ASCAT-B: 20210829 16:30Z ASCAT-C: 20210829 15:30Z ASCAT-A: 20210829 14:3



Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment



# Microwave Scatterometers

#### Ad.Stoffelen@knmi.nl

CGMS chair Ocean Surface Winds Task Group, IWWG

EUMETSAT OSI SAF, <u>Ida land-fall news story</u> EU Copernicus Marine Core Services





# Wind Quality

Quadruple Collocation Analysis of In-Situ, Scatterometer, and NWP Winds Jur Vogelzang & Ad Stoffelen, https://doi.org/10.1029/2021JC017189

Support vector machine tropical wind speed retrieval in the presence of rain for Kuband wind scatterometry

Xingou Xu & Ad Stoffelen https://doi.org/10.5194/amt-2021-200

|   | Subset | Buoys      |            | ASCAT-A    |            | ScatSat    |            | ECMWF      |            |
|---|--------|------------|------------|------------|------------|------------|------------|------------|------------|
|   |        | $\sigma_u$ | $\sigma_v$ | $\sigma_u$ | $\sigma_v$ | $\sigma_u$ | $\sigma_v$ | $\sigma_u$ | $\sigma_v$ |
| D | bAS    | 1.03       | 1.12       | 0.41       | 0.49       | 0.78       | 0.65       |            |            |
|   | bAE    | 1.06       | 1.15       | 0.34       | 0.41       |            |            | 0.94       | 1.03       |
|   | bSE    | 1.09       | 1.21       |            |            | 0.72       | 0.59       | 0.92       | 1.03       |
|   | ASE    |            |            | 0.43       | 0.49       | 0.76       | 0.65       | 0.90       | 0.98       |
| 9 | range  | 0.06       | 0.09       | 0.09       | 0.08       | 0.06       | 0.06       | 0.04       | 0.05       |





# Bayesian rain detection

- Ku-band rain problem
- VV and HH heavy rain at about 0.05 dB
- Some spread in NRCS, correlated in VV and HH, when close in time
- More noisy after more time
- Diversity in azimuth cause wind values to disperse
- Mixed wind/rain cases will be more dispersed too (lower rain rates)
- Heavy rain appears rather independent of wind
- We may be able to distinguish 4D rain and wind PDFs in a Bayesian retrieval
- Hence improve Ku wind GMF
- And possibly correct winds for rain

Zhao et al., submitted





### **Intercalibration with better QC**

Brief Introduction of Datasets

☑ ASCAT-B 25km NRT☑ ASCAT-C 25km NRT

☑ HSCAT-B 50km NRT (NOC: +0.62(HH), -0.63(VV))
☑ HSCAT-C 50km NRT (NOC: -1.17(HH), -1.32(VV))
☑ HSCAT-D 50km NRT (NOC: -0.34(HH), -0.12(VV))

| ☑ HSCAT-B 50km Rep01 (new NOC: +0.71(HH), -0.41(VV))   | NSCAT-4ds GMF     |
|--------------------------------------------------------|-------------------|
| ☑ HSCAT-C 50km Rep01 (new NOC: -1.01(HH), -1.11(VV)) < | SST Corr.         |
| ☑ HSCAT-D 50km Rep01 (new NOC: -0.26(HH), -0.14(VV))   | -mixqc            |
|                                                        |                   |
| ☑ HSCAT-B 50km Rep02 (new NOC: +0.52(HH), -0.56(VV))   | NSCAT-4ds.hy2 GMF |
| ☑ HSCAT-C 50km Rep02 (new NOC: -1.19(HH), -1.26(VV))   | SST Corr.         |
| ☑ HSCAT-D 50km Rep02 (new NOC: -0.45(HH), -0.30(VV))   | -mixqc            |

- ◆ NWP data are taken from BUFR files, i.e., the same as NRT processing used!
- ◆ Time period: Dec. 01, 2021 ~ April 30, 2022
- ◆ SST data are taken from ERA5 at analysis time.
- NSCAT-4ds.hy2 GMF was made using CDF matching tech. based on collocated ascatb and hscatc+d winds
- New NOC was calculated using NSCAT-4ds.hy2 GMF and NWP winds contained in BUFR files.

