The RSS Microwave Ocean Surface Emissivity Model Meissner – Wentz Model

<u>Thomas Meissner</u> + Frank Wentz Remote Sensing Systems (RSS), Santa Rosa, USA *meissner@remss.com*

With contributions from: Lucrezia Ricciardulli, Carl Mears, Andrew Manaster, RSS

> presented at the ISSI Team Meeting Bern, Switzerland November 20, 2019

Outline

I. Overview of RSS Emissivity Model

- Publications
- Code
- Dielectric Model
- Wind Emissivity Model 6 90 GHz
- L-band (1.4 GHz)
- High Winds

II. Important Topics (Discussion)

- Derivation + Validation of RTM
- Uncertainty Assessment
- Atmosphere
- Sensor Calibration

Publications (1)

Theoretical Background

Remote Sensing Systems

www.remss.com

- Wentz, F. and T. Meissner, AMSR-E ATBD, 2000, <u>www.remss.com</u>.
- Dielectric Constant (Permittivity) of Sea Water:
 - Meissner, T., and F. Wentz, The complex dielectric constant of pure and sea water from microwave satellite observations, IEEE TGRS, vol. 42(9), pp 1836, 2004.

Wind Emissivity (6 – 90 GHz)

- Meissner, T., and F. Wentz, The emissivity of the ocean surface between 6 - 90 GHz over a large range of wind speeds and Earth incidence angles, IEEE TGRS, vol. 50(8), pp 3004, 2012.
- Contains small update to RSS dielectric model.

Publications (2)

Wind Emissivity (L-band, 1.41 GHz)

- Meissner, T., F. Wentz, and L. Ricciardulli, The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from Aquarius, J. Geophys. Res. Oceans, vol. 119, doi:10.1002/2014JC009837, 2014. (Aquarius)
- Meissner, T, F. Wentz, and D.Le Vine, The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and SMAP Version 3 Releases, Remote Sensing, 10, 1121, doi:10.3390/rs10071121, 2018. (Aquarius, SMAP).

Atmosphere

Remote Sensing Systems

www.remss.com

- Wentz, F. and T. Meissner, Atmospheric Absorption Model for Dry Air and Water Vapor at Microwave Frequencies below 100 GHz Derived from Spaceborne Radiometer Observations, Radio Science, 51, doi:10.1002/2015RS005858, 2016.
- Largely based on Phil Rosenkranz 1998 + Hans Liebe et al. 1992.
- Adjustment of water vapor continuum (see AMSR ATBD) and non-resonant O₂ continuum.
- New Rosenkranz model (2016).

Code

Code (FORTRAN 90 + tables) publicly available.

- Dielectric model.
- Wind roughness model 6 90 GHz.
- Wind roughness at L-band (1.41 GHz) separate.
- We ask not to re-distribute it outside your institution and cite appropriate references if used in publication.
- RSS website: <u>www.remss.com</u>.
- U Michigan Remote Sensing Code Library: <u>https://rscl-grss.org/</u>.
- UCAR is putting it as an option in their CRTM code.

Radiative Transfer Model (RTM)

Top of the Atmosphere (TOA) for Ocean Scenes Non-Scattering Atmosphere

Radiative Transfer Model (RTM)

Top of the Atmosphere (TOA) for Ocean Scenes Non-Scattering Atmosphere

Dielectric Constant of (Sea-) Water

- Complex dielectric constant (permittivity).
 - Central input of all MW radiometric modeling
- Based on electromagnetic theory.
 - Measures response of medium to applied electric field.
 - Determines emissivity of specular (flat) ocean surface (Fresnel).

$$E_{0p} = 1 - |r_p|^2, \quad p = V, H$$

$$r_V = \frac{\varepsilon \cos(\theta_i) - \sqrt{\varepsilon - \sin^2(\theta_i)}}{\varepsilon \cos(\theta_i) + \sqrt{\varepsilon - \sin^2(\theta_i)}} \qquad r_H = \frac{\cos(\theta_i) - \sqrt{\varepsilon - \sin^2(\theta_i)}}{\cos(\theta_i) + \sqrt{\varepsilon - \sin^2(\theta_i)}}$$

