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Novel approaches to multiscale geospace particle transfer: 
Improved understanding and prediction through uncertainty quantification and 

machine learning 
Executive Summary 

The magnetosphere, ionosphere and thermosphere (MIT) act as a coherently 
integrated system (geospace), driven in part by solar influences and characterized by 
variability and complexity. The manifestation of this variability and complexity is known as 
space weather, which refers to the effects of solar energy in geospace that threaten the 
technological infrastructure that powers the world [Schrijver et al., 2015]. Space weather 
events also known as "geomagnetic storms" can disrupt the operation of power grids, 
magnetic surveying and directional drilling for oil and gas. These storms also heat the 
ionosphere-thermosphere (~100-1000 km altitude), changing density and composition 
and disrupting radio communications and Global Navigation Satellite Systems (GNSS). 
Storm-driven charged particles and radiation throughout geospace are a hazard to the 
health of astronauts, passengers on high altitude flights and all space-based technologies.  

Among the most important and yet uncertain aspects of the geospace system is 
energy and momentum coupling between regions, which is accomplished by 
electromagnetic fields, or Poynting flux, and the transfer of charged particles. Particles are 
transferred from the magnetosphere to the ionosphere in a process known as particle 
precipitation [e.g., Hardy et al., 1985], and particles of ionospheric origin undergo 
energization to escape to the magnetosphere [e.g., Strangeway et al., 2000]. Flow of 
particles in both directions are critical to the composition and dynamics of each region and 
are inherently multiscale processes. However, existing models do not capture the 
multiscale aspects, largely neither address nor quantify uncertainties, and are increasingly 
ill-equipped to provide the specification necessary for the growing demand for space 
weather forecasts. The extent to which shortcomings in existing models of particle 
precipitation and ion outflow impact our understanding of geospace and ability to 
predict space weather is unknown. 

Due to recent trends in the availability of data, we now face an exciting 
opportunity to progress geospace understanding through the intersection of 
traditional approaches and state-of-the-art data-driven sciences [McGranaghan et 
al., 2017]. Data (from simulations and direct observations distributed throughout the solar 
wind and geospace system) are now available to take advantage of cutting-edge data-
driven approaches, summarily referred to here as ‘machine learning’ (ML) techniques. 
Although Poynting flux can be quantified at large scales via global observations of 
ionospheric convection (e.g., from the Super Dual Auroral Radar Network, SuperDARN) 
and field-aligned currents (e.g., from the Active Magnetosphere and Planetary 
Electrodynamics Response Experiment, AMPERE) [Waters et al., 2004], comparable 
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global observations of particle transfer are not available. We propose a workshop that will 
cut across disciplinary lines to better utilize particle transport data for the prediction of 
energy and momentum transfer in geospace by the ML techniques of uncertainty 
quantification and neural networks. The proposed work will produce a leap forward in the 
understanding of geospace particle transfer, both in the quantification of the uncertainties 
of current models (e.g., data products that quantify how unknowns in electron particle 
precipitation map to errors in ionospheric conductivity estimation on different scales) and 
by establishing a foundation for improved predictive models using neural networks. 
1. Science Rationale 
1.1: Questions 
We propose to address the following questions:  

1. What are the quantitative uncertainties in (existing) particle precipitation and ion 
outflow models? 

2. To what extent do these uncertainties propagate to uncertainties in critical space 
weather parameters of the magnetosphere and ionosphere (e.g., magnetospheric 
composition and ionospheric conductivity)? 

3. To what extent can neural networks yield improved models of particle precipitation 
and ion outflow, and, ultimately, improve space weather forecasts? 

1.2 Background 
Critical variables for space weather are the flux distribution of electrons 

precipitating into the high-latitude ionosphere and their integrated hemispheric 
precipitation rates and power [Zhang et al., 2015]. Global simulations of geospace include 
either index-based, empirical precipitation models [Ridley et al., 2006; Codrescu et al., 
2012; Qian et al., 2014], or simple first-principles causal models [e.g., Wiltberger et al., 
2009]. All of the existing simulation models of electron precipitation exhibit deficiencies 
either in causal regulation, neglect of key types of precipitation, or accuracy and scales 
[Zhang et al., 2015]. 

