed team effort, exhibits a multi-scale nature. Despite decades of observations 
and theoretical investigations, many fundamental questions concerning the causes and consequences of reconnection 
remain unanswered. In the following paragraphs, we outline known features from previous studies and the key 
unresolved problems in reconnection research divided into following sub-topics: the structure and dynamics of 
reconnection; FTEs; and DFs.  

Dynamics of multi-scale reconnection Reconnection has major large-scale implications for the surrounding media, 
yet the key processes that drive magnetic reconnection occur at very small scales in the diffusion region, where 
magnetic fields diffuse and reconnect with a new topology. At the thin current sheets (with sharp gradients in the 
magnetic field) that occur at the Earth’s dayside magnetopause and in its nightside magnetotail, particles with vastly 
different masses cause a structured region wherein the ions (with larger gyro-radius) decouple from the magnetic 
field at location farther from the X-line (where the magnetic topology changes) than electrons (Figure 1). This 
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separation leads to the formation of a small EDR (where electrons decouple from the magnetic field) embedded 
within an IDR with characteristic Hall magnetic/electric fields [e.g., Mozer et al., 2002]. The magnetic energy stored 
in the regions adjacent to the current sheet (inflow regions; Figure 1) is released to the plasma, which jets away from 
the reconnection site on both-side exhaust regions. The diffusion region, in particular, its aspect (length-to-width) ratio, 
is found to control the rate of release of magnetic energy. Thus the diffusion region of unknown structure and dynamics 
controls the energy conversion in a macroscopic system. 

Magnetic field diffusion through the plasma, i.e., the breakdown of the particle-field frozen-in principle (with the left-
hand side of the equation below equivalent to 0), is described by the generalized Ohm’s law [Khotyaintsev et al. 2006]:  

 
The ηJ term attributed to classical collisional resistivity can 
be replaced by turbulent resistivity due to fluctuations in 
collisionless plasma relevant to our subject. The Hall term, 
(1/ne) J×B, associated with differential flow of ions and 
electrons becomes important at the ion inertial scale (c/ωpi). 
The third term, the electron pressure tensor term of the order 
of βe c/ωpi (βe: the ratio of electron pressure to magnetic 
pressure) is appreciable at both ion and electron scales. The 
last term, the electron inertia term becomes significant at the 
electron inertial scale (c/ωpe). Therefore, we rephrase the 
unknowns of the reconnection diffusion region: What 
dynamics on which scales are important to field-line 
break-up and energy conversion? Which term in Ohm’s 
law contributes to the reconnection electric field? 
Where/how do the non-isotropy and/or non-gyrotropy of 
particle distribution functions form and what roles do 
they play in the physical process underlying reconnection?  

Numerous studies using full particle-in-cell (PIC) simulations [e.g., Pritchett, 2002; Hesse et al., 2004; Scudder and 
Daughton, 2008; Pritchett and Mozer, 2009] have been performed to investigate the relative roles of each term of the 
Ohm’s law equation in balancing the reconnection electric field. The consensus is that the electric field in the IDR 
and/or the separatrix region is mainly balanced by the Hall term and that nongyrotropic pressure forces dominate over 
electron inertial forces in the EDR. More recent theoretical and modeling efforts have shed light on the ion and 
electron behavior in different boundary layers and parameter regimes of both anti-parallel and guide-field 
reconnection [e.g., Egedal et al., 2013; Hesse et al., 2014; Bessho et al., 2014; Shuster et al., 2015]. For example, the 
electron distribution exhibits triangular striated structures near the X-line due to particle reflections, while in the EDR 
downstream of the X-line it features outflow jets with swirls, arcs, and rings [Shuster et al., 2015]; Meandering 
particle motions, due to oppositely-directed magnetic fields, form a crescent-shape distribution, which has recently 
been reported by MMS observations [Burch et al., 2016]. 

These studies considered plasmas consisting of single ion species, or populations with single ion and electron 
temperature, although recent observations indicate that heavy ions (He+, He2+, O+) and/or cold dense ions are often 
present near/at the reconnection site. How these heavy and/or cold dense ions of ionospheric origin affect the 
reconnection process remains poorly understood.  Using Cluster observations, Toledo-Redondo et al. [2015] showed 
that cold ions introduce a new length-scale associated with their smaller gyroradius to reconnection. This indicates 
that different ion populations modify the Hall physics, complicating the structure of the IDR, and differentiate 
particle heating/acceleration occurring in the IDR and/or separatrices. It is still unclear/controversial how the kinetic 
nature of different ion species manifests themselves from the large-scale perspective, i.e., how the presence of multi-
species ions changes magnetic topology and the reconnection rate. Cluster and MMS, both instrumented to 
measure ion mass composition, enable precise mapping of kinetic boundaries in the site of reconnection 
involving different ion species and quantitative testing of micro and meso-scale physics. 

