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Electrostatic interactions between charged
dielectric particles in an electrolyte solution:
constant potential boundary conditions

Ivan N. Derbenev, ab Anatoly V. Filippov, b Anthony J. Stacea and
Elena Besley *a

The problem of electrostatic interactions between colloidal particles in an electrolyte solution has been

solved within the Debye–Hückel approximation using the boundary condition of constant potential. The

model has been validated in two independent ways – by considering the limiting cases obtained from

DLVO theory and comparison with the available experimental data. The presented methodology

provides the final part of a complete theory of pairwise electrostatic interactions between spherical

colloidal particles; one that embraces all possible chemical scenarios within the boundary conditions of

constant potential and constant charge.

1 Introduction

Understanding the effect of electrostatic forces is essential in
the context of soft matter science for a number of reasons.
Electrostatic forces are responsible for the long range repulsive
interactions, which prevent dissolved particles from immediate
coagulation in colloidal solutions.1 In contrast to van der Waals
forces driving short range attractions, they can be easily modified
through the surface properties of the interacting particles
and solvent additives.2 Crucially, no universal mathematically
rigorous theory of electrostatic interactions between colloidal
particles exists in the literature to date. The most widely used
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory contains a
number of assumptions and limitations,3,4 which can be high-
lighted with the following example. If the surface potential
of two identical particles is low (Fsurface o 25 mV), the electro-
static force between them can be described within the Debye–
Hückel approximation as1,5

F = 2pkae0kmFsurface
2 exp[�k(R � 2a)], (1)

where k�1 is the characteristic decay length of the electrostatic
potential (i.e. Debye length), a is the radius, R is the separation
between particle centres, km is the dielectric constant of the
medium, and e0 is the dielectric permittivity of vacuum. Eqn (1)
is accurate only for surface-to-surface separations exceeding
one Debye length,1,6 and is derived from the interaction energy

between two charged plates using the Derjaguin approximation
that accounts for a spherical geometry of the problem.4,5 A
similar approach has been used to describe the interaction
between two surfaces of unequal but constant potential,7 and
further modification was proposed by Carnie and Chan, who
combined the results of constant charge and constant potential
boundary conditions within the linearized Poisson–Boltzmann
(Debye–Hückel) model – the charge regulation approach.8 This
method was later modified for the non-linear Poisson–Boltz-
mann model.9 Despite their flexibility, all these methods are
strongly dependent on the accuracy of the Derjaguin approximation,
which as stated, is based on finding the interaction energy between
two parallel plates and applying a factor which approximately
describes the curvature of the interacting surfaces.5

A rigorous model of pairwise electrostatic interactions in an
electrolyte solution has been previously developed within the
Debye–Hückel approximation,10,11 in which particle charge was
assumed constant and uniformly distributed over the surface.
The model provided good agreement with predictions obtained
by non-shielded models12,13 and with experimental data14 on
electrostatic interactions in colloids. However, the assumption
of constant surface charge density is not always valid. In this
paper, we consider a rigorous model for the electrostatic
interactions between two arbitrary spherical colloidal particles
in an electrolyte solution, where it is assumed that the potential of
each particle remains constant and independent of the coordinates
of a surface point. The solution is based on a representation of the
electric potential of each particle in the form of an infinite series of
Legendre polynomials and the reexpansion of the potentials using
the addition theorem for modified Bessel functions of the third
kind. Analogous problems were considered by a similar method
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for particles of equal size15–17 using the addition formula18 for
products of modified spherical Bessel functions of the third kind.

