

A Reference Quality Model for Ocean Surface Emissivity and Backscatter from the Microwave to the Infrared

MAGGIE.ANGUELOVA@NRL.NAVY.MIL

Team led by S. English (UK) & C. Prigent (FR) Sponsor: ISSI (International Space Science Institute)

SEA FOAM MODELS FROM L BAND TO MILLIMETER WAVE FREQUENCIES

MAGDALENA D. ANGUELOVA

SCIENCE TEAM MEETING

20-22 NOVEMBER 2019

BERN, SWITZERLAND

- SEA FOAM AND ITS HIGH EMISSIVITY
- REQUIREMENTS FOR A FOAM EMISSIVITY MODEL
- FOAM EMISSIVITY AT WINDSAT FREQUENCIES (6 37 GHZ)
- FOAM EMISSIVITY AT L BAND (1 2 GHZ)
- FOAM EMISSIVITY AT MILLIMETER-WAVE (mmW) FREQUENCIES (37 150 GHZ)
- WHITECAP FRACTION
- WHAT NEEDS TO BE DONE?

SEA FOAM

SEA FOAM FLOATING ON THE SURFACE

BUBBLE PLUMES

THE BUBBLE BELOW THE SURFACE

SEA SPRAY

SOME INCLUDE THE SPRAY DROPLETS

SEA FOAM CHARACTERISTICS

• FOAM LAYERS ON THE SURFACE

ARTIFICIAL FOAM

- BUBBLE SIZE DISTRIBUTION (MICRO)
 - MIN BUBBLE RADIUS $a = 50 \ \mu m$
 - MAX BUBBLE RADIUS a = 1 cm
- VOID FRACTION (MACRO)

 $f_a = \frac{\text{Volume of air}}{\text{Volume of mixture}}$

- VOID FRACTION PROFILE
 - STRATIFICATION OF BUBBLES BY SIZE
 - VERTICAL AIR-SEAWATER CONTENT CHANGES

FOAM FROM BREAKING WAVES

FOAM MECHANICAL STRUCTURE AND EMISSIVITY

- FOAM ITSELF HAS LOW EMISSIVITY
 - WILLIAMS (1971)
 - FOAM + METAL PLATE: LOW EMISSIVITY
 - FOAM + SEAWATER: HIGH EMISSIVITY

- HIGH EMISSIVITY OF THE FOAM-SEAWATER SYSTEM COMES FROM 2 MAIN FEATURES
 - MEDIUM WITH HIGH ATTENUATION (= EMISSION) OF EM RADIATION
 - RADIATIVE PROCESSES IN FOAM-SEAWATER SYSTEM
 - AVAILABILITY OF EM RADIATION
 - IMPEDANCE MATCHING BY FOAM

ATTENUATION IN THE FOAM-SEAWATER SYSTEM

- ABSORPTION
 - BY SEAWATER (LOSSY MEDIUM)
 - GRADUAL INCREASE OF SEAWATER WITH $f_a \ {\rm PROFILE}$ in Depth
 - SMALL IN BUBBLE WALLS AT THE TOP OF THE LAYER
 - MAX AT THE BOTTOM OF THE LAYER
 - NEED 1 M THICK FOAM WITH HIGH VOID FRACTION TO ABSORB
 - WHATEVER 1 MM SEAWATER CAN ABSORB

- SCATTERING
 - λ -DEPENDENT
 - SIZE PARAMETER *x* DETERMINES THE SCATTERING REGIME
 - VOLUME AND SURFACE SCATTERING
- ABSORPTION VS SCATTERING
 - LITERATURE REVIEW: $\leq 15\%$ SCATTER @ 37 GHz
 - RIGOROUS SCATTERING CALCULATIONS: SIMILAR

SCATTERING IN FOAM

• GMM THEORY (GENERALIZED MULTI-PARTICLE MIE)

- SCATTERING FROM BUBBLE AGGREGATES
- INTERACTION AND INTERFERENCE BETWEEN BUBBLES
- WELL VALIDATED EXPERIMENTALLY
- GMM IMPLEMENTATION (COMMUNITY CODE)
 - HOMOGENEOUS SPHERES (SPRAY)
 - SHELL & CORE PARTICLES (BUBBLES)
 - MONODISPERSE AND POLYDISPERSE

- GMM CALCULATIONS
 - FOAM STREAKS: 2 mm TO 10 m (OBSERVED)
 - LABORATORY AND FIELD EXPERIMENTS
 - EMPIRICAL RELATIONSHIP TO WIND SPEED
 - MONODISPERSE CLUSTER OF BUBBLES
 - AT SEVERAL BUBBLE RADII: 50 μm TO 10 mm (OBSERVED)
 - DIFFERENT BUBBLE WALL THICKNESSES (OBSERVED)

FOAM ATTENUATION VIA THE EFFICIENCY FACTORS $Q_{\rm ext} = Q_{\rm sca} + Q_{\rm abs}$