The location, extent, and orientation of the reconnection X-line Another important unknown in reconnection 
research is the location, extent, and orientation of the reconnection X-line in a 3-D system (or the magnetic separator 
in 3-D reconnection [Lau and Finn, 1990]). When the magnetic fields at two sides of a planar current sheet shear with 
an arbitrary angle, Φ, the X-line could develop at any angle from 0 to Φ, given that the fields in the plane normal to 
the X-line reverse signs across the current sheet. It remains unanswered if there is a principle that determines the 
orientation of the X-line, which is directly relevant to determine the location of magnetic reconnection on the 
magnetopause and/or in the magnetotail current sheet. Recent endeavors to address this problem predicted that 
reconnection occurs in the plane in which the reconnection jet or the reconnection electric field attains its maximum 
value or the X-line appears to bisect the total magnetic shear angle [Swisdak and Drake, 2007; Schreier et al., 2010; 
Hesse et al., 2013; Liu et al., 2015].  
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Figure 1. Adopted from Yamada et al. [2014]. Illustration 
of the reconnection geometry: inflow regions above and 
below a current sheet; outflow (exhaust) regions; ion 
diffusion region (blue shade); electron diffusion region 
(red shade). Four MMS satellites sketched near the X-line 
possibly pass the diffusion region, unraveling mysteries of 
microphysics of magnetic reconnection. 
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Observationally, the location, extent, and orientation of the X-line are inferred from reconnection outflow jets, 
patterns of ion dispersions, and in support of ground-based (from radars, all sky imagers, and magnetometers) 
signatures [e.g., Phan et al. 2001; 2006; Dunlop et al. 2011]. Joint MMS and Cluster observations provide a unique 
opportunity to explore the structure and extent of reconnection X-lines.  

Flux Transfer Events (FTEs) Spacecraft crossing the Earth’s magnetopause often observe a single transient structure 
or a series of a bipolar signature in the magnetic field component normal to the nominal magnetopause (Bn). Since 
Russell and Elphic [1978] first termed this signature a flux transfer event (FTE), numerous in-situ observations [e.g., 
Paschmann et al., 1982; Sibeck and Siscoe, 1984] have identified other FTE signatures, including either an 
enhancement or decrease in the magnetic field strength at (or bounding, in the case of crater FTEs) the center of the 
Bn reversal and an enhancement in the total pressure at the center of FTEs, where the pressure force balances the 
magnetic tension force [Ieda et al., 1998]. FTEs detected inside the magnetosphere or the magnetosheath contain 
plasmas from both regions [Klumpar et al., 1990]. 

Various mechanisms for FTE generation invoke 1) transient bursts of dayside reconnection [e.g., Russell and Elphic, 
1978; Southwood et al., 1988], 2) temporal modulation of the reconnection rate during continuous reconnection 
[Phan et al., 2004], or 3) multiple X-lines (in 2-D representations) or separator lines (in 3-D representations) [e.g., 
Raeder, 2006; Hasegawa et al., 2010]. These different generation mechanisms necessarily give rise to different 
magnetic topology or magnetic field connectivity within and around the FTEs. Fear et al. [2008] categorized various 
flux rope models into three types: the elbow-shaped flux-bundle FTEs, single X-line FTEs, and multiple X-line FTEs, 
corresponding to case 1) to 3), respectively. 

Multi-spacecraft missions have advanced our understanding of the FTE structure, motion, and extent. Fear et al. 
[2008] used Cluster observations to describe an FTE with a much larger azimuthal (dawn-dusk) than north/south 
extent, which is inconsistent with the elbow-shaped flux tube model. Hasegawa et al. [2010] reported THEMIS 
observation of an FTE between the two converging jets, and therefore suggested the event formed via multiple X-line 
reconnection [e.g., Raeder, 2006]. Øieroset et al. [2011] presented similar observations of bidirectional jets 
converging toward an FTE. Observations of electrons that were not trapped within the core of the event demonstrated 
that the event was three-dimensional and had an open magnetic field topology rather than the structure of a two-
dimensional magnetic island. Owen et al. [2001] and Varsani et al. [2014] used Cluster observations to define the 
magnetic field connectivity inferred from the magnetic field and electron signatures. Farrugia et al. [2011] presented 
crater FTEs with multiple layers that can be identified by their magnetic, electric, and plasma signatures. 

Previously reported magnetopause FTEs often have scale sizes comparable to one Earth radius (RE). Drake et al. 
[2006] used PIC simulations to show the formation of secondary islands with much smaller, only a few to several ion 
inertial length (di), scale sizes in the exhaust region during magnetic reconnection. They pointed out that stronger 
guide fields result in longer electron current layers downstream from X-lines. Longer electron current sheets are more 
likely to be unstable to secondary island formation. Hwang et al. [2016] reported MMS observations of ion-scale 
FTEs formed along a magnetopause current layer between the two X-lines that was unstable to the tearing instability, 
generating multiple ion-scale flux-rope-type secondary islands. Likewise, the four MMS spacecraft, separated by 
less than 100 km, enable us to explore the substructure and topology of FTEs on micro-scales. In conjunction 
with Cluster measurements, we seek to investigate the shape, extent, and motion of FTEs as well as how they 
generate, coalescence, and propagate affecting the magnetopause current system and plasma mixing and 
transport. 

Dipolarization Fronts (DFs) DFs are a phenomenon commonly detected near the equatorial plane of Earth's 
nightside plasma sheet. They are characterized by sharp increases in the magnetic field component normal to the 
equatorial plane of the magnetosphere, increases of magnetic pressure, and decreases of plasma pressure across the 
front. Numerous DF observations in the near-Earth plasma sheet seen by the Cluster spacecraft [e.g., Hwang et al., 
2011; Fu et al., 2011; 2012; 2013] and THEMIS [e.g., Runov et al., 2009; Sergeev et al., 2009; Ashour-Abdalla et al., 
2011] have shown that DFs predominantly propagate earthward along the radial direction and are often embedded 
within fast earthward flows, i.e., bursty bulk flows [Angelopoulos et al., 1999]. 