 Determines optical index of refraction -> cloud water absorption (Rayleigh).

$$\alpha_{L} \approx \frac{6\pi \cdot \rho_{L}}{\lambda \cdot \rho_{0}} \cdot \operatorname{Im}\left(\frac{1 - \varepsilon_{L}}{2 + \varepsilon_{L}}\right)$$

Dielectric Constant of (Sea-) Water

• Basis for measurement of:

- SST (C-band, X-band).
- Salinity (L-band).
- Enters also in retrieval of wind speed, vapor and cloud water.

Single Debye Relaxation

Physical mechanism based on orienting polar molecules in electric field + restoring force (viscous medium). Connects different frequencies.

• Accurate below 18 GHz.

Remote Sensing Systems

www.remss.com

• Parameters depend on Temperature and Salinity.

Double Debye Relaxation

• Necessary above 18 GHz.

Remote Sensing Systems

www.remss.com

• Comprises single Debye law.

Models for Dielectric Constant

• Klein – Swift (1977)

- Fit to laboratory measurements at low frequency.
- Did not include very low SST.
- Widely used in microwave applications.
- Single Debye relaxation.
- Accurate at low frequencies (below 18 GHz).
- Decreasing accuracy at higher frequencies and in cold water.
- Bias at 0°C: 2 K (37 GHz) 5 K (85 GHz).

Wentz (1997)

- Inconsistencies retrieving SSM/I EDRs over cold water (negative cloud water retrievals, SST dependent biases in wind speed) when using KS.
- Re-fitted and adjusted model parameters.
- Single Debye relaxation.

Guillou et al. (1998), Ellison et al. (2002)

- Laboratory measurements up to 89 GHz.
- Double Debye relaxation.

• Double Debye relaxation law.

Remote Sensing Systems

www.remss.com

- Uses laboratory measurements to pure water (1- 400 GHz).
 - Smooth transition from saline to pure water.
- The conductivity σ is taken from Stogryn et al.1995 laboratory measurements.
- Static dielectric constant ε_s is taken from laboratory measurements.
- Fit to Wentz 1997 up to 37 GHz and Guillou et al. 1998 at 85 GHz.
- Fine-tuned and tested with satellite observations (SSM/I, WindSat).
 - V-pol, wind < 5 m/s: Emissivity does not change with wind speed.
- The MW model is used in all RSS passive microwave ocean retrievals (L – Ka band).

Wind Emissivity Model (Excess Emissivity)

$$\Delta E(f,\theta_i;W,\varphi_r,T_S) = \Delta E_W + \Delta E_{\varphi}$$

isotronic wind-direction signal

- Empirically model based on physical principles.
 - Comprises geometric optics, Bragg scattering ,foam emission
 - Derived from WindSat + SSMI
 - Tested on GMI, AMSR's,
 - L-band: Aquarius, SMAP.
- Can be tied into physical models (2-scale, foam) by fitting the model parameters.
 - Paul Hwang (NRL), Al Gasiewski (UC)
- Depends on frequency *f*, EIA θ_i , wind speed *W*, relative wind direction φ_r , sea-surface temperature T_s .
 - Validated for EIA range of instruments mentioned above.

Wind Emissivity Model ΔE_W

Wind Emissivity Model ΔE_W

EIA dependence

SST dependence

Wind Direction Model ΔE_{ϕ}

Four Stokes V-pol, H-pol, S3, S4 Based on WindSat and SSM/I.

$$\Delta E(W,\varphi) = A_0(W) + A_2(W) \cdot \cos(\varphi) + A_2(W) \cdot \cos(2\varphi), \quad V, H$$

$$\Delta E(W,\varphi) = B_1(W) \cdot \sin(\varphi) + B_2(W) \cdot \sin(2\varphi), \quad S_3, S_4$$

Remote Sensing Systems

Atmospheric Path Length Correction T_{B,scat}

Ω-Term. Scattered downwelling radiation. (MW 2012, Section V).

