Impact of foam on infrared ocean emissivity

Stu Newman ISSI team progress meeting 18 May 2021

Properties of foam in the infrared

• Niclòs et al. (2007), Branch et al. (2016) data on IR foam emissivity

Properties of foam in the infrared

- Reduction in foam emissivity compared with water increases with incidence angle
- Clear separation of foam/water emissivity around 60-70°
- Range of satellite zenith angles in NWP up to ~57° (IASI) or up to ~68° (geostationary IR sensors such as SEVIRI)
- Sensitivity study: take Branch et al. estimate (8-14 $\mu\text{m})$ of

 ϵ_{foam} - $\epsilon_{water} \approx 0.04$ at 70°

Sensitivity study

- 70° incidence angle
- Case study 2019-10-11 1800 UTC
- Surface winds
 0 < U < 36 m/s
- Consider clear sky signal only

NWP-SAF radiance simulator Emissivity at 70° zenith angle

Sensitivity study

• Monahan and O'Muircheartaigh (1986) foam fraction W(U, dT) where dT is sea surface temperature minus air temperature

Modelled foam fraction (Monahan and O'Muircheartaigh 1986)

NWP-SAF radiance simulator at 70° SEVIRI channel 928.75 cm⁻¹ = 10.77 μ m

Sensitivity study

 $\delta\epsilon$ up to ~ 0.005

Impact on brightness temperature at 70°

 δ BT up to ~ 0.3 K

Summary

- Infrared impact of foam restricted to large incidence angles of 60-70° or more
- Case study with Monahan and O'Muircheartaigh (1986) foam fraction shows expected impacts for SEVIRI 10.8 μ m window channel are $\delta\epsilon$ up to ~ 0.005, δ BT up to ~ 0.3 K (at 70 °)
- Assumed formulation here:

 $\varepsilon_{total} = (1-W)\varepsilon_{water} + W\varepsilon_{foam}$ with W(U) or W(U, dT)