The plasma and magnetic-field variations across DFs indicate that 1) they can result from magnetic reconnection in 
which the exhaust jets and entrained magnetic fluxes from the reconnection site pile up forming a front of increased 
magnetic flux [e.g., Fu et al., 2013], 2) they carry an entropy-depleted flux tube, or a localized plasma bubble behind 
them [Birn et al., 2004; Hwang et al., 2011], and 3) they provide a source region of both cross-tail (duskward) and 
field-aligned currents [e.g., Liu et al., 2013; Sun et al., 2013]. DFs have drawn wide attention because they 
significantly affect the acceleration and transport of plasmas. The energization is attributed to betatron and/or (first 
order) Fermi acceleration associated with the local magnetic pile-up signature of DFs and the large-scale 
reconfiguration (shortening) of the magnetic fields caused by radial convection of DFs [e.g., Fu et al., 2011] and to 
other nonadiabatic processes, including wave-particle interactions [Deng et al., 2010; Hwang et al., 2014].  

Hwang et al. [2015] reported, using MMS statistics of DFs, diverse (radially inward, azimuthally duskward, 
northward) propagation of DFs and different patterns of particle energization depending on the propagation of DFs 
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and their detection location. The high-resolution data from MMS will facilitate our exploration of detailed 
magnetic topology and particle energization at/around DFs. Important unknowns to be clarified by our ISSI 
team include: the substructure of the DF (e.g., bifurcated ion and electron current sheet layers within the DF, 
inferred by Klimas and Hwang [2016]); the magnetic topology of the DF including the negative Bz dip region 
ahead of DFs; and particle energization in terms of DF sub-layers and topology.  

Goals Based on knowns an unknowns stated above, we aim to advance current understanding of reconnection by 
answering the following outstanding questions: 
 
 
 
 
 
 
 

 

 

 

 
Timeliness The ESA’s Cluster mission has provided the first four-point measurements designed to distinguish 
between temporal and spatial signatures of plasma structures in geospace. This simultaneous four-point capability 
that is essential to unravel the critical micro- to meso-scale phenomena has innovatively advanced space in-situ 
observations. The MMS mission is a successor in evolution of multi-spacecraft measurements. The specific goal of 
MMS is to probe the electron-scale physics of reconnection by flying four spacecraft at inter-spacecraft ranges down 
to 10 km. In particular, the four MMS satellites provide 3-D particle distributions (by FPI) at an unprecedented time 
resolution: 30 ms for electrons and 150 ms for ions. The extremely high-resolution particle distributions enable us to 
map or reconstruct the reconnection topology and behavior of each plasma population participating in reconnection in 
each substructure of the reconnection current sheet layer.  

Cluster and MMS will provide a micro-to-macro combination of observations, with large spatial separations between 
the two missions providing a macroscopic picture of plasma processes and structure, and two tetrahedrons that can 
investigate multi-scale (<10 km) phenomena simultaneously. An example of orbit phasing is shown in Figure 2. In 
late 2016 the MMS spacecraft will increase apogee to 
move deeper into the magnetotail. The joint MMS-
Cluster configuration highlights the unique double-
opportunity orbits in which Cluster cross the 
magnetopause outbound at high latitude at a similar 
local time to MMS. During the inbound crossing, 
Cluster is at a lower latitude, similar to MMS, but 
separated in local time. These orbit configurations 
provide a variety of situations to examine the extent 
of reconnection X-lines/FTEs/DFs and their local 
structure and effects, enabling us to answer our 
questions.  

3.  Expected output and impacts 
Following steps will lead us to answer our science questions:  
Step 1: we will work on a review of the current knowledge, by compiling and discussing observational and numerical 
findings from individual researchers/groups consisting of our team.  
Step 2: we will set up collaborations between groups approaching the problems using observational and numerical 
methodology to facilitate profound interpretation of in-situ data, reconcile differences, and put them together to 
construct a complete picture/understanding of reconnection/FTEs/DFs.  
Step 3: we will arouse space science communities’ attention to outcomes from our ISSI activities to build bridges 
between world-wide communities studying relevant (directly or indirectly) subjects.  

Via Step 1 and 2, we expect the understanding of the reconnection physics to be significantly advanced. We expect to 
compile our understanding and views of reconnection/FTEs/DFs into a state-of-the-art review paper. All the team 
members including young scientists will coauthor the paper to be submitted to a high-impact peer-reviewed journal.  

Q1. Reconnection 
ü Where does reconnection occur? What determines the structure and extent of reconnection X-lines? 
ü What dynamics at what scales (e.g., which term in the generalized Ohm’s law) is important in 

topology change and energy conversion?  
ü How do particle distribution functions form/vary in space and time? 
ü How does the presence of multi ion populations change magnetic topology and the reconnection rate? 

Q2. Flux transfer events 
ü How are FTEs generated? How do their shape and extent evolve and propagate?  
ü What are the substructure and magnetic topology/connectivity within FTEs?  
ü How do FTEs affect the magnetopause current and plasma mixing and transport? 

Q3. Dipolarization fronts 
ü What are the substructure (e.g., current sheet layers) and magnetic topology of the DF including the 

negative Bz dip region ahead of DFs? 
ü Where and how effectively are particles energized in terms of DF sub-layers and topology? 