The paper has the following structure. The applicability of
both constant potential and constant charge boundary conditions
is first discussed within the context of the experimental para-
meters of particle size and electrolyte concentration. A rigorous
theory that implies an explicit spherical geometry without any
geometrical approximations is then introduced. Finally, the
calculated results are validated using two experimental data sets:
for poly(methyl methacrylate) (PMMA) spheres in hexadecane14

and for a pair of polystyrene latex particles in an aqueous solution
of KCl.2 A detailed analytical consideration of approximate
models for solving the electrostatic problem based on the above
model has been given previously by Filippov et al.6

2 The criterion for choosing boundary
conditions

A criterion for using the boundary condition of either constant
charge or constant potential on the surface of a colloidal particle
can be introduced in the form of a dimensionless parameter:

x � tchvc
d
; (2)

where tch is the characteristic relaxation time of the surface
charge on colloidal particles, vc is the velocity of their translational
motion, and d is the characteristic surface-to-surface inter-particle
distance over which the surface charge or surface potential
changes. If the particles are fixed in space or the timescale of
their interaction is much greater than the characteristic relaxation
time of surface charge then x { 1, and the boundary condition of
constant potential should be applied. In the opposite case, where
x c 1, if the charging process is much slower than the time of
particle displacement through a distance equivalent to its size,
the surface charge is assumed to be constant. Fig. 1 shows
schematically the relation between the characteristic time of

particle charging and the characteristic time of particle displacement
for different values of the parameter x.

The characteristic time tch is defined by

tch�1 �
1

q

dq

dt
¼ 4pea2

q
jp þ jn
� �

; (3)

where q is the charge of a colloidal particle and jp and jn are the flux
densities of positive and negative ions, respectively, in the electrolyte
solution near the particle surface. Generally, the flux densities
consist of the diffusive and drift term, which are comparable with
each other in electrolyte solutions. Therefore we assume that the
flux densities are equal to the drift flux densities:

jp E mpnpE and jn E mnnnE, (4)

where mp, np, mn, and nn are the mobilities and the concentrations
of positive and negative ions, respectively, and E is the electric
field of the particle. After the particle charge has been disturbed,
the first reaction of the system of an electrolyte solution is to
generate drift currents. Therefore, using drift terms for the
estimation of flux densities is physically justified. Near the
particle surface the electric field is E = q/(4pe0kma2) and from
(3) and (4) we obtain19

tch�1 �
B

e0km
; (5)

where B = e(mpnp + mnnn) is the conductivity of the solution.
Numerical simulations6,11,20,21 show that the characteristic
surface-to-surface inter-particle separation, d, for the variation
of charge at constant potential and the variation of potential at
constant charge is approximately equal to the radius of the
identical interacting particles, a; we can, therefore, set d = a.

The velocity in eqn (2) depends on the character of the motion
of the colloidal particles: ballistic or diffusive. The diffusive or
ballistic motion of particles is defined by their mean free path and
the characteristic length of either charge or potential variation.
Using Stoke’s law, the mobility of colloidal particles is defined as

m ¼ q

6paZ
; (6)

where Z is the dynamic viscosity. The Einstein relation D/m = kBT/q
yields:

D ¼ kBT

6paZ
; (7)

where kB is the Boltzmann constant, and T is the temperature of
the system. The mean free path of a colloidal particle can be
determined as follows:

lc ¼
3D

vth
¼ 1

4aZ
mckBT

2p

� �1=2

; (8)

where vth = (8kBT/pmc)1/2 and mc is the mass of a particle.
In the ballistic regime, when lc c a and vc can be set equal to

the velocity of the thermal motion of a colloidal particle, vc = (8kBT/
(pmc))

1/2 with mc = 4pra3/3 (r is the density of the particle) we obtain

x ¼ e0km
pBa5=2

ffiffiffiffiffiffiffiffiffiffiffiffi
6kBT

r

s
: (9)

Fig. 1 Relation between the characteristic time of particle charging, tch,
and the characteristic time of particle displacement, d/vc, for different
values of the parameter x, determining the choice of boundary condition
for the electrostatic problem (constant charge or constant potential).
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Alternatively, in the diffusive regime, when lc { a a colloidal
particle is passing a distance X = (2Dtch)1/2 over the characteristic
time tch, the parameter x becomes:

x � X

a
¼ e0kmkBT

3pa3ZB

� �1=2

: (10)

