The Fastem model

ISSI emission model team meeting 20-22 Nov

Stephen English

ECMWF stephen.English@ecmwf.int

What is Fastem?

Four elements:

- 1. Permittivity model can in principle be taken from anywhere, to model ε_0 .
- 2. Linear regression fit using a pre-defined set of predictors to replicate results for ocean from a two-scale "physical" ocean emissivity model,

 $\Delta \varepsilon_c = \sum_{k=1}^n F_k(W, f, \theta, \varphi)$ where F is a regression fit of $\varepsilon - \varepsilon_0$ using functions of W, f, θ and φ ,

 $\varepsilon_{w}(\theta, \phi) = \varepsilon_{0+}\Delta\varepsilon_{c}$; $r_{w}(\theta, \phi) = (1 - \varepsilon).\omega(\tau, W, f, \theta)$ ω speeds up RT by enabling specular reflection, which means one pass through atmosphere.

3. Foam model - can in principle be taken from anywhere,

 $\varepsilon = \varepsilon_w (1-F) + \varepsilon_f F$

4. Azimuthal correction – did use Windrad model, now Kazumori (2015)

Fastem is now maintained by the NWPSAF, as part of RTTOV.

Fastem has **direct, tangent-linear, adjoint and K** code making it ideal for use in variational data assimilation e.g. **4D-Var**.

Fastem history

Fastem Version	Permittivity (1 change, poss 2 nd)	Roughness (4 changes)	Foam (0 changes, 1 temporary, 1 additional capability tested)
1	Ellison et al 1998	GO / specular Regression fit	Monahan and O'Muircheartaigh (1986)
2	Ellison et al 1998	GO + specular with "omega" term Regression fit	Monahan and O'Muircheartaigh (1986)
3	Ellison et al 1998	GO + omega + WindRad azimuthal term Regression fit	Monahan and O'Muircheartaigh (1986)
4	Liu et al 2011	2-scale + WindRad Regression fit	Tang (1974)
5	Liu et al 2011	2-scale + WindRad Regression fit	Monahan and O'Muircheartaigh (1986)
6	Liu et al 2011	2-scale + Kazumori (2015) azimuthal term Regression fit	Monahan and O'Muircheartaigh (1986) + wave model option
(7)	Lawrence et al. 2019 TBC?	2-scale + Kazumori (2015) Regression fit	Monahan and O'Muircheartaigh (1986) + wave model option

How good is Fastem?

- Comparisons are misleading
- Big biases v AMSR2 (and SSMIS) but bias-free against GMI, e.g. 18.7 GHz V-pol for July 2019

Patterns comparable, mean bias very different. Can we say anything about absolute calibration of the RTM and the satellite instruments?

How good is Fastem (2)?

Compare all Fastem versions v GMI (Stu Newman, Met Office) Bias changes between -3.11 and +1.34 (best Fastem V5 v GMI) SD only changes between 0.95 and 1.11 K

V4 biased low poor due to use of Tang (1974) foam model: note this gives a better fit to AMSR-2!

V1 poor due to poor handling of non-specular reflection.

V2, 3, 5, 6 similar performance.

Similar story at other frequencies.

From Stu Newman, Met Office

Taking foam coverage from a wave model

• Foam can be diagnosed from the dissipative wave energy predicted by a wave model

- Meunier, Anguelova and Bettenhausen, working with the NWPSAF, explored this.
- Handling roughness, from swell, waves, ripples and foam should be done in a flexible way, that can allow inputs from models like a wave model, where appropriate
- To date Fastem is hard-wired to windspeed for roughness, and ignores swell, except:
 - Research versions for foam
 - Non-zero roughness at zero windspeed
 - Biggest problem for Fastem is its inflexibility, it's a fast-fit, it can't easily be updated with better science, new frequencies

Conclusions

- A model like Fastem supports operational data assimilation.
- It is only as good as the model it attempts to replicate.
- We could develop a new generation of fast models, using AI, but care is needed that gradient code is both robust and consistent with direct code, as is the case with Fastem.
- We also need one model for VIS-IR-MW, like Fastem.
- We want a fast model, but we also want flexibility, to take inputs from ocean and wave models, not just atmospheric 10m wind speed.

• Validation exercises (e.g. Bormann, Kilic, Newman, Kilic....) give conflicting messages, largely because **uncertainty on satellite observations is not well known**.