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OUTLINE 

• SEA FOAM AND ITS HIGH EMISSIVITY

• REQUIREMENTS FOR A FOAM EMISSIVITY MODEL

• FOAM EMISSIVITY AT WINDSAT FREQUENCIES (6 – 37 GHZ)

• FOAM EMISSIVITY AT L BAND (1 – 2 GHZ)

• FOAM EMISSIVITY AT MILLIMETER-WAVE (mmW) FREQUENCIES (37 – 150 GHZ)

• WHITECAP FRACTION 

• WHAT NEEDS TO BE DONE?
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SEA FOAM

WHITECAPS

SEA FOAM FLOATING ON THE SURFACE

BUBBLE PLUMES

THE BUBBLE BELOW THE SURFACE

SEA SPRAY

SOME INCLUDE THE SPRAY DROPLETS

3



SEA FOAM CHARACTERISTICS

ARTIFICIAL FOAM FOAM FROM BREAKING WAVES

• FOAM LAYERS ON THE SURFACE

• BUBBLE SIZE DISTRIBUTION (MICRO)

• MIN BUBBLE RADIUS a = 50 m

• MAX BUBBLE RADIUS a = 1 cm

• VOID FRACTION (MACRO)

• VOID FRACTION PROFILE

• STRATIFICATION OF BUBBLES BY SIZE

• VERTICAL AIR-SEAWATER CONTENT 

CHANGES

mixture of Volume

air of Volume
af
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FOAM MECHANICAL STRUCTURE AND EMISSIVITY

• FOAM ITSELF HAS LOW EMISSIVITY 

• WILLIAMS (1971) 

• FOAM + METAL PLATE: LOW EMISSIVITY

• FOAM + SEAWATER: HIGH EMISSIVITY

• HIGH EMISSIVITY OF THE FOAM-SEAWATER SYSTEM COMES FROM 2 MAIN FEATURES

• MEDIUM WITH HIGH ATTENUATION (= EMISSION) OF EM RADIATION

• RADIATIVE PROCESSES IN FOAM-SEAWATER SYSTEM

• AVAILABILITY OF EM RADIATION 

• IMPEDANCE MATCHING BY FOAM
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ATTENUATION IN THE FOAM-SEAWATER SYSTEM

• ABSORPTION 

• BY SEAWATER (LOSSY MEDIUM)

• GRADUAL INCREASE OF SEAWATER WITH  fa PROFILE IN DEPTH 

• SMALL IN BUBBLE WALLS AT THE TOP OF THE LAYER

• MAX AT THE BOTTOM OF THE LAYER

• NEED 1 M THICK FOAM WITH HIGH VOID FRACTION TO ABSORB 

• WHATEVER 1 MM SEAWATER CAN ABSORB

• SCATTERING

• -DEPENDENT

• SIZE PARAMETER x DETERMINES THE SCATTERING REGIME 

• VOLUME AND SURFACE SCATTERING 

• ABSORPTION VS SCATTERING

• LITERATURE REVIEW:  15% SCATTER @ 37 GHZ

• RIGOROUS SCATTERING CALCULATIONS: SIMILAR

Size parameter  

x = 2a/

  40 GHz

x < 1

Scattering 

negligible

 > 40 GHz

x  1

Scattering 

increases
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SCATTERING IN FOAM

• GMM THEORY (GENERALIZED MULTI-PARTICLE MIE)

• SCATTERING FROM BUBBLE AGGREGATES

• INTERACTION AND INTERFERENCE BETWEEN BUBBLES

• WELL VALIDATED EXPERIMENTALLY 

• GMM IMPLEMENTATION (COMMUNITY CODE)

• HOMOGENEOUS SPHERES (SPRAY)

• SHELL & CORE PARTICLES (BUBBLES)

• MONODISPERSE AND POLYDISPERSE

• GMM CALCULATIONS

• FOAM STREAKS: 2 mm TO 10 m (OBSERVED)

• LABORATORY AND FIELD EXPERIMENTS

• EMPIRICAL RELATIONSHIP TO WIND SPEED

• MONODISPERSE CLUSTER OF BUBBLES

• AT SEVERAL BUBBLE RADII: 50 m TO 10 mm

(OBSERVED)

• DIFFERENT BUBBLE WALL THICKNESSES 

(OBSERVED)

FOAM ATTENUATION VIA THE EFFICIENCY FACTORS

Qext = Qsca + Qabs
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FOAM SCATTERING AT DIFFERENT FREQUENCIES