Cluster
Inbound  

Cluster
Outbound 

Cluster
Inbound  

Cluster
Outbound 

Figure 2. Example orbits showing the conjunction opportunities 
between Cluster (black trace) and MMS (red). 
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Via Step 2, we expect multiple papers about the structure and dynamics of reconnection/FTEs/DFs and particle 
distributions near/at the reconnection sites, resulting from collaborations between groups working on observations 
and simulations and/or among individual team members. 
Via Step 3, our project will directly contribute to the magnetospheric research community, studying reconnection/ 
FTEs/DFs. Interdisciplinary communications between groups working on directly or indirectly relevant topics will 
widen our vision for the fundamental physics underlying reconnection and interplaying between multi-scale phenomena.  
Via Step 1-3, our project will contribute to the Cluster and MMS missions by help maximizing its scientific gain, 
developing analysis tools using the MMS/Cluster data (e.g., for finding a magnetic null, Fu et al. [2015]), and 
possibly influencing on MMS/Cluster data acquisition planning. 

4.  Added value from ISSI 
Space plasma physicists studying reconnection/FTEs/DFs who have used Cluster data and now apply their expertise 
to MMS observations have largely been working separately from each other. In addition, observational researchers 
who can benefit from collaborations with PIC simulators to perform profound interpretation of in-situ data are often 
disconnected from modelers. Consequently, pieces of the findings in this field cannot readily be assembled into a full 
picture. ISSI will provide us a unique opportunity to overcome this situation, enabling us to construct a comprehensive 
picture, to build international collaborations among team members, and to perform inter-disciplinary research.  

5.  Confirmed team members 
To achieve our objectives, we bring together a strong multi-discipline team, composed of 9 data-analyzing 
researchers and 2 PIC simulators with young scientists from 8 different countries. Our team’s combined expertise 
covers all areas relevant to the proposed research.  
Nicolas Aunai Laboratory of Plasma Physics, Ecole Polytechnique France 
Jonathan P. Eastwood Imperial College, London UK 
Philippe Escoubet European Space Agency Nederland 
Robert C. Fear University of Southampton UK 
Huishan Fu Beihang University China 
Kyoung-Joo Hwang (Team leader) NASA Goddard Space Flight Center/UMBC USA 
Yuri Khotyaintsev Swedish Institute of Space Physics Sweden 
Giovanni Lapenta Centrum voor mathematische Plasma Astrofysica Begium 
Benoit Lavraud Institute de Recherche en Astrophysique et Planétologie France 
David G. Sibeck NASA Goddard Space Flight Center USA 
Sergio Toledo-Redondo European Space Agency, ESAC Spain 

6.  Schedule of the project 
We propose to meet three times (Fall 2016, Spring/Fall 2017) at the ISSI facilities in Bern, Swiss. We will hold 
regular teleconferences to monitor and discuss the work progress. Work plans for the meetings are shown below:  
2016 Fall meeting (1 week):  
• Review/discuss previous and recent findings from simulations and observations 
• Initiate inter-disciplinary collaborations between team members with respect to specific topics: e.g., the 

structure and dynamics of reconnection, FTEs, and DFs 
• Outline the structure of the review paper with determination of the leading authors and contributing collaborators 

2017 Spring meeting (3 days):  
• Discuss progress on inter-disciplinary efforts to draft corresponding research papers 
• Update/assess the status of review paper and its content in light of new results from discussion 

2018 Spring meeting (3-4 days):  
• Synthesize inter-disciplinary works on specific topics; finalize/submit research papers and a review paper 
• Discuss inputs to broad science communities and MMS/Cluster data acquisition planning and future collaboration 

7.  Facilities required 
Our meeting room that can accommodate about 15 people should be equipped with projection facilities and a white 
board. We may also need teleconference equipment in case that some team members cannot attend to one of the three 
meetings. As all team members and young scientists will bring their own laptops, we will need access to a wireless 
internet connection and a nearby printer. 

8.  Financial support requested 
We require the standard financial support package for international teams. This shall include the travel costs of the 
team leader (approx. 1200 €), and hotel expense and per diem for all team members for the three meetings. The hotel 
and per diem costs for a group of 3 young scientists per each meeting (to be identified once the proposal is selected) 
shall not exceed 20% of the financial means allotted to the team members.  
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Fu’s	 research	 is	currently	 focusing	on	magnetic	 reconnection,	dipolarization	 fronts,	and	 the	wave-particle	
interaction.	 In	 particular,	 he	 is	 focusing	 on	 the	 in	 situ	 observation	 of	 these	 processes	 in	 the	 Earth’s	
magnetosphere.	He	has	good	experience	 in	analyzing	spacecraft	data,	particularly	 the	data	 from	THEMIS,	
Cluster,	 RBSP,	 and	 MMS.	 He	 proposed	 a	 new	 method—named	 as	 FOTE—to	 find	 magnetic	 nulls	 and	
reconstruct	 field	 topology	 (e.g.,	 the	 topology	 of	 flux	 ropes,	 magnetic	 islands,	 and	 X-line).	 His	 previous	
research	covers	the	whole	magnetosphere,	including	foreshock,	bow	shock,	plasmasphere,	radiation	belts,	
magnetotail,	M-I	 coupling,	 and	 the	magnetic	 reconnection.	 All	 the	 relevant	 work	 has	 been	 published	 in	
international	peer-reviewed	 journals,	presented	at	 international	conferences	 in	both	 invited	and	solicited	
talks.	A	new	manuscript	related	to	magnetic	reconnection	is	now	submitted	to	international	journals.		

Current	projects	
1) Particle	energization	at	electron	scale	during	magnetic	reconnection.		
2) Current	system	associated	with	magnetotail	dipolarization	fronts.		
3) Formation	mechanisms	of	magnetotail	dipolarization	fronts.		
4) Constructing	a	mode	for	VLF	waves	in	the	Earth’s	radiation	belts.		