When the ionosphere is heated by any number of processes, including particle 
precipitation, Joule heating, and photoionization [Burns et al., 2007], cold ionospheric O+ 
particles are accelerated upwards in altitude. With sufficient acceleration, these particles 
escape to the magnetosphere in a process known as ion outflow. Outflow has been shown 
to occur at all local times at mid- and high-latitudes [Loranc et al., 1991], forms a dominant 
source of magnetospheric plasma [Yau et al., 1997], and leads to temporal and spatial 
variations in magnetospheric composition, Alfvén speed, and ring current pressure 
distribution [Redmon et al., 2014]. Like particle precipitation, modeling of ion outflow has 
taken several forms, including ad hoc [Zhang et al., 2007], empirical [Strangeway et al., 
2000], and simplified physics-based [Glocer et al., 2009; Varney et al., 2016] approaches. 
None of the existing models sufficiently address the numerous complex driving processes.  
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Remedying shortcomings in the specification of particle transport between the 
magnetosphere and ionosphere is critical. The movement of particles affects the 
composition and dynamics of both regions. In the ionosphere precipitating particles collide 
with ambient particles, driving ionization which alters the conductivity, and hence the 
ionospheric electrodynamics, and creating ionospheric irregularities which threaten the 
integrity of radio communication [Kintner et al., 2007]. Ion outflow changes composition 
and pressure distributions in the ionosphere and the magnetosphere [Glocer et al., 2009]. 
Both precipitation and outflow affect the neutral density environment, a critical uncertainty 
for satellite and orbital debris drag estimation [Marcos et al., 2006]. With the increased 
accessibility of data with which to study the coupled geospace environment, we 
can now explore particle transport through multidisciplinary data-driven 
approaches. This project will be a demonstration of the potential for uncertainty 
quantification and neural network techniques to provide a significant leap forward 
in the understanding, and, ultimately, prediction of the transfer of particles in 
geospace. 
2. Methodology 
2.1 Principal Objectives:  
We will address two specific tasks:  

1. Assess the impact of uncertainties in specification of electron precipitation and ion 
outflow on the MIT system (model-driven) 

2. Explore neural network models to improve specification of electron precipitation 
and ion outflow (observationally-driven) 

2.2 Task One: Assess the impact of electron precipitation and ion outflow on 
simulations of the ionosphere, magnetosphere, and radiation belts  

The first task will be to quantify the uncertainties of magnetosphere and ionosphere 
models to electron precipitation and ion outflow. Team co-leader Camporeale outlined the 
approach that we will use in the context of radiation belt simulations. Namely, they 
propagated uncertainties originating from specific radiation belt model input parameters 
through the nonlinear simulation and quantified the resultant variability using an ensemble 
of simulations. Their work produced actionable new understanding to improve space 
weather predictions associated with the radiation belts. This project will take advantage of 
their pioneering work to produce similar new understanding for the geospace phenomena 
influenced by electron precipitation and ion outflow. We will examine the Global 
Ionosphere-Thermosphere Model (GITM) [Ridley et al., 2006] and the Lyon-Fedder-
Mobarry (LFM) model [Lyon et al., 2004] to simulate the ionosphere and the 
magnetosphere, respectively. Because the radiation belts are integrally connected to 
particle transport, we will also assess the effects in radiation belt simulations using the 
Versatile Electron Radiation Belt (VERB) Model [Shprits et al., 2008]. Each of these 
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models are chosen based on extensive benchmarking, wide acceptance, and direct 
expertise on our team.  

To conduct the uncertainty quantification two steps must be taken: 1) determine 
the range of electron precipitation and ion outflow inputs to the simulations based on the 
variability of existing models and 2) run the ionosphere, magnetosphere, and radiation belt 
models for the range of input conditions thereby propagating the uncertainties through the 
simulations. The range of electron precipitation and ion outflow inputs will be determined 
from the Oval Variation, Assessment, Tracking, Intensity, and Online Nowcasting 
(OVATION) Prime [Newell et al., 2010] and the Ionosphere Polar Wind Model (IPWM) 
[Varney et al., 2016] models, respectively. We note that there may be computational 
limitations to running these complex models across the range of inputs and acknowledge 
that our workshop may rely on simplified, or surrogate, versions of the models. All models 
that will be used for task one can be run on-demand at the Community Coordinated 
Modeling Center (CCMC, https://ccmc.gsfc.nasa.gov/) and their results archived so that 
the data are freely and openly available to the entire community. Therefore, our work will 
provide benefit to the community beyond the conclusion of the proposed workshop.  
2.3 Task Two: Explore machine learning models to develop improved particle 
precipitation and ion outflow specification 