Depends on wind speed AND transmittance τ.

Some RTM include it effectively in the surface reflectivity.

$$T_{B, scat, p} = \Omega_{p} \left(\tau, W \right) \cdot \left[T_{BD} + \tau \cdot T_{cold} - T_{cold} \right] \cdot R$$

L-Band

Challenge: Many additional spurious signals (galaxy, ionosphere, sun ...) Salinity: Need to be removed to very high level of accuracy (0.1 K!)

Credit: A. de Charon, U of Maine

High Wind Speeds Challenge: Sparse Ground Truth

Remote Sensing Systems

www.remss.com

- Passive MW emission signal sensitive to wind at high winds (foam).
- $\Delta E_{W} \sim W$ at all frequencies
- Several validation sources show good consistency.

Tropical Cyclone Winds L-band (SMAP, SMOS), C/X-band (AMSR, WindSat)

Hurricane FLORENCE SEP 2018

Development of Wind Emissivity Model

Passive (radiometer)

- Sees change in emissivity of wind roughened sea surface compared with specular surface
 - Low winds: Polarization mixing of large gravity waves.
 - High winds: Emissivity of sea foam.
- Radiative Transfer Model (RTM) function for wind induced surface emissivity.

Active (scatterometer)

- Sees backscatter from the Braggresonance of small capillary waves.
- Geophysical Model Function (GMF) for wind induced radar backscatter.
- C-band + Ku-band

Four Cornerstones:

RTM, Sensor Calibration, Retrieval, Validation

RTM Validation

- TB measured RTM computed for 10 WindSat V/H channels.
- Stratified versus SST and wind speed.
- Error chart.
- Input to RTM computation: QuikScat wind speed, NOAA OI SST (IR, no MW).
- Input needs to be validated = unbiased versus ground truth.
- Ideally: Independent from TB measurement.

Ultimate Criterion for Using RTM Quality of Retrieved Environmental Parameters

Remote Sensing Systems,

www.rems.com Extensive Validation-versus Ground-Truth Wind Speed

Remote Sensing Systems,

www.rems.com Extensive Validation-versus Ground-Truth Wind Speed

Remote Sensing Systems

Validation (cont.)

SST, Vapor

(Gentemann + Hilburn, 2015) 0.07 0.06 0.05 0.04 0.0 0.03 0.02 0.01 0 30 15 20 25 SST (°C) 0.12 0.1 Sm⁻¹ 0.08 0.06 0.0 0 ЪС 0.04 0.02 0 20 10 15 Wind Speed (ms⁻¹) 0.03 0.025 0.02 °C.1 0.015 PDF 0.01 0.005 0 30 40 50 60 /apor (mm) PDF (°C⁻¹mm 0 0.3 -0.05 0.05 0.1 0.15 0.2 0.25 Cloud Liquid Water (mm)

AMSR2 SST vs Buoys

Validation (cont.)

Salinity

SSS SMAP – ARGO floats

RTM Validation

- TB measured RTM computed for 10 WindSat V/H channels.
- Stratified versus SST and wind speed.
- Input to RTM computation: QuikScat wind speed, NOAA OI SST (IR, no MW).
- Input needs to be validated = unbiased versus ground truth.
- Ideally: Independent from TB measurement.

Disentangle Atmosphere from Surface

- Rain-free. Low cloud water.
- Strong global correlation between SST and columnar water vapor.
- Difficult to distinguish surface component (dielectric, wind) form atmospheric component.
- Combination: 2 TB (V-pol) TB (H-pol)
 - Reduces atmospheric errors

$$\begin{split} T_B &\approx \left(1 - R \cdot \tau^2\right) \cdot T_{eff} \quad \Delta T_B \approx 2 \cdot R \cdot \tau \cdot T_{eff} \cdot \Delta \tau \\ \alpha \cdot \Delta T_{B,V} - \Delta T_{B,H} \approx 2 \cdot \tau \cdot T_{eff} \cdot \Delta \tau \cdot \left(\alpha \cdot R_V - R_H\right) = 0 \quad \Longrightarrow \\ \alpha &= \frac{R_H}{R_V} \approx 2 \quad \text{for our sensors.} \end{split}$$

- Compare 18/19 GHz with 22/23 GHz.
- Analyze TB is narrow vapor bins.