To quantify the criterion defined by eqn (2), these parameters
have been estimated for the solutions of sodium di-2-ethylhexyl-
sulfosuccinate (AOT) in hexadecane and KCl in water. Fig. 2
shows typical dependencies of x on particle radius at room
temperature T = 298.15 K for (a and c) PMMA particles (r =
1180 kg m�3) suspended in AOT/hexadecane solution in (a)
diffusion and (c) ballistic regimes and (b and d) polystyrene
latex particles (r = 1005 kg m�3) in KCl aqueous solution in (b)
diffusion and (d) ballistic regimes. Values of conductivity
(at different salt concentrations) for AOT/hexadecane and
KCl/water have been taken from ref. 14 and 22, respectively.
It can be seen that the boundary conditions of constant charge
can be realized only for small particles (a { 1 mm) and/or for
dilute solutions (r10�2 mM), as shown in Fig. 2c. However,
according to eqn (8), the mean free paths of the micron-sized
colloidal particles lc E 5 � 10�10 m in water and lc E 10�10 m

in hexadecane are much less than the particle size B1 mm,
which means that the considered systems are both in strongly
diffusive regimes. The diffusive regime is typical for electrolyte
solutions, whereas the ballistic regime can be easily realized in
dusty plasmas.

3 Methodology

When charged particles are sufficiently far apart that they can
be considered isolated, each particle acquires a potential
corresponding to a zero net current of positive and negative
ions (so-called floating potential), thus achieving thermodynamic
equilibrium. Provided the particle is uniformly charged, the
surrounding electric potential does not exhibit any angular
dependence, and at a low surface potential (less than
25 mV) it can be described by a linearized Poisson–Boltzmann
relationship

DFout = k2Fout, (11)

where Fout is the electric potential outside the particle and k�1 is
the Debye length. Eqn (11) is a particular case of the Helmholtz

Fig. 2 The parameter x as a function of particle radius a for two types of colloidal particles suspended in electrolyte solutions at different molar
concentrations at T = 298.15 K: (a and c) PMMA particles (r = 1180 kg m�3) in AOT/hexadecane solution in (a) diffusion and (c) ballistic regimes and (b and
d) polystyrene latex particles (r = 1005 kg m�3) in KCl/water solution in (b) diffusion and (d) ballistic regimes. Points denoted by ‘*’ correspond to the
experimental data considered in Section 5.
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equation, and for the case of spherical symmetry, a solution has
the following form23,24

Fout ¼ ~A0

K1=2ðkrÞffiffiffiffiffi
kr
p ; (12)

where Ã0 is a constant coefficient, K1/2(kr) is a modified Bessel
function of the third kind and r is a radial coordinate with an

origin at the centre of the particle. Introducing A0;i �
ffiffiffi
p
2

r
~A0;i

k
we obtain

Fout ¼
A0

r
expð�krÞ: (13)

The coefficients A0,i can be found from the boundary conditions
for the electric field, namely

�km
@Fout

@r

����
r¼aþ0

¼ s
e0
; (14)

where s is the surface charge density. Integrating eqn (14) over
the particle surface yields:

A0 ¼
Q expðkaÞ

4pe0kmð1þ kaÞ; (15)

where Q =
H
sds is the total charge on the particle. Hence, the

surface potential takes the following form:

Fsurface � FoutðaÞ ¼
Q

4pe0kmað1þ kaÞ: (16)

Within the Debye–Hückel approximation, at screening lengths
much less than the particle radius, i.e. ka c 1, eqn (16) can be
simplified to the Graham equation as follows:1

s ¼ 1þ ka
a

e0kmFsurface � e0kmkFsurface: (17)

Thus providing a relationship between the surface charge and the
surface potential for an isolated particle.