FOAM SCATTERING AT DIFFERENT FREQUENCIES

- EFFICIENCY FACTORS $Q_{\text{ext}} = Q_{\text{sca}} + Q_{\text{abs}}$
 - FREQUENCY DEPENDENCE
 - FIXED BUBBLE DIMENSIONS TYPICAL
 - FIXED FOAM STREAK TYPICAL FOR 12 M/S WIND

- NEGLECT SCATTERING
 - FOR L BAND AND WINDSAT
 - SCATTERING < 18% @ 37 GHZ
- ACCOUNT FOR SCATTERING
 - FOR mmW FREQUENCIES
 - CONTRIBUTES > 25% TO $Q_{\rm ext}$
- FOAM IS EMISSIVE AT mmW FREQS
 - ABSORPTION DOMINATES ATTENUATION
 - REFLECTION/SCATTERING DOMINATES IN VIS
 - SCATTERING STARTS TO DOMINATE IN IR

HIGH FOAM EMISSIVITY

- EMERGENT BEHAVIOR OF FOAM-SEAWATER SYSTEM: THE WHOLE IS GREATER THAN ITS PARTS
- SEAWATER IS THE MAJOR ATTENUATING AGENT
 - STRONG ATTENUATION OF EM RADIATION
 - STRONG EMISSION
- FOAM IMPEDANCE MATCHING
 - DELIVERS RADIATION TO THE ATTENUATING AGENT
 - MOST EFFECTIVE WHEN THE VOID FRACTION IS
 OVER THE FULL RANGE

REQUIREMENTS FOR FOAM EMISSIVITY MODEL

1) VARIABLES

- INSTRUMENTAL (frequency, polarization, incidence angle)
- FOAM VARIABLES
 - MICROSCOPIC FOR BUBBLES (e.g., radius, wall thickness, size distribution) OR
 - MACROSCOPIC FOR FOAM LAYERS (void fraction f_a and layer thickness t)

2) NON-UNIFORM PROFILE OF FOAM DIELECTRIC PROPERTIES IN FOAM LAYER DEPTH

- VERTICAL PROFILE OF FOAM MECHANICAL STRUCTURE
 - BUBBLE PROPERTIES [e.g., *W*(*z*)] OR
 - FOAM LAYER CHARACTERISTICS [e.g., $f_a(z)$]
- VERTICAL PROFILE OF FOAM THERMODYNAMIC TEMPERATURE $T_f(z)$ (STOGRYN, 1970)
- VERTICAL PROFILES OF BOTH FOAM TEMPERATURE AND STRUCTURE [e.g., $T_f(z)$ AND $f_a(z)$]

3) RADIATIVE PROCESSES FOR ATTENUATION

- ABSORPTION AND VOLUME SCATTERING
- SURFACE SCATTERING AT IRREGULAR AIR-FOAM AND FOAM-WATER BOUNDARIES
- MULTIPLE REFLECTIONS AND TRANSMISSIONS AT THE BOUNDARIES OF THE FOAM LAYER
- 4) A DISTRIBUTION OF FOAM CHARACTERISTICS DUE TO GEOGRAPHIC AND METEOROLOGICAL VARIABILITY
 - BUBBLE DIMENSIONS OR
 - FOAM LAYER THICKNESSES

PREVIOUS FOAM EMISSIVITY MODELS

- STOGRYN (1972): ONLY INSTRUMENTAL VARIABLES, NO FOAM CHARACTERISTICS
- DROPPLEMAN (1970)
 - INCLUDES VOID FRACTION, BUT NO VERTICAL VARIATIONS
 - COHERENT SCATTERING LEADS TO BOGUS OSCILLATIONS
- ROSENKRANZ AND STAELIN (1972)
 - LAYERS OF EQUAL THICKNESS
 - BOGUS OSCILATIONS
 - LAYERS WITH VARYING THICKNESSES
- RAIZER AND COLLEAGUES (1981)
 - VERTICAL PROFILE VIA BUBBLES
 - SPRAY LAYER INCLUDED
- TSANG AND COLLEAGUES
 - SCATTERING (DENSE MEDIA RT)
 - NO VERTICAL VARIATIONS

Droppleman, 1970

MODEL PHYSICAL FEATURES FOR APPLICATION

• NO NEED TO FOLLOW ALL REQUIREMENTS

- FREQUENCY RANGE DETERMINES THE NEEDED FEATURES
 - SCATTERING (VOLUME AND SURFACE) WHEN NEEDED
 - MODELING APPROACH
 - EFFECTIVE MEDIUM THEORY FOR FREQS BELOW 37 GHz
 - MIE SCATTERING THEORY FOR FREQS ABOVE 37 GHz

- VERTICAL VARIATIONS MOST IMPORTANT
 - BREAKING WAVE MIXING ALLOWS $T_f(z) = \text{CONST} = T_s$
 - REQUIRE VOID FRACTION PROFILE

