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Geometric optics models

The ocean surface is described as a collection of flat surfaces with a bi-directional
slope distribution. Each facet reflects specularly the downwelling brightness
temperature, following the Fresnel laws.
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Statistics of the slope distribution
Sea water dielectric properties

Foam properties
The downwelling radiation

Fresnel laws apply to each facet:

2

Method applied to microwaves, as well as to infrared




Geometric optics models

Outline
Passive microwaves
Active microwaves
Infrared

The key input parameters:
« Sea surface description
» Dielectric properties
 Foam
 Downwelling radiation




PASSIVE MICROWAVES
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The Apparent Temperature of the Sea at
Microwave Frequencies

A. STOGRYN
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Fig. 2. Temperature of horizontally polarized radiation as a function of angle.
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Fig. 3. Temperature of horizontally
polarized radiation as a function
of angle (upwind case).

Cox and Munk slope distribution (1954): almost gaussian, with small correction for skewness and peakness
The mean-square slopes depend linearly on the local wind speed.
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Passive Microwave Measurements of
Sea Surface Roughness

JAMES P. HOLLINGER
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Measurements from a platform and comparison with Stogryn’s model.
Better fit when coefficients of 1/3, 1/2, and 2/3 are affected to the Cox and Munk slopes, for respectively 1.4,

8.36, and 19.34 GHz.




W. NORDBERG, J. CONAWAY and P. THADDEUS

Quart. J. R. Met. Soc. (1969), 95, pp. 408-413
551.507.352 : 551.521.2 : 551.465.755

Microwave observations of sea state from aircraft

We conclude that quantitative measurements of emitted microwave radiation from a sea
surface can be interpreted in terms of surface roughness. The emitted radiation is apparently

more sensitive to the formation of foam and/or spray on the sea surface than to the existence
or onentatlon of larger scale wave slopes. Only the latter has been accounted for in theoretical
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Spectral Characteristics of the Microwave Emission
From a Wind-Driven Foam-Covered Sea

WILLIAM J. WEBSTER, JR., AND THOMAS T. WILHEIT

2. The spectral characteristic of Tp as a function of wind
speed is consistent with a foam model in which the bubbles
give rise to a cusped surface between the foam and the sea; the
cusped surface can be treated as a thin boundary layer of
linearly varying complex index of refraction.
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A Two-Scale Scattering Model for Foam-Free Sea Microwave
Brightness Temperatures

FranNk J. WENTZ
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Small scale roughness superimposed on the large scale ones improves the fit to the observations, especially

for low frequencies.
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A Model for the Microwave Emissivity of the Ocean’s
Surface as a Function of Wind Speed

THOMAS T. WILHEIT, JR., SENIOR MEMBER, IEEE

A model to analyze the SMMR satellite observations.

Includes foam contribution 0®(f)=(0.3 + 0.02f(GHz))0?,, f<35GHz
A good fit is obtained when modifying the Cox and Munk o2(f) = o2 £>35GHz
variances. o '

Major limitations have been identified:
- no wind speed dependence in the model between 0 and
7m/s at nadir, especially problematic for the low

frequencies.
- The treatement of foam without any polarization and aT,
viewing angle dependence. EN

(ARB UNITS)
However, for conical scanners (with incidence angles arount
50°), and for frequencies above 30 GHz, should be suitable




Developments for high frequencies

Prigent and Abba, 1990
Phalippou, QJRMS, 1996
Guillou et al., JGR, 1996

e.g.,

- Suitable for frequencies above 37 GHz. Below, usable using only a fraction of the Cox and Munk slope

variances.

- Takes into account shadowing effects and multiple reflections

- Can handle the wind direction

Guillou et al.,
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Comparison geometric optics and two scale model at

89GHz.
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Developments for high frequencies

e.g., Prigent and Abba, 1990
Phalippou, QJRMS, 1996
Guillou et al., JGR, 1996

- Suitable for frequencies above 37 GHz. Below, usable using only a fraction of the Cox and Munk slope

variances.
- Takes into account shadowing effects and multiple reflections

- Can handle the wind direction
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Figure 3. (a) Variation of 37 GHz brightness temperature (d7;) as a function of wind direction for a 14 ms™!
wind speed. The downwelling radiation at nadir is used for multiple reflection (see text). The vertical and horizontal
polarization are marked by dot and square symbols respectively. Dotted lines are for emission contribution, dashed
lines are for scattering contribution, full line is for the total. Total precipitable water vapour = 14 kg m~2, sea
surface temperature = 290 K, no cloud.