• NEGLECT SCATTERING 

• FOR L BAND AND WINDSAT

• SCATTERING < 18% @ 37 GHZ

• ACCOUNT FOR SCATTERING 

• FOR mmW FREQUENCIES

• CONTRIBUTES > 25% TO Qext

• FOAM IS EMISSIVE AT mmW FREQS

• ABSORPTION DOMINATES ATTENUATION

• REFLECTION/SCATTERING DOMINATES IN VIS

• SCATTERING STARTS TO DOMINATE IN IR

• EFFICIENCY FACTORS Qext = Qsca + Qabs

• FREQUENCY DEPENDENCE

• FIXED BUBBLE DIMENSIONS TYPICAL

• FIXED FOAM STREAK TYPICAL FOR 12 M/S WIND

WindSat
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FOAM IMPEDANCE MATCHING 

r 1
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FOAM IMPEDANCE MATCHING 

r 1
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• FOAM LAYER AT THE 

SURFACE IS A NECESSITY

 

Srf

c 



HIGH FOAM EMISSIVITY

• EMERGENT BEHAVIOR OF FOAM-SEAWATER 

SYSTEM: THE WHOLE IS GREATER THAN ITS PARTS

• SEAWATER IS THE MAJOR ATTENUATING AGENT 

• STRONG ATTENUATION OF EM RADIATION

• STRONG EMISSION

• FOAM IMPEDANCE MATCHING 

• DELIVERS RADIATION TO THE ATTENUATING AGENT

• MOST EFFECTIVE WHEN THE VOID FRACTION IS 

OVER THE FULL RANGE
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REQUIREMENTS FOR FOAM EMISSIVITY MODEL
1) VARIABLES

▪ INSTRUMENTAL (frequency, polarization, incidence angle)

▪ FOAM VARIABLES 

▪ MICROSCOPIC FOR BUBBLES (e.g., radius, wall thickness, size distribution) OR

▪ MACROSCOPIC FOR FOAM LAYERS (void fraction fa and layer thickness t )    

2) NON-UNIFORM PROFILE OF FOAM DIELECTRIC PROPERTIES IN FOAM LAYER DEPTH

▪ VERTICAL PROFILE OF FOAM MECHANICAL STRUCTURE

▪ BUBBLE PROPERTIES [e.g., w(z)] OR

▪ FOAM LAYER CHARACTERISTICS [e.g., fa(z)]

▪ VERTICAL PROFILE OF FOAM THERMODYNAMIC TEMPERATURE Tf (z) (STOGRYN, 1970)

▪ VERTICAL PROFILES OF BOTH FOAM TEMPERATURE AND STRUCTURE   [e.g., Tf (z) AND fa(z)]

3) RADIATIVE PROCESSES FOR ATTENUATION

▪ ABSORPTION AND VOLUME SCATTERING 

▪ SURFACE SCATTERING AT IRREGULAR AIR-FOAM AND FOAM-WATER BOUNDARIES  

▪ MULTIPLE REFLECTIONS AND TRANSMISSIONS AT THE BOUNDARIES OF THE FOAM LAYER  

4) A DISTRIBUTION OF FOAM CHARACTERISTICS DUE TO GEOGRAPHIC AND METEOROLOGICAL VARIABILITY

▪ BUBBLE DIMENSIONS OR 

▪ FOAM LAYER THICKNESSES 
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PREVIOUS FOAM EMISSIVITY MODELS

• STOGRYN (1972): ONLY INSTRUMENTAL VARIABLES, NO FOAM CHARACTERISTICS

• DROPPLEMAN (1970)

• INCLUDES VOID FRACTION, BUT NO VERTICAL VARIATIONS

• COHERENT SCATTERING LEADS TO BOGUS OSCILLATIONS

• ROSENKRANZ AND STAELIN (1972)

• LAYERS OF EQUAL THICKNESS

• BOGUS OSCILATIONS

• LAYERS WITH VARYING THICKNESSES

• RAIZER AND COLLEAGUES (1981)

• VERTICAL PROFILE VIA BUBBLES

• SPRAY LAYER INCLUDED

• TSANG AND COLLEAGUES 

• SCATTERING (DENSE MEDIA RT)

• NO VERTICAL VARIATIONS

Droppleman, 1970

Rosenkranz and Staelin, 1972

Raizer and colleagues

1982, 1992

Chen et al., 2003 13



MODEL PHYSICAL FEATURES FOR APPLICATION

• NO NEED TO FOLLOW ALL REQUIREMENTS

• FREQUENCY RANGE DETERMINES THE NEEDED FEATURES

• SCATTERING (VOLUME AND SURFACE) WHEN NEEDED 

• MODELING APPROACH

• EFFECTIVE MEDIUM THEORY FOR FREQS BELOW 37 GHz

• MIE   SCATTERING  THEORY FOR FREQS ABOVE 37 GHz

• VERTICAL VARIATIONS MOST IMPORTANT

• BREAKING WAVE MIXING ALLOWS Tf (z) = CONST = Ts

• REQUIRE VOID FRACTION PROFILE

Effective 

medium

Scattering 

theory

Size parameter  

x = 2a/

  40 GHz

x < 1

Scattering 

negligible

 > 40 GHz

x  1

Scattering 

increases
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MODEL FEATURES FOR WINDSAT FREQUENCIES

• MACRO CHARACTERISTICS (LAYER, NOT BUBBLES)