The second task will be to provide the first exploration of the efficacy of neural 
network-based ML models to specify electron precipitation and ion outflow. The objective 
of the ML models will be to determine statistical relationships between solar wind drivers 
and geomagnetic activity parameters and electron precipitation and ion outflow that could 
improve accuracies of ionosphere and magnetosphere models. We will focus on neural 
networks with deep architectures, given recent breakthroughs using this approach [e.g., 
Krizhevsky et al., 2017] and demonstrated potential for geospace [Bortnik et al., 2016]. 
Deep neural networks have the ability to learn complex statistical relationships [Lecun et 
al., 2015], and, therefore, have the potential to progress the modeling and prediction of 
particle transport in geospace. Finally, we will place emphasis on recurrent neural 
networks (RNN), specifically Long Short-Term Memory (LSTM) [Hochreiter and 
Schmidhuber, 1997], as the current state-of-the-art for sequential data and for systems 
that exhibit `memory’, or hysteresis [Cho et al., 2014]. RNNs are largely unexplored for 
geospace applications. Using input data from the solar wind, geomagnetic activity 
indices (e.g., the auroral electrojet index (AE)), and geospace observations we will 
investigate the use of RNNs to discover relationships with the following output data:  

1. electron precipitation data from the Defense Meteorological Satellite Program 
(DMSP) spacecraft; and 

2. ion outflow data as measured by the DMSP and Fast Auroral SnapshoT (FAST) 
Explorer spacecraft. 
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McGranaghan et al., [2016] demonstrated the immense information content of DMSP 
particle precipitation data to inform advanced methods to specify and characterize the 
electron flux environment. Likewise, similar benefit of data-driven methods has been 
realized for ion outflow using DMSP [Coley et al., 2003] and FAST [McFadden et al., 2013] 
observations. Appendix A.1 details the project data sets and their availability for this work. 
These data sets will compose capable training and testing databases for RNN exploration.  
3. Unique Team Composition 
Our outstanding international team has been uniquely constructed for the multidisciplinary 
needs of this ambitious project. We have appointed leads for each of the core 
competencies of the project (see Table 1). In addition to core members, we have identified 
external ML advisors and an early career scientist to enhance our capability to bring 
closure to the project goals. External ML experts will contribute on a consultant-basis and 
early career scientist and pioneer of ML methods in geospace [Zhelavskaya et al., 2016] 
Irina Zhelavskaya has committed to a role equivalent to the core team. 
 
Table 1: Project team and core competencies*† 

Member Project core competency 
lead area 

Affiliation Country 

Ryan McGranaghan  Team co-leader NASA Jet Propulsion Laboratory/National 
Center for Atmospheric Research (NCAR) 

USA 

Enrico Camporeale Team co-leader Centrum Wiskunde & Informatica, 
Amsterdam 

NLD 

Binzheng Zhang Ion outflow University of Hong Kong CHN 
Jesper Gjerloev Particle precipitation Johns Hopkins University Applied 

Physics Laboratory/University of Bergen 
USA/NOR 

Kristina Lynch Ionospheric system Dartmouth College USA 
Susan Skone  Ionospheric impacts University of Calgary CAN 
Yuri Shprits Magnetospheric system The Helmholtz Centre Potsdam - GFZ  DEU 
Mick Denton Magnetospheric impacts Space Science Institute USA/GBR 
Alison Lowndes  Machine learning and 

computation 
Artificial Intelligence DevRel | EMEA | 
NVIDIA Ltd 

GBR 

Peter Riley Uncertainty Quantification Predictive Science Inc. USA 
Irina Zhelavskaya Early career The Helmholtz Centre Potsdam - GFZ  DEU 

*Each member of the core team will serve as a ‘lead’ of one aspect of the problem.  
†Each team member has demonstrated leadership and expertise in novel methods for space 
science 

4. Expected Outcomes 
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Anticipated innovations include quantitative evaluation of the uncertainties of 
existing electron precipitation (i.e., OVATION Prime) and ion outflow (i.e., IPWM) models 
and new neural network-based models for these phenomena. We expect to: 