#### Wang et al., in progress

### **Intercalibration with better QC**

Conclusions and discussions

- ✓ NRT products: Significant inconsistencies of wind speeds are found between ASCAT and HSCAT! I confirmed that this is NOT caused by resolution difference (25/50km).
- ✓ Rep01: By using new NOC, winds among HSCAT-B, C, and D become more consistent, but NOT close enough to ASCAT.
- ✓ Rep02: By making and using the new NSCAT-4ds.hy2 GMF and compute corresponding NOC, winds from HSCAT and ASCAT show good agreements! However, wind speed below 2 m/s or above 20 m/s still show relative noticeable difference!
- ✓ The products of ASCAT NRT and HSCAT Rep02 can be the best version choices as sea surface wind inputs to OSE2?
- The residual biases (i.e., depend on instrument or WVCs) are acceptable, and we can move on to the next step?

More details are given in following slides!

#### Wang et al., in progress

### F

### **Intercalibration with better QC**

**Collocated** ASCAT and HSCAT winds!

• Time diff.  $\leq$  45min

• Spatial distance  $\leq 50*0.7071$ km

**HSCAT NRT** 

HSCAT Rep01

#### HSCAT Rep02







### **Intercalibration with better QC**

### Comparing to the same NWP winds!

- $\square$  It is clear that: HSCAT Rep02 is better.
- ☑ Wind speed dependent wind seed biases are reduced, and the curves of HSCAT become more similar to ASCAT curves.







#### Wang et al., in progress

### **Intercalibration with better QC**

Wind speed biases of SCA - NWP





Difference of wind speed bias (m/s)





6:00/18:00 LST





HSCAT-C Rep02 Not sun-synchronous

HSCAT-D Rep02 Not sun-synchronous

0.00

0 25

-1 00

-0.75

-0.50

-0.25

Wang et al., in progress

0 50

0.75

### Wind direction biases of SCA - NWP



HSCAT-B Rep02 6:00/18:00 LST

HSCAT-C Rep02 Not sun-synchronous

HSCAT-D Rep02 Not sun-synchronous



# 1-min. maximum sustained winds

- Standard for hurricane category advisories
- Based on dropsonde wind speed scale CMOD7D GMF for ASCAT
- Scatterometers blur the maximum eyewall winds
- Develop guidance for 1-minute maximum sustained winds for ASCAT
- Fit simple Rankine vortex to ASCAT winds:



<u>Ni et al., 2022</u>

### ASCAT, ECMWF and SAR speed scale

Triple speed collocation ASCAT, <u>SAR</u>, ECMWF for matching





# ASCAT, ECMWF and SAR speed scale

- Triple speed collocation ASCAT, <u>SAR</u>, ECMWF for matching
- Top: CMOD7Dv2 speed scale
- Bottom: CMOD7
- Mean wind speed is reference for accurate binning
- Biases small

20

30

SAR Wind Speed [m/s]

- ASCAT error smallest at ~10%
- SAR has more speed structure

0.00

10

15 20 25

Wind Speed (m/s)

30

35 40

ECMWF is smooth and wide

50

40



## **Comparing to SFMR/dropsondes**



- Chou et al. adjusted to dropsondes
- Polverari et al. matched SFMR
- SAR VV and ASCAT match well with the same GMF after spatial matching
- SFMR and SAR spread substantially with RMSD of 5.8 m/s
  - SFMR appears difficult to calibrate



Ni et al., in review

# **2DVAR (with adjusted speeds)**

 $R_w = 25 \text{ km}, R_y = 80 \text{ km},$ 

 $u^2 = 0.2, e_{\psi} = 1, e_{\gamma} = 1, e_o = 1.8$ 

45

40

35

30

25 Speed

20 nin

15

10

100

75

50

25

-25

-50

-75

y (km)

