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Overview of model features
• Model computes radiative parameters (Brightness/Apparent Temperatures, Normalized Radar Cross Section) over ocean surface as 

a function of environmental parameters and sensor specifications (e.g. incidence angle, frequency)
• Model components

• Flat ocean surface : Fresnel reflection 
• Surface roughness : ocean waves of all scales through sea surface power spectrum and/or slope variance
• Foam coverage and emission 
• Swell 
• Hydrodynamic modulation for upwind / downwind roughness asymmetry
• Atmospheric model : limited to Standard US atmosphere vertical profile prescribed by surface parameters

• Inputs :
Sensor : Electromagnetic Wavelength, Earth incidence angle
Geophysical : Sea Surface Temperatures &  Salinity, Wind speed & altitude, Atmospheric stability, Swell RMS height and peak wavelength   
Model options : Two-scale cutoff wavenumber, Model for drag coefficient, slope variance, sea spectrum, foam emissivity and coverage 

fraction, sea water dielectric constant, EM model (Small Perturbations Method, 2-scale, GO)

• Outputs: Polarimetric (V, H, 3rd and 4th Stokes) radiative quantities (TB/NRCS) for smooth surface & induced by roughness, with / 
without foam, with / without atmosphere; Roughness-induced component is provided as harmonic coefficients of the azimuth 
angle vs wind direction (𝜑𝜑), e.g.

𝑇𝑇𝑏𝑏,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇0 + 𝑇𝑇1cos 𝜑𝜑 + 𝑇𝑇2cos 2𝜑𝜑



Details of model modules



Sea water Dielectric Constant Models

• Klein & Swift 1977 : Developed from measurements at L- (1.4 GHz) 
and S-band (2.65 GHz); Used at 1.4 GHz (SSS) and 6 GHz (SST); Biased 
in cold waters (< 5degC) at both frequencies.

• Ellison et al. 1998 : Developed from measurements between 3 – 20 
GHz + 23.8, 36.5, 89 GHz.

• Meissner et al. (2004, 2012, 2014): Adjusted / Validated on remote 
sensing data from 1.4 to 89 GHz.

• High frequency model from 28.8 to 449677 GHz (Stuart Newman).



Electromagnetic Models for Rough Surface

• Small Perturbation Method (SPM)
• GO (applicable at high MW and IR)
• 2-scale (adjustable cutoff)



Foam Coverage / Fraction Models

• Monahan & O’Muircheartaigh (1986) : commonly used model that 
depends on wind speed and atmospheric stability.

• Monahan & Lu (1990): distinguish different lifetime stages for foam 
bubles.

• WISE2001 : Empirical model from the WISE 2001 campaign 
(unpublished).

• Yin et al. (2016) : semi-empirical model, adjusted on SMOS 
observations at L-band. 5 parameterizations according to sea 
spectrum & wind product used. Requires consistent sea spectrum and 
foam emissivity models.



Foam Emissivity Models

• Stogryn (1972)
• Yin et al. (2016): Use multilayer model by Anguelova and Gaiser

(2013). Same as coverage model, it is adjusted on SMOS observations, 
, 5 versions according to sea spectrum model and wind product used. 

• Anguelova et al. (2022):  multi-frequency tuned multilayer model (see 
later slide).



Swell

• Simple model from Durden and Vesecky (1985)
• Swell adds Gaussian spectrum to sea spectrum in the large wave 

doman => impact the model through large scales slope variances
• Adjustable parameters:

• RMS height
• Half power widths of swell Gaussian PDF along  and across wind
• Peak PDF swell along and across wind



Roughness Sea Surface Spectrum Models

• Durden and Vesecky (1985) [DV]: developed for radar at L-band, likely
underestimates sensitivity to wind.

⇒ Spectrum amplitude is adjustable
⇒ Yueh (1997) model: multiplied DV model by 2
⇒ Yin et al. (2016) model : multiplied DV model by 1.25 and adjusted foam 

model
• Elfouhaily et al. (1998) : developed to be independent of remote sensing 

data. Good performance reported for C-band scatterometers. Includes 
wave development (inverse wave age is an input). Issue at L-band: loss of 
sensitivity to wind speed between 3 – 7 m/s.

• Slope Variance for large scales : computed from sea spectrum for k < kd or 
from Cox and Munk (1954) model



Drag Coefficient Models

• Used to Convert wind at a reference altitude (commonly 10 m) to 
other altitudes or to friction velocity used as input to sea spectrum 
models

• Cardone (1969), Charnock (1955), Donelan et al. (1993) (accounts for 
inverse wave age)



Enhancements for project PARMIO

• Stuart Newman : High frequency model for the dielectric constant of sea 
water for the IfraRed (covers 28.8 GHz -449677 GHz)

• Maggie Anguelova : Frequency tuned foam emissivity (Anguelova et al. 
2022) that adjusts effective foam thickness (hfe) and void fraction upper 
limits (vafv, vafh) at frequencies between 1.4 and 89 GHz

• E. Dinnat modification : original code uses a “band” input that could take 6 discrete 
values (L, C, X, K, Ka, W)

⇒ Possible to have inconsistent frequencies for rest of the model and the foam
emissivity model

⇒ Foam model  usable only at 6 fixed frequencies f1 = 1.4 Ghz, …, f6 = 89 Ghz
New code: uses the frequency f0 used by the rest of the model and interpolates the 
tuned foam parameters (hfe , vafv, vafh) from the 6 reference frequencies f1 -> f6 to f0. If 
f0 is out of the domain of the model, the closest boundary value is used.



Code and Repository status

• All team members contributions are included and merged, available on GitHub

• Code Improvements
• Improved portability by fixing hardcoded paths to data files
• Improved speed of foam models Yin et al. 2016 and Anguelova et al. 2022 (frequency tuned 

model)
• Fixed multiple warnings and bugs
• Added “inconsistency” warnings for some selection of models for foam emissivity and fraction

• Improvements to Documentation
• Added list of folders and sub-folders wih content description
• New expended header for main program
• Cleaned up and translated (French -> English) all comments in main program
• New header for all subroutines
• Diagram of subroutines relationships



Remaining work

• Assess validity of atmospheric model for high frequencies IR

• Update NRCS / BRDF component to bring up to speed with TB

• Improve documentation of subroutines

• Muti-layer foam models (Anguelova et al. 2022, Yin et al. 2016) 
generate warning message
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