Publications

Articles in peer-reviewed journals

  1. G. Balasis et al. (2023). Complex systems methods characterizing nonlinear processes in the near-Earth electromagnetic environment: Recent advances and open challenges. Space Sciences Reviews, 219:38. https://doi.org/10.1007/s11214-023-00979-7.
  2. S. Chaudhry et al. (2023). Global dynamical network of the spatially correlated Pc2 wave response for the 2015 St. Patrick’s Day storm. Journal of Geophysical Research: Space Physics, 128, e2022JA031175. https://doi.org/10.1029/2022JA031175.
  3. T. Alberti et al. (2022). Concurrent Effects between Geomagnetic Storms and Magnetospheric Substorms. Universe, 8, 226. https://doi.org/10.3390/universe8040226.
  4. S. Wing et al. (2022). Untangling the solar wind and magnetospheric drivers of the radiation belt electrons. Journal of Geophysical Research: Space Physics, 127, e2021JA030246. https://doi.org/10.1029/2021JA030246.
  5. C. Papadimitriou et al. (2021). Swarm-derived indices of geomagnetic activity. Journal of Geophysical Research: Space Physics, 126, e2021JA029394. https://doi.org/10.1029/2021JA029394.
  6. M. Stumpo et al. (2021). Self-Organization through the Inner Heliosphere: Insights from Parker Solar Probe. Atmosphere, 12, 321. https://doi.org/10.3390/atmos12030321.
  7. T. Alberti et al. (2021). Small-scale induced large-scale transitions in solar wind magnetic field. Astrophy. J. Lett., 914: L6. https://doi.org/10.3847/2041-8213/ac0148.
  8. T. Alberti et al. (2021). Complexity of geomagnetic index in the last two solar cycles. J. Atmos. Solar Terr. Phys., 217, 105583. https://doi.org/10.1016/j.jastp.2020.105583.
  9. R. J. Boynton et al. (2021). A dynamical model of equatorial magnetosonic waves in the inner magnetosphere: A machine learning approach. Journal of Geophysical Research: Space Physics, 126, e2020JA028439. https://doi.org/10.1029/2020JA028439.
  10. P. De Michelis et al. (2021). Looking for a proxy of the ionospheric turbulence with Swarm data. Scientific Reports, 11, 6183. https://doi.org/10.1038/s41598-021-84985-1.
  11. G. Consolini et al. (2021). High-latitude polar pattern of ionospheric electron density: scaling features and IMF dependence. Journal of Atmospheric and Solar-Terrestrial Physics, 217, 105531. https://doi.org/10.1016/j.jastp.2020.105531.
  12. P. Manshour et al. (2021). Causality and Information Transfer Between the Solar Wind and the Magnetosphere–Ionosphere System. Entropy, 23, 390. https://doi.org/10.3390/e23040390.
  13. G. Balasis et al. (2020). Dynamical Complexity in Swarm Electron Density Time Series using Block Entropy. Europhys. Lett., 131, 69001. https://doi.org/10.1209/0295-5075/131/69001.
  14. C. Papadimitriou et al. (2020). Dynamical Complexity of the 2015 St. Patrick’s Day Magnetic Storm at Swarm Altitudes Using Entropy Measures. Entropy, 22, 574. https://doi.org/10.3390/e22050574.
  15. T. Alberti et al. (2020). Disentangling nonlinear geomagnetic variability during magnetic storms and quiescence by timescale dependent recurrence properties. J. Space Weather Space Climate, 10, 25. https://doi.org/10.1051/swsc/2020026.
  16. P. De Michelis et al. (2020). On the 2015 St. Patrick Storm Turbulent State of the Ionosphere: Hints from the Swarm Mission. J. Geophys. Res.: Space Physics, 125, e2020JA027934. https://doi.org/10.1029/2020JA07934.
  17. R. Boynton et al. (2020). System identification of local time electron fluencies at geostationary orbit. J. Geophys. Res.: Space Physics, 125, e2020JA028262. https://doi.org/10.1029/2020JA028262.
  18. T. Alberti et al. (2020). Multiscale measures of phase-space trajectories. Chaos, 30, 123116. https://doi.org/10.1063/5.0008916

Presentations in International Conferences

  • Balasis et al., Complex system perspectives of geospace electromagnetic environment research, EGU General Assembly 2020 Sharing Geoscience Online, 4–8 May 2020.

 

Last Update: October 10, 2023