Recent	relevant	publications		
1. Fu,	H.	S.,	et	al.	 (2016),	 Identifying	magnetic	 reconnection	events	using	 the	FOTE	method,	 J.	Geophys.	

Res.,	121,	1263–1272.		
2. Fu,	H.	S.,	et	al.	 (2015),	How	to	 find	magnetic	nulls	and	reconstruct	 field	 topology	with	MMS	data?,	 J.	

Geophys.	Res.,	120,	3758–3782.		
3. Fu,	H.	S.,	Y.	V.	Khotyaintsev,	A.	Vaivads,	A.	Retinò,	and	M.	André	(2013),	Energetic	electron	acceleration	

by	unsteady	magnetic	reconnection,	Nature	Physics,	9,	426–430.		
4. Fu,	 H.	 S.,	 et	 al.	 (2013),	 Dipolarization	 fronts	 as	 a	 consequence	 of	 transient	 reconnection:	 In	 situ	

evidence,	Geophys.	Res.	Lett.,	40,	6023–6027.		
5. Fu,	 H.	 S.,	 Y.	 V.	 Khotyaintsev,	 A.	 Vaivads,	 M.	 André,	 and	 S.	 Y.	 Huang	 (2012),	 Occurrence	 rate	 of	

earthward-propagating	dipolarization	fronts,	Geophys.	Res.	Lett.,	39,	L10101.		
6. Fu,	 H.	 S.,	 Y.	 V.	 Khotyaintsev,	 A.	 Vaivads,	 M.	 Andre,	 and	 S.	 Y.	 Huang	 (2012),	 Electric	 structure	 of	

dipolarization	front	at	sub-proton	scale,	Geophys.	Res.	Lett.,	39,	L06105.		
7. Fu,	 H.	 S.,	 Y.	 V.	 Khotyaintsev,	 M.	 André,	 and	 A.	 Vaivads	 (2011),	 Fermi	 and	 betatron	 acceleration	 of	

suprathermal	electrons	behind	dipolarization	fronts,	Geophys.	Res.	Lett.,	38,	L16104.		
	



	

	

Kyoung-Joo Hwang 
NASA Goddard Space Flight Center, Code 672 Greenbelt, MD 20771  

University of Maryland, Baltimore County, MD 21250  
Kyoung-Joo.Hwang@nasa.gov; Tel. +1-301-286-9115 

 
 

PROFESSIONAL PREPARATION 
Korea University, Seoul, Korea – graduated as a top graduate            Physics        B.S., 1996 
Korea Adv. Inst. of Sci. & Tech. (KAIST), Daejon, Korea           Space Physics       M.S., 1999 
Dartmouth College, Hanover, NH, USA                                        Space Physics          Ph.D., 2006 

 
APPOINTMENTS 
NASA Goddard Space Flight Center/University of Maryland, Baltimore County, MD, USA   

• MMS science using datasets and integration with simulations of magnetic reconnection 
• Dayside/tail and inner-magnetospheric studies using Cluster, THEMIS, and RBSP datasets 

LASP, University of Colorado, Department of Physics, CO, USA                                              
• Vlasov and test-particle simulations for a double layer and ionospheric ion outflow 
• FAST data analysis on the auroral region and Magnetosphere-Ionosphere coupling 

Dartmouth College, Department of Physics and Astronomy, NH, USA                                                              
• FAST data analysis on the auroral acceleration region 
• Hardware works on particle detectors of NASA’s Sounding Rockets, LYNCH 30.058/059 

 
SYNERGISTIC ACTIVITIES 
Interview with science news media 

• AGU Research Spotlight by Editors, pressed in Eos, AGU’s weekly newspaper 
• ESA Cluster story and NASA Heliopress Highlights; Press releases at news media  

Peer-Review Service for Spacecraft Datasets 
• Cluster Active Archive (CAA, http://caa.estec.esa.int) database of four Cluster spacecraft, provided to 

the world-wide science community 
• Developed a numerical code for FAST data, installed in FAST IDL library for public use 

Referee Service 
• Papers submitted to Nature Comm., JGR, Geophys. Res. Lett., Annales Geophysicae 
• Proposals submitted to NASA’s ROSES Heliophysics programs and NSF GEM programs 

Conference/Local Meeting Service  
• Panelist in 2015 KSEA (Korea-American Scientist and Engineer Associations) conference  
• Convened/Convening sessions in 2014/2015 Fall AGU meeting 

 
SELECTED RELEVANT PUBLICATIONS 

• K.-J. Hwang and D. G. Sibeck (2015), Role of Low-frequency Boundary Waves in the Dynamics of 
the Dayside Magnetopause and the Inner Magnetosphere, AGU Geophysical Monograph Series. 

• K.-J. Hwang et al. (2014), A tailward-moving current-sheet-normal magnetic-field front followed by 
an earthward-moving dipolarization front, J. Geophys. Res., 119, 5316-5327. 

• K.-J. Hwang et al. (2014), Wave-particle interactions during a dipolarization front event,  J. Geophys. 
Res., 119, 2484-2493, doi:101002/2013JA019259. 

• K.-J. Hwang et al. (2013), Cluster observations near reconnection X lines in Earth's magnetotail 
current sheet, J. Geophys. Res., 118, 4199-4209. 

