

SST products and SMOS SSS retrieved in the Arctic Ocean.

Alexandre Supply¹, Jacqueline Boutin¹, Jean-Luc Vergely², Nicolas Kolodziejczyk³, Gilles Reverdin¹, Nicolas Reul³ and Anastasiia Tarasenko^{3,4}.

¹LOCEAN-IPSL, Sorbonne Université-CNRS-IRD-MNHN, Paris, France ²ACRI-St, Guyancourt, France ³Laboratoire d'Océanographie Physique et Spatiale (LOPS), Univ. Brest, CNRS, Ifremer, IRD, Brest, France ⁴Arctic and Antarctic Research Institute, Saint-Petersburg, Russia

> A Reference Quality Model For Ocean Surface Emissivity And Backscatter From The Microwave To The Infrared. First meeting - 20-22 November 2019

Introduction

- SSS retrieval in the Arctic Ocean is particularly challenging due to low SST and to the presence of sea ice (*Meissner et al. 2016, Tang et al. 2018*).
- Deriving and validating IR SST in the Arctic Ocean is complicated by clouds, variability of the sunlit time and the lack of in-situ data (*Minnett et al. 2019*).
- Using an accurate SST is critical in order to retrieve SSS with a minimum level of uncertainty.
 - What is the impact of an error on the SST product used as a prior for SSS_{SMOS} retrieval ?
 - Is it possible to correct for this impact ?

The sensitivity of sea surface brightness temperatures to water salinity (a) and water temperature (b) versus incidence angle, for a salinity of 35 pss.

Yueh et al. 2001

- Dataset
- SMOS SSS products in the Arctic Ocean
- SST products differences
- A case study : Laptev Sea
- Correction performances for Arctic ocean

Dataset

Satellites data

- SMOS weekly SSS
- ECMWF SST (SMOS prior)
- REMSS SST (MW & MW+IR)

In-situ measurements (2011 – 2017)

- Argo profiles (A)
- CTD profiles (B)
- Underway TSG (C)

Model reanalysis

• SIC from TOPAZ reanalysis

Dataset

Satellites data

- SMOS weekly SSS
- ECMWF SST (SMOS prior)
- REMSS SST (MW & MW+IR)

In-situ measurements (2011 – 2017)

- Argo profiles (A)
- CTD profiles (B)
- Underway TSG (C)

Model reanalysis

• SIC from TOPAZ reanalysis

Sea ice filtering

BEFORE sea ice filtering

Sea ice filtering

SMOS - SSS 2012-09-01 80°N 78°N 76°N 74°N 72°N 70°N 110°E 120°E 130°E 140°E 150°E 160°

BEFORE sea ice filtering

AFTER sea ice filtering

Sea ice

Sea ice filtering

BEFORE sea ice filtering

Sea ice filtering

BEFORE sea ice filtering

AFTER sea ice filtering

SST differences between satellite SST and in-situ SST

TB(SST, SSS)

Klein and Swift model (1977)

SST differences between satellite SST and in-situ SST

SST differences between satellite SST and in-situ SST SSS differences between satellite SSS and in-situ SSS

SST differences induce SSS differences

SST differences between satellite SST and in-situ SST SSS differences between satellite SSS and in-situ SSS

Correction performances for Arctic ocean SST distribution

Before/After SST correction

MoD = -1.54 pss / -0.81 pss STDD = 1.46 pss / 1.32 pss R= 0.92 / 0.93 N= 148678

Correction impact on monthly SSS Sept. 2012 Sept. 2013

Sept. 2014

С С

difference

SST

(ssd)

difference

SSS

Conclusion

- SSS_{SMOS} derived with SST_{ECMWF} as a prior are strongly underestimated at monthly scales in river plumes areas.
- A new SSS_{SMOS} product is developed for Arctic Ocean using a new sea ice filtering methodology and an SST-related correction.
- In the Arctic Ocean, use of SST_{REMSS} to correct SSS_{SMOS} enables to improve SSS estimates with respect to in-situ SSS:
 - Mean differences reduced by 50% (0.8pss);
 - STDD reduced in river plumes areas (from 1.8 to 1.1 pss in the Laptev Sea).
- This study highlights the importance of using an SST prior consistent with L-Band radiometric measurement for retrieving SSS in the Arctic Ocean.

Supply et al. 2019, submitted to RSE.

Thank you