• Pioneer new collaborations between heliophysics and machine learning 
communities;  

• Produce publications in both space physics- and machine learning-focused 
journals (target two major publications with all team members as co-authors: one 
in space physics journal and one in machine learning journal); and 

• Disseminate results at conferences with corresponding conference publications.  
Our efforts will enhance the infrastructure for space science discovery by fostering 
partnerships between science and ML communities and demonstrating the value of neural 
network approaches for space science. Our data and code will be made freely and openly 
available to ensure that future efforts can build on our progress. Finally, we will culminate 
our work in a final report, detailing our approach, progress, and targeted future work.  
5. Meeting Structure and Timeline 

We propose two week-long meetings at ISSI-Bern over a 12-month period. The 
meetings will occur in the Fall of 2018 and Spring of 2019, respectively. Working groups 
will be formed at the start of the first meeting to facilitate concurrent progress toward both 
project tasks at each meeting. Between meetings, and to prepare for publications and 
conference dissemination of our results, we will hold regular team virtual meetings.  
6. Facilities and Financial Support/Feasibility 

The standard package for support provided by ISSI, including support for our team 
meetings, projection and meeting technologies, and internet access, will be sufficient for 
our project. If travel funding for only one team leader is available, co-leader Camporeale 
can renounce travel funding. We intend to utilize the added 15-20% of the total grant to 
bring in Irina Zhelavskaya as an early career scientist. 
7. Added Value of ISSI 

This ambitious project requires rapid progress and a broad range of expertise, 
covering space science, space weather, machine learning, and data science. This 
environment is uniquely provided by ISSI. Involvement with ISSI will allow us to take 
advantage of relevant previous and ongoing ISSI workshop teams, notably “Determination 
of the Global Conductance Pattern and its Influence on the Dynamics of Geospace” and 
“Multi-Scale Variations in Auroral Electron Precipitation.” Likewise, our workshop would 
enrich the ISSI community, being the only recent effort to study geospace through ML 
approaches.  
 
 
Appendices 
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A.1: Project data sets  

Neural network input data (predictive variables) 
Data set Team member(s) with 

relevant expertise 
Data access 

Solar wind data and 
geomagnetic activity 
indices 

All https://omniweb.gsfc.nasa.gov/ 

Swarm McGranaghan https://earth.esa.int/web/guest/swarm/data-
access 

Super Dual Auroral Radar 
Network (SuperDARN) 

Lynch, Gjerloev http://vt.superdarn.org/tiki-index.php  

Super Magnetometer 
Initiative (SuperMAG) 

Gjerloev http://supermag.jhuapl.edu/  

Advanced Magnetosphere 
and Planetary 
Electrodynamics Response 
Experiment (AMPERE)) 

Gjerloev, 
McGranaghan 

http://ampere.jhuapl.edu/  

Ionospheric data from 
Global Navigation Satellite 
Systems (GNSS) signals 

Skone, McGranaghan Numerous sources 

Van Allen Probes Shprits, Denton, 
Camporeale, 
Zhelavskaya 

http://vanallenprobes.jhuapl.edu/ 

Neural network output data (predicted variables) 
Data set Team member(s) with 

relevant expertise 
Data access 

Defense Meteorological 
Satellite Program (DMSP) 
particle data  

Gjerloev, 
McGranaghan 

https://www.ngdc.noaa.gov/stp/satellite/dmsp/ 

Fast Auroral SnapshoT 
(FAST) Explorer particle 
data 

Zhang, McGranaghan http://sprg.ssl.berkeley.edu/fast/ 

Solar wind data and 
geomagnetic activity 
indices 

All https://omniweb.gsfc.nasa.gov/ 
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A.2 Team information 

Member Address Telephone Email 
Ryan 
McGranaghan  

4800 Oak Grove, M/S 138-
314 
Pasadena, CA 91109 

818-354-0926 ryan.mcgranaghan@colorado.edu 
ryan.mcgranaghan@jpl.nasa.gov 

Enrico 
Camporeale 

M132 
Science Park 123 
1098 XG Amsterdam 
Netherlands 

+31-20-592-4240 
 

E.Camporeale@cwi.nl 

Binzheng Zhang HOC327 
Department of Earth 
Sciences, James Lee Building, 
The University of Hong 
Kong, Pokfulam Road, Hong 
Kong 