• K.-J. Hwang et al. (2011), Kelvin-Helmholtz waves under southward interplanetary magnetic field, J. 
Geophys. Res., 116, A08210, doi:10.1029/2011JA016596 

• K.-J. Hwang et al. (2011), Cluster observations of multiple dipolarization fronts, J. Geophys. Res., 
116, A00I32. 

 



	

	

Brief Curriculum Vitae for Yuri Khotyaintsev	
	
Contact information: 
Dr. Yuri Khotyaintsev, 
Swedish Institute of Space Physics, 
Box 537, SE-75121, Uppsala, Sweden 
Phone: +46-18-471-5929 (office), +46-73-6748136 (mob)  
E-mail: yuri@irfu.se 
 
Education: 
M. Sci. in Physics, 1997, Kyiv Shevchenko University. 
Ph. D. in Space Physics, 2003, Uppsala University. 
 
Employment: 
1998 – 2003, PhD student at Swedish Institute of Space Physics, Uppsala. 
2003 – 2008, Scientist, Swedish Institute of Space Physics, Uppsala. 
2008 – 2012, Research Fellow, Swedish Institute of Space Physics, Uppsala. 
2012 to present, Senior Scientist, Swedish Institute of Space Physics, Uppsala. 
 
Experience in Space Science Missions: 
EFW instrument, Cluster, Co-Inverstigator, responsible for production of the EFW data for the CAA. 
RPW, Solar Orbiter, Co-Inverstigator. 
FIELDS/SDP, NASA/MMS, responsible for the SDP science data production. 
RPWI, JUICE, Co-Inverstigator, responsible for coordination of data production and archiving for RPW. 
EFI, THOR, PI, member of the ESA Science Study team. 
 
Other relevant experience: 
1999 – 2003 Development of Orbit Visualization Tool (OVT, http://ovt.irfu.se). 
2005 – 2007 Member of an international team at the International Space Science Institute (ISSI) studying relationship 
between the reconnection and turbulence. 
2008 – 2011 Team leader of an international team at ISSI “Magnetic reconnection and particle energization: synergy of 
in situ and remote observations”,  http://www.issibern.ch/teams/synergy_remote/ 
2012-2014, Work package leader, EU FP7 MAARBLE project, http://www.maarble.eu/project/. 
2012 to present, Member of an international team ISSI studying particle acceleration at plasma jet fronts. 
2015 to present, Member of an international team ISSI devoted to Cluster inner-magnetosphere campaign. 
2014 to present, Member of an international team ISSI “Small Scale Structure and Transport During Magnetopause 
Magnetic Reconnection: from Cluster to MMS”. 
2015, Organizer of NORDITA program “Magnetic reconnection in plasmas”, http://www.nordita.org/mrp2015 
2015, Selected as Cluster Guest Investigator, with a campaign targeting bow shock at small inter-spacecraft separation, 
http://sci.esa.int/cluster/55616-guest-investigator-operations-2015-2016/#YKhotyaintsev 
2016 to present, Member of an international team at ISSI “Particle Acceleration in Solar Flares and Terrestrial 
Substorms” 
 
Selected publications: 
• Fu, H. S., Yu. V. Khotyaintsev, A. Vaivads, A. Retinò, and M. André, Energetic electron acceleration by unsteady 
magnetic reconnection, Nature Physics, 9, 426-430, 2013. 
• Khotyaintsev, Yu.V., C.M. Cully, A. Vaivads, M. André, and C. J. Owen, Plasma Jet Braking: Energy Dissipation and 
Non-Adiabatic Electrons, Phys. Rev. Lett., 106, 165001, 2011. 
• Khotyaintsev, Yu.V., A. Vaivads, M. André, M. Fujimoto, A. Retino, and C. J. Owen, Observations of slow electron 
holes at a magnetic reconnection site, Phys. Rev. Lett., 105, 165002, 2010. 
• Khotyaintsev, Yu. V., A. Vaivads, A. Retinò, M. André, C. J. Owen, H. Nilsson, Formation of Inner Structure of a 
Reconnection Separatrix Region, Phys. Rev. Lett., Vol. 97, 205003, 2006. 
• Vaivads, A., Y. Khotyaintsev, M. André, A. Retinò, S. C. Buchert, B. N. Rogers, P. Décréau, G. Paschmann, T. D. 
Phan, Structure of the Magnetic Reconnection Diffusion Region from Four-Spacecraft Observations, Phys. Rev. Lett., 
Vol. 93, 105001, 2004. 
	
Full list of publications: http://www.cluster.irfu.se/yuri/publications.html 
 



	

	

	
Giovanni	Lapenta	

Centrum	voor	mathematische	Plasma	Astrofysica,	KU	Leuven	
Celestijnenlaan	200B,	3001	Heverlee,	Begium		

Giovanni.lapenta@kuleuven.be;	Tel.	+	+32	16	32	79	65	

 

Professional Preparation 
1990  Masters in Nuclear Engineering, Politecnico di Torino 
1993  PhD in Plasma Physics, Politecnico di Torino 
 
Appointments 
1992-1994  Graduate Researcher, Los Alamos National Laboratory, USA 
1994-1996  Post-doc scientist, Los Alamos National Laboratory, USA 
1995-2001 Professor, Politecnico di Torino, Italy. 
1996-2006  Staff member, Los Alamos National Laboratory, USA 
2006-present Professor, University of Leuven, Belgium. 
2006-present Consultant, University of Colorado, Boulder, USA. 
2012-present Guest Professor, University of California, Los Angeles, USA. 
2005-present Editor for EGU’s Nonlinear Processes in Geophysics. 
 