MODEL FEATURES FOR WINDSAT FREQUENCIES

- MACRO CHARACTERISTICS (LAYER, NOT BUBBLES)
- VERTICALLY HOMOGENOUS FOAM TEMPERATURE
- VERTICALLY INHOMOGENEOUS (DEPTH PROFILE)
- INCOHERENT APPROACH
 - APPLICABLE FOR WEAK SCATTERING
 - IGNORE EXPLICIT SCATTERING TERM
 - EXTINCTION = ABSORPTION
- FLAT FOAM LAYER BOUNDARIES
 - NO SURFACE SCATTERING
 - SPECULAR REFLECTIONS
- MULTIPLE REFLECTIONS AT THE FOAM LAYER BOUNDARIES
- DISTRIBUTION OF FOAM LAYER THICKNESSES

WindSat is the first spaceborne polarimetric microwave radiometer Launched on 06 January 2003

	Freq (GHz)	Polarization	Gaiser et al., 2004
	6.8	h , v	
5	10.7	<i>h</i> , <i>v</i> , +/– 45, lc, rc	
	18.7	<i>h</i> , <i>v</i> , +/– 45, lc, rc	$A \land A$
	23.8	h , v	
	37.0	<i>h</i> , <i>v</i> , +/– 45, lc, rc	

Demonstrated the capability of polarimetric microwave radiometry to measuring the ocean surface wind vector from space 15

VOID FRACTION PROFILE

$$f_a = a - me^{bz}$$

$$a = v_{af} + m$$

b

 $v_{af} = 99\%$ @ z = 0 $v_{fw} = 1\%$ @ z = t

$$=\frac{1}{t}\ln\left(\frac{a-v_{fw}}{m}\right)$$

16

- FOAM PERMITTIVITY FROM $f_a(z)$
 - REFRACTIVE MIXING RULE

$$\varepsilon_f = \left[f_a + (1 - f_a)\varepsilon^{1/2}\right]^2$$

• FOAM ATTENUATION FROM $\mathcal{E}_{f}(z)$

 $\alpha_f(z) = k_0 \left| \mathrm{Im} \sqrt{\varepsilon_f(z)} \right|$

$$k_{\text{ext}f}(z) = 2\alpha_f(z) = k_{\text{abs}f}(z) + k_{\text{sca}f}(z) \cong k_{\text{abs}f}(z)$$

CONTRIBUTIONS TO THE SIGNAL FROM FOAM

- REFLECTION TERM: FRESNEL FORMULA
 - EMISSION TERMS
 - NO SCATTERING
 - UPWEELING
 - DOWNWELLING
 - TRANSMISSION TO/FROM SEAWATER
 - MULTIPLE REFLECTIONS

 $T_{Bf obs} = T_{Bfr}(\theta, p) + T_{Bsc}(\theta, p) + T_{BUf}(\theta, p) + T_{BDf}(\theta, p) + T_{Bfw}(\theta, p)$

DISTRIBUTION OF FOAM LAYER THICKNESS

16 -

12 -

Frequency

0

0

$$T_{Bf \text{ obs}} = T_{Br} + T_{BlU} + T_{BlD} + T_{Bw}$$
$$T_{Bf} = \int_{t_{min}}^{t_{max}} T_{Bfobs}(t) p(t) dt$$

 $t_{\rm min} = 0.04 \,\mathrm{cm} \approx \lambda_{0@37\,\mathrm{GHz}} \,/\,20$

 $t_{\rm max} \le 25 \,{\rm cm} \approx 5 \lambda_{0@6.8\,{\rm GHz}}$

FOAM EMISSIVITY

UPPER LIMIT OF VOID FRACTION

COMPARISON TO OTHER MODELS

WINDSAT FOAM RTM @ L1 (CYGNSS)

WHITECAP FRACTION AND FOAM EMISSIVITY

 $e = e_W + e_r = WE_f + (1 - W)E_r$ W(U) $W(U, H_{SW}, \Delta T, T, S, C)$

- FROM EARLY PHOTOGRAPHIC DATA
 - CURRENTLY USED
- NEW, IMPROVED PHOTOGRAPHIC DATA
- FROM SATELLITE (WINDSAT) OBSERVATIONS

DISCUSSION QUESTIONS

FUTURE WORK

- VOID FRACTION PROFILE: VARIATIONS IN THE UPPER LIMIT
 - WIND SPEED
 - FREQUENCY
- THICKNESS DISTRIBUTION: VARIATIONS OF
 - PEAK PLACE
 - CONTROL WITH THE WIND SPEED?
 - DISTRIBUTION WIDTH
- MILLIMETER-WAVE FREQS
 - GMM CALCULATIONS FOR ATTENUATION IN
 - FOAM PATCHES
 - 3-D FOAM LAYERS
 - FOAM EMISSIVITY MODEL

- ADDITIONAL FEATURES?
 - DO WE NEED TO WORK ON SPRAY?
 - INITIAL RESULTS FOR L BAND
 - PLANNED SPRAY EFFECT AT 89-94 GHZ

26

• HIGHER?

• WHITECAP FRACTION: $W(U, H_{SW}, \Delta T, T)$