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Overview of model features

* Model computes radiative parameters (Brightness/Apparent Temperatures, Normalized Radar Cross Section) over ocean surface as
a function of environmental parameters and sensor specifications (e.g. incidence angle, frequency)

* Model components
* Flat ocean surface : Fresnel reflection
* Surface roughness : ocean waves of all scales through sea surface power spectrum and/or slope variance
* Foam coverage and emission
e Swell
* Hydrodynamic modulation for upwind / downwind roughness asymmetry
* Atmospheric model : limited to Standard US atmosphere vertical profile prescribed by surface parameters

* Inputs:

Sensor : Electromagnetic Wavelength, Earth incidence angle

Geophysical : Sea Surface Temperatures & Salinity, Wind speed & altitude, Atmospheric stability, Swell RMS height and peak wavelength

Model options : Two-scale cutoff wavenumber, Model for drag coefficient, slope variance, sea spectrum, foam emissivity and coverage
fraction, sea water dielectric constant, EM model (Small Perturbations Method, 2-scale, GO)

* OQutputs: Polarimetric (V, H, 3" and 4t Stokes) radiative quantities (TB/NRCS) for smooth surface & induced by roughness, with /
without foam, with / without atmosphere; Roughness-induced component is provided as harmonic coefficients of the azimuth
angle vs wind direction (), e.g.

Ty rougnh = To + T1cos @ + T,cos 2¢



Details of model modules



Sea water Dielectric Constant Models

e Klein & Swift 1977 : Developed from measurements at L- (1.4 GHz)

and S-band (2.65 GHz); Used at 1.4 GHz (SSS) and 6 GHz (SST); Biased
in cold waters (< 5degC) at both frequencies.

* Ellison et al. 1998 : Developed from measurements between 3 — 20
GHz + 23.8, 36.5, 89 GHz.

* Meissner et al. (2004, 2012, 2014): Adjusted / Validated on remote
sensing data from 1.4 to 89 GHz.

* High frequency model from 28.8 to 449677 GHz (Stuart Newman).



Electromagnetic Models for Rough Surface
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Foam Coverage / Fraction Models

* Monahan & O’Muircheartaigh (1986) : commonly used model that
depends on wind speed and atmospheric stability.

* Monahan & Lu (1990): distinguish different lifetime stages for foam
bubles.

 WISE2001 : Empirical model from the WISE 2001 campaign
(unpublished).

* Yin et al. (2016) : semi-empirical model, adjusted on SMOS
observations at L-band. 5 parameterizations according to sea
spectrum & wind product used. Requires consistent sea spectrum and
foam emissivity models.



Foam Emissivity Models

e Stogryn (1972)

* Yin et al. (2016): Use multilayer model by Anguelova and Gaiser
(2013). Same as coverage model, it is adjusted on SMOS observations,
, 5 versions according to sea spectrum model and wind product used.

* Anguelova et al. (2022): multi-frequency tuned multilayer model (see
later slide).



Swell

e Simple model from Durden and Vesecky (1985)

* Swell adds Gaussian spectrum to sea spectrum in the large wave
doman => impact the model through large scales slope variances

* Adjustable parameters:
* RMS height
* Half power widths of swell Gaussian PDF along and across wind
* Peak PDF swell along and across wind



Roughness Sea Surface Spectrum Models

e Durden and Vesecky (1985) [DV]: developed for radar at L-band, likely
underestimates sensitivity to wind.

—> Spectrum amplitude is adjustable
= Yueh (1997) model: multiplied DV model by 2

= Yirclzl elt al. (2016) model : multiplied DV model by 1.25 and adjusted foam
mode

 Elfouhaily et al. (1998) : developed to be independent of remote sensing
data. Good performance reported for C-band scatterometers. Includes
wave development (inverse wave age is an input). Issue at L-band: loss of
sensitivity to wind speed between 3 -7 m/s.

* Slope Variance for large scales : computed from sea spectrum for k < kd or
from Cox and Munk (1954) model



Drag Coefficient Models

e Used to Convert wind at a reference altitude (commonly 10 m) to
other altitudes or to friction velocity used as input to sea spectrum
models

e Cardone (1969), Charnock (1955), Donelan et al. (1993) (accounts for
inverse wave age)



Enhancements for project PARMIO

e Stuart Newman : High frequency model for the dielectric constant of sea
water for the IfraRed (covers 28.8 GHz -449677 GHz)

* Maggie Anguelova : Frequency tuned foam emissivity (Anguelova et al.
2022% that adjusts effective foam thickness (h.,) and void fraction upper
limits (v 4, v z) at frequencies between 1.4 and 89 GHz

* E. Dinnat modification : original code uses a “band” input that could take 6 discrete
values (L, C, X, K, Ka, W)

—> Possible to have inconsistent frequencies for rest of the model and the foam
emissivity model

— Foam model usable only at 6 fixed frequencies f, = 1.4 Ghz, ..., f, = 89 Ghz

New code: uses the frequency f, used by the rest of the model and interpolates the
tuned foam parameters éh o1 Vo Vo) from the 6 reference frequencies f1 -> f6 to f, If
fois out of the domain o the modelf, the closest boundary value is used.



Code and Repository status

* All team members contributions are included and merged, available on GitHub

* Code Improvements
* Improved portability by fixing hardcoded paths to data files

. Impdrol\ged speed of foam models Yin et al. 2016 and Anguelova et al. 2022 (frequency tuned
mode

* Fixed multiple warnings and bugs
* Added “inconsistency” warnings for some selection of models for foam emissivity and fraction

* Improvements to Documentation
* Added list of folders and sub-folders wih content description
New expended header for main program
Cleaned up and translated (French -> English) all comments in main program
New header for all subroutines
Diagram of subroutines relationships



Remaining work

* Assess validity of atmospheric model for high frequencies IR
* Update NRCS / BRDF component to bring up to speed with TB
* Improve documentation of subroutines

* Muti-layer foam models (Anguelova et al. 2022, Yin et al. 2016)
generate warning message
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