Honors:  
1992 ANS “Outstanding Student Paper Award”, 1992. 
2005 RD100 Prize. 
 
Mission Involvement 
MMS (2002-): Co-I MMS-IDS Team of University of Colroado 
 
Participation in earlier ISSI activities 
2010-2012: “Spacecraft-plasma interaction” Team 
2011-2013: “Flow-driven instabilities of the Sun-Earth system” Team 
2014-2015: “Slow solar wind sources andacceleration mechanisms in the corona” Team 
 
Relevant Publications (selected from over 100 publications) 

• G.	 Lapenta,	 Markidis,	 S.,	 Goldman,	 M.	 V.,	 &	 Newman,	 D.	 L.	 (2015).	 Secondary	 reconnection	 sites	 in	
reconnection-generated	flux	ropes	and	reconnection	fronts.	Nature	Physics,	11(8),	690-695.	

• Vapirev, A. E., Lapenta, G., Divin, A., Markidis, S., Henri, P., Goldman, M., & Newman, D. (2013). 
Formation of a transient front structure near reconnection point in 3-D PIC simulations. Journal of 
Geophysical Research: Space Physics, 118(4), 1435-1449. 

• G.	Lapenta,	S.	Markidis,	S.	Poedts,	D.	Vucinic,	Space	Weather	Prediction	and	Exascale	Computing,	2013,	
Computing	in	Science	&	Engineering,	vol.	15,	p.	68.		

• T.	 Intrator,	 X.	 Sun,	G.	Lapenta,	 L.	Dorf,	 I.	 Furno,	Experimental	 onset	 threshold	 and	magnetic	pressure	
pileup	for	3D	Sweet-Parker	reconnection,	2009,	Nature	Physics,		5,		521.		

• S.	 Markidis,	 G.	 Lapenta.	 Rizwan-Uddin,	 Multi-scale	 simulations	 of	 plasma	 with	 iPIC3D,	 2010,	
Mathematics	and	Computers	in	Simulation,	vol.	80,	p.	1509.		

• G.	 Lapenta,	 J.U.	 Brackbill,	 Nonlinear	 Evolution	 of	 the	 Lower	 Hybrid	 Drift	 Instability:	 Current	 Sheet	
Thinning	and	Kinking,	2002,	Physics	of	Plasmas,	vol.	9,	p.	1544.	

• G.	Lapenta,	Self-feeding	turbulent	magnetic	reconnection	on	macroscopic	scales,	2008,	Physical	review	
letters,	vol.	100,	p.	235001.		

• M.	 Ashour-Abdalla,	 G.	 Lapenta,	 R.	 J.	 Walker,	 M.	 El-Alaoui,	 &	 H.	 Liang,	 Multiscale	 Study	 of	 Electron	
Energization	during	Unsteady	Reconnection	Events,	2015,	Journal	of	Geophysical	Research:	Space	Physics.	

	
 
 



	

	

 
Benoit	Lavraud	

Institute	de	Recherche	en	Astrophysique	et	Planétologie		
9	Avenue	du	Colonel	Roche,	31028	Toulouse,	France		
Benoit.Lavraud@irap.omp.eu;	Tel.	+33	5	61	55	66	79	

 

Professional Preparation 
2000  Masters in Astrophysics, University of Toulouse 
2004  PhD in Space Plasma Physics, University of Toulouse 
 
Appointments 
2004-2006  Post-doc scientist, Los Alamos National Laboratory, USA 
2006-2008  Limited-term staff member, Los Alamos National Laboratory, USA 
2008-present Research scientist, Institut de Recherche en Astrophysique et Planétologie, Toulouse. 
2010-present Editor for AGU’s Geophysical Research Letters. 
2015-present Department head “Planètes, Environnements, Plasmas Spatiaux” at IRAP. 
 
Honors:  
2002 AGU “Outstanding Student Paper Award”, 2002. 
2005 ESA award “Five years of Cluster in space” for outstanding contribution. 
2011 “Prime d’Excellence Scientifique” of CNRS. 
 
Mission Involvement 
Cluster (2002-):  CIS ion experiment Co-I 
Double Star (2006-): HIA ion instrument Co-I 
Solar Orbiter (2018-): SWA instrument suite Co-I 
STEREO (2008-): Strong involvement (science, calibration, etc.) 
 
Participation in earlier ISSI activities 
2003-2005: “Outer Magnetospheric Boundaries: Cluster Results” Workshop 
2004-2006: “Comparative Cluster-Double Star measurements of the dayside magnetosphere” Team 
2008-2010: “Studies of dayside magnetosphere response using Cluster-THEMIS conjunctions” Team 
2010-2012: “Plasma entry and transport in the plasma sheet” Team 
2011-2013: “Flow-driven instabilities of the Sun-Earth system” Team 
 
Relevant Publications (selected from over 100 publications) 
Lavraud, B., et al., Currents and associated electron scattering and bouncing near the diffusion region at 

Earth’s magnetopause, Geophys. Res. Lett., DOI: 10.1002/2016GL06835, 2016. 
Lavraud, B., et al., Chapter 1: The magnetopause, its boundary layers, and pathways to the magnetotail, in 

“The Dynamic Magnetosphere”, Springer publications, W. Liu, and M. Fujimoto (Eds), pp. 3-28, 2011. 
Lavraud, B., et al., Observation of a complex solar wind reconnection exhaust from spacecraft separated by 

over 1800 RE, Solar Phys., 256, No. 1-2, p. 379-392, doi:10.1007/s11207-009-9341-x, 2009. 
Lavraud, B., et al., Tracing solar wind plasma entry into the magnetosphere using ion-to-electron temperature 

ratio, Geophys. Res. Lett., 36, L18109, doi:10.1029/2009GL039442, 2009. 
Lavraud, B., et al., Evidence for newly closed magnetosheath field lines at the dayside magnetopause under 

northward IMF, J. Geophys. Res., 111, No. A5, A05211, doi:10.1029/2005JA011266, 2006. 
Lavraud, B., et al., Characteristics of the magnetosheath electron boundary layer under northward IMF: 

Implications for high-latitude reconnection, J. Geophys. Res., 110, A06209, doi :10.1029/2004JA010808, 
2005. 

