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Fig. 1.4 Sketch of the microwave illumination patterns of: a) AMI (ERS-1/2); b) SASS (SeaSat-A); c)
and f) SeaWinds, Oceansat-2 SCAT and HY-2A; d) NSCAT; e) MetOp ASCAT-A and B. The case a),
b), d) and e) correspond to a fan beam geometry whereas c¢) and f) correspond to a pencil beam
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Satellite pw scatterometers

» Ground-based transponders are inaccurate for quality monitoring, but provide ball-
park calibration for ASCAT

% The rain forest has a daily cycle of about 15% in uw backscatter; it may be used for
stability monitoring at given LTAN

+* Land targets are affected by moisture events (dew, rain)

% Ice/snow targets may be stable for months, years or decades, but will be affected by
T>0 / rain (climate change)

» No absolute calibration, but

Very stable instruments within 0.1 dB (2%)

Cone metrics provides order 0.02 dB calibration for ASCAT (0.02 m/s)
Excellent relative calibration between instruments and over time

&

Non sun-synchronous satellite references for intercalibration

Excellent and consistent GMFs at used wavelengths, polarizations and angles
Many close C- and Ku-band collocations, allowing improved GMFs and consistency
Reasonable control on ancillary parameters: SST, stability, waves, rain, . . .
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Well-known and controlled in situ and NWP references (except for extremes)
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Generic C- and Ku-band processors
s Use ASCAT 2013 as calibration reference?
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Satellite pw scatterometers

Bragg scattering interference of microwaves and ocean waves
Hydrodynamic ocean short-wave modulation, choppy wave model
Wave-wind interaction, wave boundary layer (scatterometers see no long waves so far)

The short wave spectrum is dominated by breaking waves and their dissipation for
modal and higher winds

Crucial to describe the short wave spectrum, but rather complex

Use satellite data Hwang Curvature Spectrum ypectrumectrum
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Uncertainty

Users are interested in stability and consistency of L2 geophysical products,
e.g., detect 0.1 m/s trends over 10 years

+* Cone metrics provides order 0.02 dB calibration for ASCAT (0.02 m/s)

Cone spread over ocean to provide ocean spatial variability, which is found
equal to wind variability (wind downbursts, turbulence, convection)

Related to Kp too (Kp is the c® SD)
Can be segregated into geophysical and instrument contributions

Wind retrieval quality is in stress-equivalent wind, correcting for air stability
and mass density effects

Scatterometer wind retrievals are very consistent after intercalibration of
backscatter values and GMFs

Physically-based models are useful to describe/understand behaviour at
different wavelengths and polarizations, but fed by empirical satellite data
characterization to improve accuracy

+* Wavelength dependency
+* Wind azimuth and speed dependency
+* Polarization/incidence dependency




ASCAT is very stable

ASCAT-A beams stay within a few hundreds of a dB (eq. to m/s)
Cone position variation due to seasonal wind variability (reduced with u10s)

» Improve ASCAT attitude knowledge? (cf. Long, 1998)
» Asset for Ku-band scatterometer developments; radiometers
» Reference for NWP reanalyses
» Can method be applied for other scatterometers?
reprocessed ASCAT A beam offsets from CONE METRICS (relative to mean 2013)
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Stress-equivalent wind

Radiometers/scatterometers measure ocean roughness

Ocean roughness consists in small (cm) waves generated by air impact and
subsequent wave breaking processes; depends on gravity, water mass density,
surface tension s, and e.m. sea properties (assumed constant)

Air-sea momentum exchange is described by 7= p,;, U U«, the stress vector; depends
on air mass density p,;, , friction velocity vector U.

Surface layer winds (e.g., U;o) depend on U., atmospheric stability, surface
roughness and the presence of ocean currents

Equivalent neutral winds, Uy, , depend only on U., surface roughness and the
presence of ocean currents and is currently used for backscatter geophysical model
functions (GMFs)

Uygs = Vo, - Uon/ V0o is now used to be a better input for backscatter GMFs (stress-
equivalent wind)

This prevents regional biases against local wind references
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Intercalibration and standardization

Y VYV

Our premise is that for given wavelength, polarization and geometry, o°
should be identical in identical geophysical conditions and independent of
instrument settings

We develop generic L2 wind processing for calibrated instrument data

Noise properties do however affect o®diagnostics, so we develop noise
models too to better understand our retrievals and diagnostics

KNMI is particularly interested to remove (c°—dependent) instrument
biases as they interfere with Ku-band wind and SST dependencies
(Stoffelen et al., 2017; Wang et al., 2017; Belmonte et al., 2017)

Comparison of ScatSat with QSCAT, RSCAT and OSCAT behavior for given
Geophysical Model Function GMF and NWP input to obtain consistency