• VERTICALLY HOMOGENOUS FOAM TEMPERATURE 

• VERTICALLY INHOMOGENEOUS (DEPTH PROFILE)

• INCOHERENT APPROACH 

• APPLICABLE FOR WEAK SCATTERING

• IGNORE EXPLICIT SCATTERING TERM

• EXTINCTION = ABSORPTION

• FLAT FOAM LAYER BOUNDARIES 

• NO SURFACE SCATTERING

• SPECULAR REFLECTIONS

• MULTIPLE REFLECTIONS AT THE FOAM LAYER BOUNDARIES

• DISTRIBUTION OF FOAM LAYER THICKNESSES

Gaiser et al., 2004Freq (GHz) Polarization

6.8 h , v

10.7 h , v, +/ 45, lc, rc

18.7 h , v, +/ 45, lc, rc

23.8 h , v

37.0 h , v, +/ 45, lc, rc

WindSat is the first spaceborne polarimetric microwave radiometer 

Launched on 06 January 2003

Demonstrated the capability of polarimetric microwave radiometry 

to measuring the ocean surface wind vector from space

z = 0

z = t

Air, , ε0=1

Seawater, , ε

Foam, ε (z)
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VOID FRACTION PROFILE

• FOAM PERMITTIVITY FROM fa(z)

• REFRACTIVE MIXING RULE

• FOAM ATTENUATION FROM f (z)
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𝑓𝑎 = 𝑎 −𝑚𝑒𝑏𝑧

𝑣𝑎𝑓 = 99% @ 𝑧 = 0

𝑣𝑓𝑤 = 1% @ z = 𝑡

𝜀𝑓 = 𝑓𝑎 + 1 − 𝑓𝑎 𝜀 ൗ1 2
2

𝑎 = 𝑣𝑎𝑓 +𝑚

𝑏 =
1

𝑡
𝑙𝑛

𝑎 − 𝑣𝑓𝑤

𝑚

𝛼𝑓 𝑧 = 𝑘0 Im 𝜀𝑓 𝑧

𝑘ext𝑓 𝑧 = 2𝛼𝑓 𝑧 =𝑘abs𝑓 𝑧 +𝑘sca𝑓 𝑧  𝑘abs𝑓 𝑧



CONTRIBUTIONS TO THE SIGNAL FROM FOAM

• REFLECTION TERM: FRESNEL FORMULA 

• EMISSION TERMS

• NO SCATTERING

• UPWEELING

• DOWNWELLING

• TRANSMISSION TO/FROM SEAWATER

• MULTIPLE REFLECTIONS

TBf obs

z = 0

z = d

),( pTBfr = ),( pTBDf +),( pTBsc + ),( pTBfw +),( pTBUf +TBf obs
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DISTRIBUTION OF FOAM LAYER THICKNESS
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FOAM EMISSIVITY
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UPPER LIMIT OF VOID FRACTION

Incidence angle,  (deg)
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COMPARISON TO OTHER MODELS

10.8 GHz 35 GHz
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Incidence angle,  (deg) Incidence angle,  (deg)



WINDSAT FOAM RTM @ 1.4 GHZ 
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WINDSAT FOAM RTM @ L1 (CYGNSS)
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FOAM STREAKS AT MILLIMETER-WAVE FREQS

Wind > 10 m/s 
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𝑘ext𝑓 𝑧 = 𝑘abs𝑓 𝑧 +𝑘sca𝑓 𝑧



WHITECAP FRACTION AND FOAM EMISSIVITY

• FROM EARLY PHOTOGRAPHIC DATA

• CURRENTLY USED

• NEW, IMPROVED PHOTOGRAPHIC DATA

• FROM SATELLITE (WINDSAT) OBSERVATIONS
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𝑒 = 𝑒𝑊 + 𝑒𝑟 = 𝑊𝐸𝑓 + 1 −𝑊 𝐸𝑟 W (U) W (U, HSW , T, T, S, C )

W (U)
W (U, T )

W (U, HSW , T, T)



DISCUSSION QUESTIONS

FUTURE WORK

• VOID FRACTION PROFILE: VARIATIONS IN THE UPPER LIMIT

• WIND SPEED

• FREQUENCY

• THICKNESS DISTRIBUTION: VARIATIONS OF

• PEAK PLACE

• CONTROL WITH THE WIND SPEED?

• DISTRIBUTION WIDTH

• MILLIMETER-WAVE FREQS

• GMM CALCULATIONS FOR ATTENUATION IN

• FOAM PATCHES

• 3-D FOAM LAYERS

• FOAM EMISSIVITY MODEL 

• WHITECAP FRACTION: W (U, HSW , T, T)

ADDITIONAL FEATURES?

• DO WE NEED TO WORK ON SPRAY?

• INITIAL RESULTS FOR L BAND 

• PLANNED SPRAY EFFECT AT 89-94 GHZ 

• HIGHER? 
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