+852-3917-1453 binzh@hku.hk 

Jesper Gjerloev Johns Hopkins University 
Applied Physics Laboratory 
11100 Johns Hopkins Road 
Laurel, Maryland 20723 

240-228-5410 jesper.gjerloev@jhuapl.edu 

Kristina Lynch 6127 Wilder Lab 
Dept of Physics and 
Astronomy 
Dartmouth College 
Hanover, NH 03755 

603-646-9311 kal@dartmouth.edu 

Susan Skone  AD 100 
University of Calgary 
2500 University Dr. NW 
Calgary, Alberta, Canada 
T2N 1N4  

403-220-7589 
 

shskone@ucalgary.ca 

Yuri Shprits Behlertstraße 3a 
Building K 3, Room 012 
14467 Potsdam, Germany 

+49-331-288-28899 
 

yshprits@gfz-potsdam.de 

Mick Denton Space Science Institute, 4250 
Walnut Street, Boulder, CO 
80301, USA. 

720-974-5888 mdenton@spacescience.org 

Alison Lowndes  Newsham, North Yorkshire, 
United Kingdom 

+44-07771-712012  alowndes@nvidia.com 

Peter Riley Predictive Science Inc. 
9990 Mesa Rim Road, Suite 
170, San Diego. CA 92121 

858-450-6494 
 

pete@predsci.com 

Irina 
Zhelavskaya 

Telegrafenberg, D-14473 
Potsdam, Germany 

+49-176-353-42306 irina.zhelavskaya@gfz-potsdam.de 
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Dr. Ryan McGranaghan takes a multi-disciplinary approach to the study of space 
science, bringing together traditional space physics with innovation from the field of data 
science. His passion for data-driven discovery has led to involvement in the JPL Data 
Science Working Group, the NASA Frontier Development Lab artificial intelligence R&D 
incubator, and complex systems institutes throughout the United States. In addition to 
providing team leadership and coordination, Ryan will contribute to accessing, mining, and 
analyzing the numerous data sources involved in the proposed work, formulating the 
machine learning problem and creating actionable data products from the uncertainty 
quantification and neural network tasks. He will also provide expertise in particle 
precipitation, magnetosphere-ionosphere coupling, and space weather.  
 
Dr. Enrico Camporeale has a broad expertise in Space Plasma, Numerical Methods 
and Machine Learning. He is leading a project on real-time forecasting for killer electrons 
in the radiation belts using Machine Learning at the Dutch National Center for 
Mathematics and Computer Science (CWI) and actively working on several aspects of 
using Deep Neural Networks for Space Weather prediction. He is an associate editor of 
the Journal of Space Weather and Space Climate. He will contribute in defining and 
tailoring Machine Learning algorithms to the space weather forecasting problem. 
 
Dr. Binzheng Zheng has expertise in modeling space plasma physics, with a focus on 
system-level studies of the interaction between the solar wind, magnetosphere, 
ionosphere and upper atmosphere, including neutral dynamics, plasma electrodynamics, 
magnetohydrodynamics (MHD), and collisionless transport processes. As a member of 
the LTR (LFM-TIEGCM-RCM) model development team, he has extensive experience in 
advancing the particle precipitation model and implementing ionospheric outflow models 
in the magnetosphere-ionosphere (M-I) coupling process. He will contribute to 
exploring/incorporating the multi-scale particle transport process in high-resolution, 
coupled global-scale geospace simulations. 
 
Dr. Jesper Gjerloev is currently Principle Professional Staff scientist at Johns Hopkins 
University - Applied Physics Laboratory in Laurel, Maryland.  He is world-wide 
recognized scientists studying Earth - near Space interactions.  He received his master 
degree from the Niels Bohr Institute (theoretical space plasma physics) and his PhD in 
space physics (auroral electrodynamics) from Danish Technical University while 
performing the research at NASA - Goddard Space Flight Center. He has been involved 
in numerous large projects including the ACES rocket experiments, the SuperMAG 
collaboration, the ARCH project, and the Birkeland mission (serving as the PI of the last 
three projects). 
 