CFOSAT, HY-2 and WindRad scatterometers will follow




Rain & QC affect ocean calibration

Collocation result - speed (2696733 wind vectors) Collocation result - speed (281919 wind vectors)
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@ Ac® RSCAT minus ASCAT
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Inner-Swath Cases, i.e., collocated HH&VV

Basic dependencies similar to those in physically-based models




Average model / scatterometer wind speed (mi's)

HH only

Anton Verhoef et al., 2017
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Intercalibration

Can we make further improvements? Yes, we can:

** Pencil-beam scatterometers provide fixed combinations of polarization, incidence
angle and azimuth angle at each WVC; these could be used for 4D “cone metrics” and
provide a measure for long-term o stability and consistency

% Ocean calibration needs development for new class of CFOSAT and WindRad rotating
fan-beam scatterometers; NSCAT-ERS collocations may be used

» NWP ocean calibration procedures will provide first guidance for CFOSAT and WindRad

% Effects of rain, SST need to be further controlled in any Ku approach, be it “cone
metrics” or NWP based

** A stable non-synchronous satellite instrument remains extremely useful for
intercalibration and geophysical development, which latter is needed for improved
error budgets for some calibration methods

** Error propagation in calibration methods and wind retrieval need to be better
understood; “cone metrics” (MLE) provides measure of noise
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» “cone metrics” will be used to improve GMFs to better describe measured o® PDF
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* Improve understanding of in situ wind references to allow absolute wind calibration at
high and extreme winds (CHEFS)
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Inconsistencies in wind references
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Figure 3.3: ASCAT wind speed scatter plots of a) ASCAT versus drop sondes (from [37]),
b) ASCAT versus moored buoy winds and c) ECMWF NWP winds versus ASCAT. Using
drop sondes, moored buoy winds and NWP references above 15 m/s may result in
discrepancies due to height and position reprepresentation differences.

» Are dropsondes too high, or moored buoys and ECMWEF too low at 15-25 m/s ?
» EUMETSAT CHEFS project addresses this; WL150 not suitable for calibration
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Maximum wind with sea view

SFMR: 85 knots (43 m/s; 157 km/hr )

@2.4 km: 125 knots (64 m/s; 232 km/hr)

Large foam patches near breaking wave fronts
0 apparent saturation (uniformity)
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Model Wind Errors

» Typically 0.5 to 1 m/s in component bias and SD (10-20%) on model scales

» Underestimation of wind turning in NWP model: surface winds more aligned

to geostrophic balance above than to pressure gradient below - stable
model winds are more zonal with reduced meridional flows

» Sandu (ECMWEF) reports that turbulent diffusion is too large (enlarged to
reduce sub-grid mesoscale variability) which helps improve the

representation of synoptic cyclone development at the expense of reducing
the ageostrophic wind turning angle ...

- It is a problem that the ocean is forced in the wrong direction though

» Other processes poorly represented include 3D turbulence on scales below

500 km and wide-spread wind downbursts in (tropical) moist convection
(King et al., 2017)

- Atmospheric mesoscale variability stirs the ocean and enhances fluxes
—> Adaptive bias correction needed for data assimilation and ocean forcing
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Zonal, Meridional Errors

ERA5 has spatial error patterns similar to ERAint (only reduced in amplitude by ~20%)
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- Excess mean model zonal winds (blues at mid-latitudes and subtropics)
- Defective mean model meridional winds (reds at mid-lats and tropics)
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Transient Wind Errors
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ERAS - ASCAT

- Defective model wind variability overall:
- Zonal (left) and meridional (right) at mid-to-high latitudes
- Particularly meridional deficit along ITCZ
- Locally enhanced along WBCs (ARC, ACC, GS, KE currents)




Eastern Tropical Pacific,

- Globcurrent accentuates
SST effects in ASCAT
winds that are missing
in ECMWF winds

- Provides much better
alignment of ECMWF
discrepancies with
branched SEC (N and S)
to show positive curl
error in between

Effect of Globcurrent
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Corrected ERA-iI with ASCAT, OSCAT
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Verification of ERA* with HSCAT

ASCAT and ScatSat at 9:00-9:30 LTAN and HY2A SCAT at 6 am/6 pm LTAN
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Model Corrections

Due to the persistence of the bias between model and scatterometer data it is possible to add
small scale information, i.e., include some of the physical processes that are missing or
misrepresented in ERAI, and reduce the ERAI errors

ERA* shows a significant increase in small-scale true wind variability, persistent small scales are
kept in SC, due to oceanic features such as wind changes over SST gradients and ocean currents

Although the method is dependent on sampling, it shows potential, notably in the tropics, due to
the scatterometer constellation

Temporal windows could be several days for ocean forcing fields in case of fewer scatterometers
as the corrections appear rather stable

From the statistical and spectral analyses, the optimal configuration to introduce the oceanic
mesoscale is the use of complementary scatterometers and a temporal window of two or three
days.