Developments for high frequencies

TESSEMZ, Prigent et al., QIRMS, 2017

A fast model, especially designed for frequencies above 90 GHz and up to 700 GHz
It mimics FASTEM up to 200 GHz (see Steve English presentation) and up to 55 °, and a geometric optics
model elsewhere.

Sea surface emissivity
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ACTIVE MICROWAVES




Geometric Optics

Valid only for the low incidence angles, roughly < 20°. Two-scale model necessary
(see Ad Stoffelen presentation this afternoon)
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INFRARED




Sea surface emissivity in the infrared

» For the analysis of surface-sensitive atmospheric sounders
* For accurate estimates of Sea Surface Temperature (SST)

SST requirements within 0.2K. This implies an accuracy of better than 0.5% in
emissivity.




REMOTE SENSING OF ENVIRONMENT 24:313-329 (1988)

Emissivity of Pure and Sea Waters
for the Model Sea Surface in the Infrared Window Regions

K. MASUDA, T. TAKASHIMA, AND Y. TAKAYAMA

Emissivity decreases slowly with increasing
incidence angle

Little effect of the wind speed below 30°
incidence angle, but large effect above 70°.

Little difference between pure water and sea
water
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FIGURE 3. The average emissivities of pure water in three wavelength regions, 3.5-3.9,
10.5-11.5, and 11.5-12.5 pm. These are shown as a function of zenith angle of observed
ratiation (@). Plane surface (O); w=0 (O), 1(+), 5 (&) and 15m/s (X). Central

g(*)

wavelengths are shown in figures. (1he scale of ordinate is changed at 0 = 60°).




Applied optics, 1997

Emissivity of rough sea surface
for 8-13 pm: modeling and verification

Xianggian Wu and William L. Smith

Verification with observations

Fig. 3. Comparison of the computed and measured emissivity at
36.5° (upper), 56.5° (middle), and 73.5° (lower). Solid and dotted
curves are the mean and standard deviation of the measured emis-
sivity. Symbols mark the computed emissivity with Eq. (19) for
wind speed of 0 (+), 1 (%), 2 (X), 4 (©), 8 (A), and 16 ((J) m/s.
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KEY INPUT PARAMETERS

(regardless of frequency... and model types)




The sea surface description

A key issue... not only for the geometric optics models... Next talk by Simon Yueh

The large scale roughness governed by the gravity forces (gravity waves)
The small scale roughness (capillary waves) governed by the surface tension
The cut-off wavenumber?

- Local wind speeds for fully developed seas. Fetch, duration, swell...??
- Rain effect on the surface? 0.4¢
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The sea water dielectric properties in the infrared

Discussion led by Thomas Meissner tomorrow

Lack of measurements from the microwaves to the infrared In the microwave
Guillou et al., RS, 1998
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The sea water dielectric properties in the infrared

Discussion led by Thomas Meissner tomorrow

Particularly critical in the microwave at 1.4 GHz (L band), where high accuracy is required for
salinity retrieval (better than 0.1K accuracy required).
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The foam in the microwave (coverage and emissivity)

(in the infrared, sea emissivity high and foam emissivity as well, so little impact)

See presentation by Maggie Anguelova
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The downelling radiation

Atmospheric and extra-terrestrial contributions

« Calculation of the atmospheric donwelling radiation with a radiative transfer model.

« Other contributions to account for (Galaxy, Sun..) ?
Very critical at low frequencies (L-band)

* Including all directions or only the specular one?







The downelling radiation:

The extraterrestrial sources
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Figure 3. All noises from extraterrestrial sources. Line A Is from a quiet Sun, while line B Is from the Moon (all
with 0.5-deg beamwidth diameter). Galactic nolse (C, maximum to minimum) and cosmic background (D)
are also shown. Lunar emission Is Independent of the frequency (figure after [7]).




CONCLUSION

Geometric optics models

« Suitable for passive microwave observations, above ~30GHz
* Not suitable for active microwave above ~15° incidence angles

 Suitable for infrared

 Requires a careful selection of the input parameters
(sea surface description, dielectric properties, foam parameters,
downwelling radiation)