- In development ۲
- Storm-centered background (max. R<sup>2</sup> centre)
- Empiricial "hurricane" spatial structure functions
- Sensitivity test for varying radii and rot/div ۲ ratio
- Now 12.5 km product, later 5.6 km ۲
- Wind speed scaling is last step ۲



Ni et al., in preparation



# **GMF** summary

- Empirical GMFs are very accurate
- ASCAT is very stable and its winds very accurate too
- Rain effects influence Ku-band GMFs, while collocations with ASCAT allow improved rain screening and hence a better Ku wind GMF
- Persistent ECMWF model biases in U10s vector are consistent between sunsynchronous and non sun-synchronous instruments and consistent between C- and Ku-band scatterometers
- ECMWF U10s errors are very substantial and violate the BLUE paradigm in data assimilation; a bias correction scheme is in progress, incl. ML
- Dropsondes and SFMR need further investigation to obtain an accurate wind speed reference as comparisons are noisy, while moored buoy calibrations in the 20-25 m/s regime appear reliable
- Satellite wind measurement instruments can be calibrated irrespective of the wind speed reference used at the extremes and rescaled if need be
- GMFs appear spatial resolution independent, while extremes are not





Fig. 1.4 Sketch of the microwave illumination patterns of: a) AMI (ERS-1/2); b) SASS (SeaSat-A); c) and f) SeaWinds, Oceansat-2 SCAT and HY-2A; d) NSCAT; e) MetOp ASCAT-A and B. The case a), b), d) and e) correspond to a fan beam geometry whereas c) and f) correspond to a pencil beam geometry.

#### Franco Fois, PhD thesis, 2015

# **Cone metrics for ERS and ASCAT**



- Is determined by physics, an amplitude and a direction (U10s)
- Mapping for a given set of θ of co-pol to intercalibrate instruments/years/...
- Diagnostic for NRCS noise, GMF, wind retrieval, QC





# Satellite µw scatterometers

- Ground-based transponders are inaccurate for quality monitoring, but provide ballpark calibration for ASCAT
- The rain forest has a daily cycle of about 15% in μw backscatter; it may be used for stability monitoring at given LTAN
- Land targets are affected by moisture events (dew, rain)
- Ice/snow targets may be stable for months, years or decades, but will be affected by T>0 / rain (climate change)
- No absolute calibration, but
  - Very stable instruments within 0.1 dB (2%)
  - Cone metrics provides order 0.02 dB calibration for ASCAT (0.02 m/s)
  - Excellent relative calibration between instruments and over time
  - Non sun-synchronous satellite references for intercalibration (Wang et al., 2021)
  - Excellent and consistent GMFs at used wavelengths, polarizations and angles
  - Many close C- and Ku-band collocations, allowing improved GMFs and consistency
  - Reasonable control on ancillary parameters: SST, stability, waves, rain, . . .
  - Well-known and controlled in situ and NWP references (except for extremes)
  - Generic C- and Ku-band processors
- Use ASCAT-B 2013 cone metrics as calibration reference for all scatterometers?



# **Stress-equivalent wind**

- Radiometers/scatterometers measure ocean roughness
- Ocean roughness consists in small (cm) waves generated by air impact and subsequent wave breaking processes; depends on gravity, water mass density, surface tension s, and e.m. sea properties (assumed constant)
- Air-sea momentum exchange is described by  $\tau = \rho_{air} u_* u_*$ , the stress vector; depends on air mass density  $\rho_{air}$ , friction velocity vector  $u_*$
- Surface layer winds (e.g., u<sub>10</sub>) depend on u\*, atmospheric stability, surface roughness and the presence of ocean currents
- Equivalent neutral winds, u<sub>10N</sub>, depend only on u<sub>\*</sub>, surface roughness and the presence of ocean currents and is currently used for backscatter geophysical model functions (GMFs)
- ►  $u_{10S} = \sqrt{\rho_{air}} \cdot u_{10N} / \sqrt{\rho_0}$  is now used to be a better input for backscatter GMFs (stress-equivalent wind)
- This prevents regional biases against local wind references
- U10s shows no significant ancillary dependencies on, e.g., long ocean waves (TBC)