ERA* effectively resolves spatial scales of about 50 km, substantially smaller than those resolved
by global NWP ocean wind output (about 150 km)

Adaptive SC will be very useful as variational bias correction in NWP data assimilation as it
reduces o-b variances by about 20%.




Further references

scat@knmi.nl

— Registration for data, software, service messages
— Help desk

www.knmi.nl/scatterometer

— Multiplatform viewer, tiles!
— Status, monitoring, validation
— Validation reports, ATBD and User Manuals

NWP SAF monitoring www.metoffice.gov.uk/research
/interproj/nwpsaf/monitoring.html

Copernicus Marine Environment Monitoring Service marine.copernicus.eu/

2016 scatterometer conference,
www.eumetsat.int/Home/Main/Satellites/Metop/index.htm?l=en

May 2017 TGRS special issue on scatterometry
IOVWST, coaps.fsu.edu/scatterometry/meeting/
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Error Mechanism ?

At mid-latitudes, missing wind variability in ERA can be associated to:

- Excess zonal mean model winds and defective poleward flows

- Excess cyclonic stress curl

- Defective subtropical divergence and defective subpolar convergence

@ subsidence lift @

ﬂ \ H
. | D
@ divergence Mid-latitude convergence @

(subtropical gyre) DRAG (subpolar gyre)

Transfer of negative vorticity

()

—>Missing 3D turbulence weakens (poleward) flow in Ferrel Cell

l I I I ?
—> Ocean forcing implications’ Belmonte Rivas & Stoffelen, 2019
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- Globcurrent notably
relieves the zonal wind
biases

- Globcurrent has no effect
on the smaller meridional
wind biases

Zonal Wind (m/s)
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Bias patterns with NWP

e Systematic wrong ocean forcing in the tropics

* Violates BLUE in data assimilation systems (DAS)

* Similar patterns every day, due to convection, parameterisation, current
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» Correct biases
before DAS

> Correct ocean
forcing in climate
runs

" Dive, IR Wl R .

» Investigate moist
convective
processes

» Correct NWP for
currents to obtain
stress




— Constellation of satellites

— High quality winds, QC

— Timeliness 30 min. — 2 hours

— Service messages

— QA, monitoring
Software services (NWP SAF)

— Portable Wind Processors

— ECMWF model comparison
Organisations involved:

KNMI, EUMETSAT, EU, ESA, NASA,
NOAA, ISRO, CMA, WMO, CEOS, ..

Users: NHC, JTWC, ECMWEF, NOAA,
NASA, NRL, BoM, UK MetO,
M.France, DWD, CMA, JMA, CPTEC,

-A AP NCAR, NL, . ...
,. G R 't i .
N et | O L~ More information:
AHSEe | EEEERER _
LRI R L EEE A LI RA Y www.knmi.nl/scatterometer

m%z ;i‘i‘ahﬁ\é.‘:‘i‘@uw Wind Scatterometer Help Desk
AW T > Email: scat@knmi.nl
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GLOBAL SCATTEROMETER MISSIONS (CEOS VC)
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CEOS Virtual Constellation
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http://ceos.org/ourwork/virtual-constellations/osvw/

The forecast sensitivity to observations measures the impact of the observations on the short-range forecast (24 hours).

Forecast Error Reduction

Impact of assimilated observations on

The forecast sensitivity tool developed at ECMWF computes the Forecast Error Contribution (FEC) that is a measure (%)
of the variation of the forecast error (as defined through the dry energy norm) due to the assimilated observations.
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Soil Water Index
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Tropical forest
Azimuthal anisotropy
Snow and ice
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\egetation and rain too

EPS Talkshow, 15 June 2005
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Training/interaction

Training Course Applications of Satellite Wind and Wave Products for Marine
Forecasting
vimeo.com/album/1783188 (video)

Forecasters forum
training.eumetsat.int/mod/forum/view.php?f=264
Xynthia storm case
www.eumetrain.org/data/2/xynthia/index.htm

EUMETrain ocean and sea week
eumetrain.org/events/oceansea week 2011.html (video)

NWP SAF scatterometer training workshop
nwpsaf.eu/site/software/scatterometer/

Use of Satellite Wind & Wave Products for Marine Forecasting
training.eumetsat.int/course/category.php?id=46 and others
Satellite and ECMWEF data vizualisation
eumetrain.org/eport/smhi 12.php?

MeteD/COMET training module
www.meted.ucar.edu/EUMETSAT/marine forecasting/
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