Dr. Kristina Lynch studies the plasma physics of the auroral ionosphere, using 
sounding rocket investigations from Alaska and Norway. Her research interests right 
now focus on gathering together observations from a variety of sources (in situ, 
groundbased imagery, radars) at a variety of scale sizes to build an integrated picture of 
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the ionospheric signatures of auroral structures. Her students are presently working to 
use machine learning techniques in combining auroral imagery with in situ and radar 
field information.  She is a Professor of Physics and Astronomy at Dartmouth College. 
She brings to this project a specific and active interest in these techniques as applied to 
the auroralionosphere. 
 
Dr. Susan Skone has 25 years of experience leading more than 30 sponsored projects 
investigating space weather phenomena, associated impact on satellite-based 
navigation systems, and improved positioning/navigation methods for aviation, marine 
and land applications. She is primary developer of licensed software tools for 
ionospheric remote sensing using GNSS signals (TECANALYS, TECMODEL) and has 
developed a full suite of hardware and software simulator tools, software receivers, 
instruments and models for GNSS analysis. Susan will contribute to GNSS data 
processing and characterization of key space weather impact parameters. 

Dr. Yuri Shprits is head of the section “Magnetospheric Physics” at GFZ Potsdam. His 
primary area of scientific research is understanding the dynamics of the radiation belts 
and their effect on satellites, through data analyses, modelling and data assimilation.  He 
is a member of the editorial board of ELSEVIER Space Science Reviews Journal (since 
2012), Vice-chair of COSPAR sub-committee D3.3, Member of the UCAR Jack Eddie 
Fellowship steering committee (2013- 2016), and is an awardee of the Presidential Early 
Career Award for Scientists and Engineers (2012). His contribution will be to assess the 
effects of particle transport in radiation belt simulations using the Versatile Electron 
Radiation Belt (VERB) Model. 

Dr. Mick Denton’s research efforts are driven by a desire to understand the physical 
mechanisms at work in the solar-terrestrial environment.  He has a broad range of 
modelling and data-analysis expertise.   Recent research has focused on (i) the 
composition within Earth's radiation belts and plasma sheet, (ii) refilling processes in the 
ionosphere/plasmasphere, and (iii) empirical forecasting of particle populations in the 
inner magnetosphere. 
 
Alison Lowndes: After spending her first year with NVIDIA as a Deep Learning 
Solutions Architect, Alison is now responsible for NVIDIA's Artificial Intelligence 
Developer Relations in the EMEA region. She is a mature graduate in Artificial 
Intelligence combining technical and theoretical computer science with a physics 
background & over 20 years of experience in international project management, 
entrepreneurial activities and the internet. She consults on a wide range of AI 
applications, including planetary defence with NASA & the SETI Institute and continues 
to manage the community of AI & Machine Learning researchers around the world, 
remaining knowledgeable in state of the art across all areas of research. She also travels, 
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advises on & teaches NVIDIA’s GPU Computing platform, around the globe. Twitter: 
@AlisonBLowndes. 
 
Dr. Peter Riley is a Senior Scientist at Predictive Science Inc. (PSI) .  He has more than 
20 years’ research experience both in the analysis of complex datasets and the 
development and implementation of massively parallel computational algorithms, 
particularly in Heliophysics.  He leads and/or has led a number of NASA, DoD (DTRA, 
NCMI, Air Force, NRL), and NSF efforts involving mathematical modeling and high 
performance computing and has developed and delivered real-time algorithms to NOAA. 
He is an instrument team member for several NASA spacecraft missions and currently 
serves, has served on a number of NASA and NSF working groups and steering 
committees.  Dr. Riley’s current research focuses on analysis and modeling of complex 
systems ranging from solar physics to infectious diseases. 
 
Irina Zhelavskaya has expertise in Data Analysis, Machine Learning, and 
Magnetospheric Physics. She is currently pursuing PhD in Magnetospheric Physics at 
GFZ Potsdam where she uses neural networks to quantify the dynamics of cold plasma 
in the plasmasphere. Prior to the work in Magnetospheric Physics, she was majoring in 
Computer Science, and received MSc in Computer Science (honours) from Skoltech, 
Russia, in close collaboration with MIT where she spent 1,5 years. During her MSc 
thesis she worked on applying machine learning techniques to satellite data and building 
predictive data-driven models. Irina will contribute to development and implementation of 
the Machine Learning algorithms for space weather forecasting.  
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