According to the model developed previously for two inter-
acting particles10,11 (see Fig. 3), the total potential at the
boundary of the i-th sphere (i = 1, 2) is given by

Fout ~ai; mið Þ � Fout;i ~ai; mið Þ þ Fout;j ~ai; mið Þ

¼
X1
n¼0

An;i

Knþ1=2 ~aið Þffiffiffiffi
~ai
p þ

X1
l¼0

bnl ~ai; ~R
� �

Al;j

" #
Pn mið Þ;

(18)

where ãi = kai, R̃ = kR, An,i and Al,j are constant coefficients that
can be found from the boundary conditions, bnl(ãi,R̃) are the
reexpansion coefficients of Fout,j(ãi,mi) defined below, Pn(mi) are
Legendre polynomials, mi = cos yi, and j = 3 � i. Therefore, the
boundary condition for constant surface potential takes
the form:

X1
n¼0

An;i

Knþ1=2 ~aið Þffiffiffiffi
~ai
p þ

X1
l¼0

bnl ~ai; ~R
� �

Al;j

" #
Pn mið Þ ¼ Fsurface;i;

(19)

and the coefficients are defined as follows:10,11

bnlð~a; ~RÞ ¼ ð2l � 1Þ!!
X1
m¼0

Xl
k¼0
ð�1Þk l!

k!ðl � kÞ!

�
Olþmþ1=2ð~a; ~RÞ

~Rk~al�k

Xk
l¼0

lkl
Xm
n¼0

gmlnpnþl;n;

(20)

where

Olþ1=2ð~a; ~RÞ ¼
ffiffiffiffiffiffi
2p
p

l þ 1

2

� �
Klþ1=2ð ~RÞ

~R1=2

Ilþ1=2ð~aÞ
~a1=2

; (21)

Il+1/2(ã) are modified Bessel functions of the first kind, lkl and
gmli are the expansion coefficients of Legendre and Gegenbauer
polynomials in terms of mn, respectively, and pn+l,n are the
coefficients of mn expansion in terms of Legendre polynomials
(for more details, see ref. 10 and 11). Eqn (19) can be rewritten
in a linear form:

An;i

Knþ1=2 ~aið Þffiffiffiffi
~ai
p þ

X1
l¼0

bnl ~ai; ~R
� �

Al;j ¼ Fsurface;idn;0: (22)

The interaction force acting on each sphere can then be
calculated using the Maxwell stress tensor and is expressed as
follows:10,11

F1z ¼ 4pe0km
X1
n¼1

n

ð2n� 1Þð2nþ 1Þ

� Xn�1 � ðn� 1ÞCn�1½ � Xn þ ðnþ 1ÞCn½ �;

(23)

where

Xn ¼ An;i

nKnþ1=2 ~a1ð Þ � ~a1Knþ3=2 ~a1ð Þ
~a11=2

þ ~a1
X1
l¼0

Al:j

@bnl ~a1; ~R
� �
@~a1

;

Cn ¼ An;i

Knþ1=2 ~a1ð Þffiffiffiffiffi
~a1
p þ

X1
l¼0

bnl ~a1; ~R
� �

Al;j :

(24)

Substituting (22) and (24) into (23) gives Cn = 0 which leads to a
simplified equation for the electrostatic force:

Fes � F1z ¼ 4pe0km
X1
n¼1

n

ð2n� 1Þð2nþ 1ÞXn�1Xn: (25)

Fig. 3 A general geometry representation of the problem of two inter-
acting, dissimilar colloidal particles in an electrolyte solution with a
dielectric constant km and a Debye length of k�1. Dielectric constants,
surface charges, and the radii of particles 1 and 2 are denoted as k1, Q1 and
a1, and k2, Q2 and a2, respectively.
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In order to validate the obtained solution and show the
physical significance of the first two terms in eqn (25), namely,

F1z ¼ 4pe0km
1

3
X0X1; (26)

we consider two limiting cases corresponding to the long and
short Debye lengths.10,11 The surface charge distribution can
be found using the boundary conditions on the normal com-
ponent of the electric field:

�kmk
@Fout ~ai; mið Þ

@~ai
¼ si mið Þ

e0
: (27)

Expansion of eqn (27) in terms of Legendre polynomials
immediately gives the angular distribution of surface charge
density:

si cos yið Þ ¼ � e0kmk�
X1
n¼0

An;i

nKnþ1=2 ~aið Þ � ~aiKnþ3=2 ~aið Þ
~a
3=2
i

"