Sensor Calibration

Tied to RTM Validation

- Problem: Calibration Anomalies.
 - Each sensor has its own.
 - Need to be properly removed.
- Most important examples (list is not complete):
 - Solar intrusion into hot load.
 - AMSR-E, AMSR-J, TMI, WindSat, SSMI(s)
 - Emissive antenna.
 - TMI, SSMIS F16, F17, SMAP
 - Receiver non-linearities.
 - AMSR-E, AMSR2
- Antenna spillover (cold sky fraction)
 - Antenna backlobes are difficult to measure

Some sensor are better/worse than others for RTM validation.

Best Calibrated Radiometer: GMF

Excellent Agreement between Pre-Launch and Post-Launch Antenna Pattern 4-Point Calibration

Calibration Anomalies

Non-Linear Receivers: AMSR2

Red Curves are JAXA values for spillover and non-linear correction. **Black Curves** are values coming from RSS analysis.

- AMSR2 has some very large non-linearities.
- Poor pre-launch characterization.
- Impact on quality of ocean retrievals.

Non-Linear Correction

$$\sum_{i=1}^{5} a_i x^i \quad T'_A = T_A + \sum_{i=1}^{5} a_i x^i \quad x = \frac{T_A - T_C}{T_H - T_C} \quad \sum_{i=1}^{5} a_i \equiv 0$$

Summary + Conclusions

RSS MW Ocean Emissivity Model

- Valid Range
 - 1 90 GHz
 - Maybe usable at higher frequencies
 - 0 60 m/s wind speed
 - EIA: 0 60 deg. Best: 49 55 deg.
- Special case: L-band emissivity model (EIA: 28 45 deg)
- Extensive validation versus ground truth
 - RTM (TB measured computed)
 - Environmental parameters that are retrieved with the RTM (SST, wind, vapor, cloud, rain, wind direction).
- Sensors used for development and testing:
 - WindSat, GMI, AMSR-E, AMSR2, SSM/I, SSMIS, TMI, Aquarius, SMAP

Remote Sensing Systems

Additional Slides

Microwave Data Products

Remote Sensing Systems,

www.remss.com

Remote Sensing Systems Provides Critical Environmental Parameters

Remote Sensing Systems (www.remss.com Distinguishing Sensor Errors from RTM Errors

Same ΔTa (simulated minus measured) plotted versus different parameters Same color scale: ΔTa goes from -3K to +3K

Y=Orbit Position, South Pole to South Pole, X=Orbit number (5 years)

RTM Adjustments

Minimize Biases between TB measured – computed for all Channels

Y=Wind, X=SST

Y=Wind, X=Vapor Color Scale: -3 to + 3 K

Y=Vapor, X=SST

Antenna Pattern Correction (APC) Derived Pre-Launch

• TA determined from TB by 4π integration over antenna gain pattern

$$\mathbf{T}_{\mathbf{A}} = \int d\Omega \, \mathbf{\Gamma}' \big(\boldsymbol{\theta}, \boldsymbol{\varphi} \big) \cdot \mathbf{T}_{\mathbf{B}} \big(\boldsymbol{\theta}, \boldsymbol{\phi} \big)$$

• Approximation of TB to TA transformation by linear relation

$$\begin{pmatrix} \tilde{T}_{A,v} \\ \tilde{T}_{A,h} \end{pmatrix} = \begin{pmatrix} 1 - a_{vh} & a_{vh} \\ a_{hv} & 1 - a_{hv} \end{pmatrix} \begin{pmatrix} T_{B,v} \\ T_{B,h} \end{pmatrix}$$

Remote Sensing Systems

www.remss.com

$$T_{A,v} = \eta_v \tilde{T}_{A,v} + (1 - \eta_v) T_{CS}$$
$$T_{A,h} = \eta_h \tilde{T}_{A,h} + (1 - \eta_h) T_{CS}$$

1. cross polarization correction

2. spillover correction (intrusion of cold space radiation into Earth field of view)

- Determine APC coefficients a_{vh} , a_{hv} , η_v , η_h through least-square fit.
- Can be easily inverted once the APC coefficients are determined.