### Jos de Kloe et al., 2017



# Intercalibration and standardization

- Our premise is that for given wavelength, polarization and geometry, σ<sup>0</sup> should be identical in identical geophysical conditions and independent of instrument settings
- > We develop generic L2 wind processing for calibrated instrument data
- > Noise properties do however affect  $\sigma^0$  diagnostics, so we develop noise models too to better understand our retrievals and diagnostics
- KNMI is particularly interested to remove (σ<sup>0</sup>-dependent) instrument biases as they interfere with Ku-band wind and SST dependencies (Stoffelen et al., 2017; Wang et al., 2017; Belmonte et al., 2017)
- Comparison of ScatSat with QSCAT, RSCAT and OSCAT behavior for given Geophysical Model Function GMF and NWP input to obtain consistency
- CFOSAT, HY-2 and WindRad scatterometers will follow (Wang et al., 2021)



# Satellite µw scatterometers

- Bragg scattering interference of microwaves and ocean waves
- Hydrodynamic ocean short-wave modulation, choppy wave model
- Wave-wind interaction, wave boundary layer (scatterometers see no long waves so far)
- The short wave spectrum is dominated by breaking waves and their dissipation for modal and higher winds
- Crucial to describe the short wave spectrum, but rather complex
- Use satellite data
- Wave shadowing and interference at grazing incidences
- Specular reflection dominates at smaller incidence angles (geometric optics)



# Uncertainty

- Users are interested in stability and consistency of L2 geophysical products, e.g., detect 0.1 m/s trends over 10 years
  - Cone metrics provides order 0.02 dB calibration for ASCAT (0.02 m/s)
- Cone spread over ocean to provide ocean spatial variability, which is found equal to wind variability (wind downbursts, turbulence, convection)
- \* Related to Kp too (Kp is the  $\sigma^0$  SD)
- Can be segregated into geophysical and instrument (error) contributions
- Wind retrieval quality is in stress-equivalent wind, correcting for air stability and mass density effects, which are not seen in ocean microwave EO
- Scatterometer wind retrievals are very consistent after intercalibration of backscatter values and GMFs
- Physically-based models are useful to describe/understand behaviour at different wavelengths and polarizations, but fed by empirical satellite data characterization to improve accuracy
  - Wavelength dependency
  - Wind azimuth and speed dependency
  - Polarization/incidence dependency
  - Doppler

### Franco Fois, PhD thesis, 2015

### **ASCAT is very stable**

- ASCAT-A beams stay within a few hundreds of a dB (eq. to same value in m/s)
- Cone position variation due to seasonal wind variability (reduced with u10s)
- Improve ASCAT attitude knowledge? (cf. Long, 1998)
- Asset for Ku-band scatterometer developments; radiometers
- Reference for NWP reanalyses
- Can method be applied for other scatterometers?

reprocessed ASCAT A beam offsets from CONE METRICS (relative to mean 2013)



# **Training/interaction**

- Training Course Applications of Satellite Wind and Wave Products for Marine Forecasting <u>vimeo.com/album/1783188</u> (video)
- Forecasters forum training.eumetsat.int/mod/forum/view.php?f=264
- Xynthia storm case www.eumetrain.org/data/2/xynthia/index.htm
- EUMETrain ocean and sea week <u>eumetrain.org/events/oceansea week 2011.html</u> (video)
- NWP SAF scatterometer training workshop <u>nwpsaf.eu/site/software/scatterometer/</u>
- Use of Satellite Wind & Wave Products for Marine Forecasting training.eumetsat.int/course/category.php?id=46 and others
- Satellite and ECMWF data vizualisation <u>eumetrain.org/eport/smhi\_12.php?</u>
- MeteD/COMET training module <u>www.meted.ucar.edu/EUMETSAT/marine\_forecasting/</u>