Lavraud, B., et al., Cluster observations of the exterior cusp and its surrounding boundaries under northward 
IMF, Geophys. Res. Lett., 29, No. 20, 56, 2002. 

 



	

	

 
David G. Sibeck 

 
Code 674, NASA/GSFC 

Greenbelt, MD 20771 
1-301-286-5998 (TEL), 1-301-286-1648 (FAX) 

 
 
 
Education: B.A. (1979), M.S. (1982), PhD. (1984) UCLA 
 
NASA/GSFC Positions Held: 
 
2004-2006 LWS TR&T Project Scientist 
2007-present LWS Geospace Mission Scientist 
2004-2007 LWS Geospace Project Scientist 
2003-present THEMIS Project Scientist 
 
Professional Activities: 
 
2015-present President AGU SPA Section 
2011-2013 Chair, NSF GEM steering committee 
2004-2007 Associate Editor, GRL 
2004-2010 Editorial Advisory Board, EOS 
2005-2010 Guest Editor, Advances in Space Research 
 
Meetings Organized: 
 
1993                                            Organizer, IAGA Session on Magnetosheath 
1999 Organizer, IAGA Session on Shock, Sheath, and Magnetopause 
2000 Co-Organizer, NATO Magnetosheath Meeting, Antalya, Turkey 
2003 Co-Organizer, IAGA Magnetopause Session, Sapporo, Japan 
 
Awards 
 
 1992 AGU Macelwane Award 
 
Publications:  307 refereed publications (74 first-authored). 
 
1. Sibeck, D. G., A model for the transient magnetospheric response to sudden solar wind dynamic pressure 

variations, J. Geophys. Res., 95, 3755, 1990. 
2. Sibeck, D. G. and V. Angelopoulos, THEMIS science objectives and mission phases, Space Sci. Rev., 

141, 35-89,  2008.	
3. Sibeck, D. G., et al., ARTEMIS Science Objectives, Space Sci. Rev., 10.1007/s11214-011-9777-9, 2011. 
4. Omidi, N., D. G. Sibeck, et al., Dynamics of the foreshock compressional boundary and its connection to 

foreshock cavities, J. Geophys. Res., 118, 823-831, 2013. 
5. Zhang, H., D. G. Sibeck, et al., Spontaneous hot flow anomalies at quasi-parallel shocks: 1. 

Observations, J. Geophys. Res., 118, 3357-3363, 2012. 
 
 
 
 
 



	

	

 
Sergio Toledo-Redondo 

Science Directorate, European Space Agency, ESAC 
Villanueva de la Cañada, Madrid, SPAIN. 

sergio.toledo@sciops.esa.int; Tel. +34 918 131 552 
 
 
 

PROFESSIONAL PREPARATION 
 
Polytechnic University of Catalonia, Barcelona, Spain   Engineering B.S., 2006 
University of Granada, Granada, Spain  Physics  M.S., 2010 
University of Granada, Granada, Spain      Physics  Ph.D., 2012 

 
 

APPOINTMENTS 
 
Research fellow at the European Space Agency (ESA - ESAC), Villanueva de la Cañada, Madrid, Spain 

• Multiple ion length-scales in magnetic reconnection: MMS and CLUSTER. 
Postdoc at the Swedish Institute of Space Physics (IRF), Uppsala, Sweden                                  

• Microphysics of magnetic reconnection using CLUSTER. 
Postdoc at the University of Granada, Granada, Spain 

• Ground based magnetometers for atmospheric electricity studies, Schumann resonance. 
 
 
SYNERGISTIC ACTIVITIES 
 
Referee Service 

• Papers submitted to Geophys. Res. Lett. 
Conference/Local Meeting Service  

• Science Organizing Committee at '4th CLUSTER-THEMIS workshop', 7-11 November 2016, Palm 
Spring, CA. 

• Invited talk 'Energization of cold ions during magnetic reconnection at the dayside magnetopause' at 
AGU 14-18 December 2015, San Francisco, CA. 

• Chairman at 'Magnetic Reconnection in Plasmas - NORDITA', 10-14 August 2015, Stockholm 
Sweden. 

 
 

SELECTED RELEVANT PUBLICATIONS 
 

• S. Toledo-Redondo et al. (2016), Cold ion demagnetization near the X-line of magnetic reconnection, 
(to be submitted to) Geophys. Res. Lett. 

• S. Toledo-Redondo et al. (2016), Cold ion heating at the dayside magnetopause during magnetic 
reconecction, Geophys. Res. Lett., 42, 6146-6154. 

• S. Toledo-Redondo et al. (2015), Modification of the Hall physics in magnetic reconnection due to 
cold ions at the Earth's magnetopause, Geophys. Res. Lett., 43, 58-66. 
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