þ
X1
l¼0

Al;j

@bnl ~ai; ~R
� �
@~ai

#
Pn cos yið Þ:

(28)

Integration of eqn (28) over the surface of the particle yields the
total surface charge:

Qi ~ai; ~R
� �

¼ 4pai2e0kmk A0;i

K3=2 ~aið Þ
~ai1=2

�
X1
l¼0

Al; j

@b0l ~ai; ~R
� �
@~ai

" #
:

(29)

4 Model verification
4.1 Long Debye length

This first case corresponds to Debye lengths that are much
greater than either the radius of a particle or the particle–
particle separation: kai { k(R � a1 � a2) { 1. For small values
of the argument, modified Bessel functions of the first and
third kind have the following approximate forms:24

Knþ1=2ðzÞ ¼
ffiffiffiffiffi
p
2z

r
expð�zÞ

Xn
l¼0

ðnþ lÞ!
l!ðn� lÞ!ð2zÞl ;

Inþ1=2ðzÞ �
ffiffiffi
2

p

r
znþ1=2

ð2nþ 1Þ!!; z� 1:

(30)

The coefficients (20) are approximated as:10

b00 �
ffiffiffi
p
2

r
1

~R
expð� ~RÞ; b01 �

ffiffiffi
p
2

r
1þ ~R

~R2
expð� ~RÞ;

b10 � ~a

ffiffiffi
p
2

r
1þ ~R

~R2
expð� ~RÞ; b11 � 0:

(31)

Substitution of eqn (31) into the linear system, eqn (22), gives:

A0;i �
ffiffiffi
2

p

r
~ai
e�~ai

Fsurface;i;

A1;i � �
~ai
3

~R2

1þ ~R

1þ ~ai
exp � ~Rþ ~ai
� �

A0;j :

(32)

Combining (24), (26), (31), and (32) yields an equation for the
force that is well-known from DLVO theory:4–6

F1z � �4pe0km~a1~a2
1þ ~R

~R2
Fsurface;1Fsurface;2 exp � ~Rþ ~a1 þ ~a2

� �
:

(33)

For two spheres of the same size, eqn (33) together with eqn (16)
yields an equation for the force between two small ions:1,5

F1z � �
Q1Q2

4pe0kmR2

ð1þ kRÞ exp½�kðR� 2aÞ�
1þ 2ka

: (34)

4.2 Short Debye length

This second case corresponds to both a short particle–particle
separation and a short Debye length when compared to particle
radii, i.e., kai c k(R � a1 � a2) c 1. This case is particularly
significant for many experiments that involve micron sized
colloidal particles and salt concentrations in the region of 1
mM, where the Debye length can equal several nm.2,25,26

Modified Bessel functions of the first and third kind have the
following asymptotic forms for the large values of the argument:24

Knþ1=2ðzÞ �
ffiffiffiffiffi
p
2z

r
expð�zÞ;

Inþ1=2ðzÞ �
ffiffiffiffiffiffiffiffi
1

2pz

r
expðzÞ; z� 1:

(35)

The coefficients in eqn (20) then approximate as:

b00 �
ffiffiffi
p
2

r
expð� ~Rþ ~aÞ

2 ~R~a
; b01 �

ffiffiffi
p
2

r
3 expð� ~Rþ ~aÞ

2 ~R~a2
;

b10 �
ffiffiffi
p
2

r
3 expð� ~Rþ ~aÞ

2 ~R~a
; b11 � 0:

(36)

Substitution of (36) into the linear system (22) gives:

A0;i �
ffiffiffi
2

p

r
~ai exp ~aið ÞFsurface;i;

A1;i ��
3

2

exp � ~Rþ 2~ai
� �

~R
A0;j :

(37)

Combining (24), (26) and (37) yields:

F1z � �4pe0km
~a1~a2

~R
Fsurface;1Fsurface;2 exp � ~Rþ ~a1 þ ~a2

� �
: (38)

For two identical spheres, eqn (38) becomes the well-known
equation based on the Derjaguin approximation:1,5

F1z E �2pkae0kmFsurface
2 exp[�k(R � 2a)]. (39)

It is interesting to note that in the limit kai c k(R� a1� a2) c 1,
eqn (33) and (34) reduce to eqn (38) and (39), respectively.