Absolute Calibration Post-Launch Determination of APC

- Key: Compare TOA TB measured with RTM computation.
- Example: GMI
 - Earth Scenes come from
 - WindSat and AMSR2 (1 hour collocation) for wind speed, vapor, cloud water.
 - NOAA OI SST
 - NCEP wind direction.

Calibration Anomalies

Remote Sensing Systems

www.remss.com

Solar Intrusion into Hot Load: WindSat

WindSat 18 GHz measured - computed TB (2 V-pol – H-pol) as function of time and orbit position.

Calibration Anomalies

Derivation of Effective Hot Load Temperature

- Using the RTM we can compute what the effective temperature of the hot load should be:
- Use channel combination 2V H, which is insensitive to vapor or cloud.
- Assume that T_{H,eff} is independent of polarization.
- Determine difference between actual hot load temperature and computed hot load temperature.
- This is the hot load correction
- Tie this correction to the parameter that causes the anomaly.
- WindSat: Sun angle (between sun vector and spin axis).

$$T_{X} = 2 \cdot T_{V} - T_{H}$$
relationship between T_{B} and hot load T_{H}

$$\Delta T_{B} = (T_{Xmea} - T_{X \mod}) \approx \frac{T_{B}}{T_{h}} \Delta T_{H}$$

$$\Delta T_{H} = \frac{T_{H}}{2 \cdot T_{V} - T_{H}} (T_{Xmea} - T_{X \mod})$$

Calibration Anomalies

Non-Linear Receivers: AMSR2 (1)

Black diamonds are WindSat. **Red diamonds are AMSR-E**. **Green diamonds are AMSR-2**. Colored squares are the 6 SSM/Is.

Same months used for averages, but averaging years are different.

Calibration Anomalies

Non-Linear Receivers: AMSR2 (2)

TB over Amazon rain forest using values for T hot, APC and nonlinear parameters from RSS analysis 290 289 288 287 S WindSat North Amazon TB 286 AMSR-2 285 284 **AMSR-E** 283 282 281 280 23 7 11 19 37 90 Frequency (GHz)

Black diamonds are WindSat. **Red diamonds are AMSR-E**. **Green diamonds are AMSR-2**. Colored squares are the 6 SSM/Is.

Same months used for averages, but averaging years are different.

Calibration Anomalies

Can affect RTM validation of not properly removed

Solar intrusion into hot load.

- AMSR-E, AMSR-J, TMI, WindSat, SSMI(s)
- Emissive antenna.
 - TMI, SSMIS F16, F17
- Receiver non-linearities.
 - AMSR-E, AMSR2

Geophysical Validation SST: AMSR-2

Mean bias between SST from AMSR-2 and moored and drifting buoys and PDF as a function of:

SST for (a) day and (b) night; wind speed for (c) day and (d) night; water vapor for (e) day and (f) night; cloud liquid water for (j) day and (k) night.

The background color shows the PDF, with the color-bar on the right 833 side of each row, and the black line shows the mean bias at each value.

Geophysical Validation

SST: AMSR-2

Remote Sensing Systems

Geophysical Validation

Columnar Water Vapor

Version 6

Version 7: released in 2011

Columnar Water Vapor from SSM/I F13 compared with GPS radiosondes. Total bias: -0.07 mm. Total standard deviation: 1.9 mm. The improvement at high water vapor is due to adjustments in the RTM.

Large Error Source: Reflected Galactic Radiation Needs to be Modelled Very Accurately