5 Experimental verification

An examination of these two limiting cases clearly demonstrates
that eqn (25) provides a theoretical description for the behaviour
of dielectric particles in an electrolyte solution, under conditions
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that embrace a wide range of experimental conditions. As a
further test for the model, comparisons have been made with
two experimental studies. The first comparison is with force
measurements taken from optical trap experiments on polymer
particles by Sainis et al.14 and the second study examines force
measurements taken from a cantilever experiment on polystyrene
particles by Montes Ruiz-Cabello et al.2

5.1 Long Debye length – Sainis et al.14

These experiments have been performed on pairs of poly-methyl-
methacrylate (PMMA) spheres of radius 600 nm held in an optical
trap in the presence of a nonpolar solvent (hexadecane) and a
charge control agent (AOT). The electrostatic force has been
measured at different molar concentrations of AOT equating to
different values of particle charge and Debye length. According
to Fig. 2a, at an AOT concentration of 1 mM, the boundary
conditions of constant charge should be used as it was done in
ref. 10. However, the boundary conditions of constant potential
are applied here to demonstrate the effect of the boundary
conditions on the fitting parameters and the difference between
the results of the presented model and DLVO theory. Comparison
between the experimental data and forces calculated using both
eqn (25) and (33) (DLVO theory) is shown in Fig. 4. The Debye
length k�1 = 5 mm and the particle potential Fsurface = 80 mV
(corresponding to the total surface charge Q = 80 e) have been
taken in order to fit the force given by eqn (25) to the
experimental data; the same parameters have then been used
in eqn (33). The discrepancy between the two force calculations
is plotted as a percentage in the inset of Fig. 4. It can be seen
that differences between the two forces become very evident at
separations of about the Debye length and that at the point of
contact, the two results differ by almost 200%. Unlike the
constant charge case,10 where the discrepancy is caused by

polarization effects at short separation (outside the range of
experimental measurements), the constant potential boundary
conditions imply two effects: first, in accordance with eqn (28),
the surface charge is redistributed as the inter-particle separation
changes; second, the total charge also changes with inter-particle
separation as described by eqn (29). Fig. 5 shows the surface
charge distribution at the point of contact plotted as a ratio to the
surface charge density of an isolated particle as calculated from
eqn (17). The charge redistribution is caused by the equilibrium
ionic flux and the process of dissociation and recombination of
the surface groups on a particle. As a consequence of using
eqn (25), both fitting parameters (k�1 = 5 mm and Q = 80 e) are
different from those (k�1 = 7 mm and Q = 63 e) found by Sainis
et al.14 in their fit to the electrostatic force using the DLVO
model; eqn (33).

5.2 Short Debye length – Montes Ruiz-Cabello et al.2

In their experimental study of the electrostatic force between
pairs of charged latex particles, Montes Ruiz-Cabello et al.2

recorded data at different pH values and KCl salt concentrations
for particles with radii of 0.97, 0.51 and 1.50 mm. Fig. 2b reveals
that at a salt concentration of 1 mM, the boundary conditions of
constant potential should be applied for particle radii greater
than 0.1 mm. For this second validation of the model, data taken
for the particle radius of 0.97 mm have been chosen as their
surface potential is below the thermal energy and, therefore, the
Debye–Hückel approach is applicable. In addition to the electro-
static contribution to the force, the van der Waals force has also
been taken into account, as given by Montes Ruiz-Cabello et al.2

using the Derjaguin approximation:1,5

FvdW ¼ �
a1a2

a1 þ a2

H

6 R� a1 � a2ð Þ2
; (40)

where H = 4.0 � 10�21 J is the Hamaker constant determined from
force profiles. Therefore, the resulting force takes the following form:

Ftotal = Fes + FvdW. (41)

Fig. 4 Electrostatic force between two identical PMMA particles of radius
600 nm in hexadecane (km = 2.06) with 1 mM of AOT. The symbols are the
experimental data. The solid line represents the fitted force calculated
within the present model, eqn (25), and the dashed line corresponds to
the force calculated from DLVO theory, eqn (33), with the same fitting
parameters: Debye length k�1 = 5 mm and the particle surface potential
Fsurface = 80 mV. The embedded plot shows the relative difference
between the exact and approximate force.

Fig. 5 Surface charge distribution on a PMMA sphere of radius 600 nm in
hexadecane with 1 mM of AOT at zero surface-to-surface separation with
respect to the surface charge density of an isolated particle.
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Here Fes is the electrostatic force calculated either from eqn (25)
or from its approximation, eqn (38), and FvdW is the van der
Waals force calculated from eqn (40). We consider the sym-
metric case of two identical particles. A comparison between the
experimental data and the force calculated using eqn (41) is
shown in Fig. 6. The potential is set to be equal to 14 mV which
equates to the z-potential,2 and the Debye length has been
calculated from:27

k2 ¼ 2NAe
2I

e0kmkBT
; (42)

where NA is the Avogadro constant, e is the elementary charge, I
is the ionic strength, kB is the Boltzmann constant, and T is the
temperature of the solution. For the given conditions, i.e. KCl
and HCl concentrations (at pH = 3.0) 1 mM and T = 298.25 K, the
Debye length is approximately 6.9 nm. The results show that at

inter-particle separations exceeding the Debye length, the
experimental results are correctly described within the present
model (eqn (25)). The discrepancy between the force from
eqn (25) and its approximation from DLVO theory (eqn (38))
can reach up to 100% at close separations, and a difference of
less than 10% starts at distances of 2–3 Debye lengths. Fig. 7
shows the surface charge distribution at the point of contact
with respect to the surface charge density on an isolated particle
(eqn (17)). Unlike the case for long Debye lengths, the strong
screening effect leads to a very narrow area of charge non-
uniformity close to the second particle.

6 Conclusions

The electrostatic problem for two colloidal particles in an electrolyte
solution has been solved within the Debye–Hückel approximation
using the boundary condition of constant potential. This condition
generally corresponds to Debye lengths much less than the particle
size and high concentrations of electrolyte. The force is expressed
as an infinite series, and as part of the validation process, it is
shown that limiting forms of the first two terms yield known
literature expressions for sphere–sphere interactions. It is also
shown that the present methodology can be used to interpret the
current data taken from experiments on colloids for a range of
different solvent conditions. The results yield accurate fitting
parameters of charge and the screening length, and show how
the existing approximations fail at short inter-particle distances.

When taken together with a model previously developed for
a constant surface charge, this new theory, based on a rigorous
solution to the electrostatic problem for two spheres in an
electrolyte solution, provides a unified approach to the under-
standing of pairwise electrostatic interactions between spherical
colloidal particles. It is shown to be a good alternative to the
constant regulation approximation as the latter introduces an
additional parameter for charge regulation and relies on the
Derjaguin geometric approximation. Finally, the methodology
provides a strong link between colloidal systems, dusty plasmas
and other complex arrangements involving charged particles in
a neutralizing environment.28
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Fig. 6 Force in a symmetric system involving particles of radius 0.97 mm
at pH 3.0 and a KCl concentration of 1 mM. Points are experimental data
and the solid line is the force calculated from eqn (41) and (25), the dashed
line is the force from DLVO theory calculated from eqn (41) and (38) with
the same fitting parameters: the Debye length is k�1 = 6.9 nm and the
particle surface potential is Fsurface = 14 mV. The embedded plot shows the
relative difference between the exact and approximate force.

Fig. 7 Surface charge distribution on a polystyrene latex sphere of radius
0.97 mm in water with 1 mM KCl, a pH of 3.0 and at 3 nm surface-to-
surface separation with respect to the surface charge density on an
isolated particle.
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